Pereira JR, Cliff DP, Sousa-Sa E, Zhang Z, Santos R. Prevalence of objectively measured sedentary behavior in early years: Systematic review and meta-analysis. Scand J Med Sci Sports. 2019;29(3):308–28. https://doi.org/10.1111/sms.13339. Epub 2018 Dec 18.
Article
Google Scholar
Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SFM, Altenburg TM, Chinapaw MJM. SBRN Terminology Consensus Project Participants: Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75-017–0525-8.
Article
Google Scholar
Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, Bauman AE, van der Ploeg HP. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8(11):e80000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, Bauman A, Lee IM. Lancet Physical Activity Series 2 Executive Committe, Lancet Sedentary Behaviour Working Group: Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.
Article
PubMed
Google Scholar
Patterson R, McNamara E, Tainio M, de Sa TH, Smith AD, Sharp SJ, Edwards P, Woodcock J, Brage S, Wijndaele K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33(9):811–29.
Article
PubMed
PubMed Central
Google Scholar
Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, Carver A, Veitch J, Parrish AM, Hardy LL, Plotnikoff RC, Okely AD, Salmon J, Lubans DR. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.
Article
CAS
PubMed
Google Scholar
Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am J Prev Med. 2013;44(6):651–8.
Article
PubMed
Google Scholar
De Craemer M, Lateva M, Iotova V, De Decker E, Verloigne M, De Bourdeaudhuij I, Androutsos O, Socha P, Kulaga Z, Moreno L, Koletzko B, Manios Y, Cardon G. ToyBox-study group: Differences in energy balance-related behaviours in European preschool children: the ToyBox-study. PLoS One. 2015;10(3):e0118303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verloigne M, Loyen A, Van Hecke L, Lakerveld J, Hendriksen I, De Bourdheaudhuij I, Deforche B, Donnelly A, Ekelund U, Brug J, van der Ploeg HP. Variation in population levels of sedentary time in European children and adolescents according to cross-European studies: a systematic literature review within DEDIPAC. Int J Behav Nutr Phys Act. 2016;13(1):69-016–0395-5.
Article
Google Scholar
O’Brien KT, Vanderloo LM, Bruijns BA, Truelove S, Tucker P. Physical activity and sedentary time among preschoolers in centre-based childcare: a systematic review. Int J Behav Nutr Phys Act. 2018;15:117.
Article
PubMed
PubMed Central
Google Scholar
Bronfenbrenner U. The ecology of Human Development: experiments by nature and design. Cambridge,MA: Harward University press; 1979.
Google Scholar
Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults' sedentary behavior determinants and interventions. Am J Prev Med. 2011;41(2):189–96.
Article
PubMed
Google Scholar
Sallis JF, Owen N, Fisher EB: Ecological models of health behavior. In Health behavior and health education: theory, research, and practice. 4th ed. edition. Edited by Glanz K, Rimer BK, Viswanath KE. San Francisco CA: Jossey-Bass; 2008:465–482.
Gubbels JS, Van Kann DH, de Vries NK, Thijs C, Kremers SP. The next step in health behavior research: the need for ecological moderation analyses - an application to diet and physical activity at childcare. Int J Behav Nutr Phys Act. 2014;11(1):52 5868-11-52.
Article
PubMed
PubMed Central
Google Scholar
Davison KK, Birch LL. Childhood overweight: a contextual model and recommendations for future research. Obes Rev s. 2001;2:159–71.
Article
CAS
Google Scholar
Edwardson C, Gorely T. Parental influences on different types and intensities of physical activity in youth: A systematic Review. Psychol Sport Exerc. 2010;11:522–35.
Article
Google Scholar
Ward S, Belanger M, Donovan D, Carrier N. Systematic review of the relationship between childcare educators' practices and preschoolers' physical activity and eating behaviours. Obes Rev. 2015;16(12):1055–70.
Article
CAS
PubMed
Google Scholar
Hinkley T, Salmon J, Okely AD, Trost SG. Correlates of sedentary behaviours in preschool children: a review. Int J Behav Nutr Phys Act. 2010;7:66 5868-7-66.
Article
PubMed
PubMed Central
Google Scholar
Hildebrand M, Oglund GP, Wells JC, Ekelund U. Prenatal, birth and early life predictors of sedentary behavior in young people: a systematic review. Int J Behav Nutr Phys Act. 2016;13:63–016–0389-3.
Article
Google Scholar
Tonge KL, Jones RA, Okely AD. Correlates of children's objectively measured physical activity and sedentary behavior in early childhood education and care services: A systematic review. Prev Med. 2016;89:129–39.
Article
PubMed
Google Scholar
Xu H, Wen LM, Rissel C. Associations of parental influences with physical activity and screen time among young children: a systematic review. J Obes 2015, 2015;546925:–546925.
Downing KL, Hinkley T, Salmon J, Hnatiuk JA, Hesketh KD. Do the correlates of screen time and sedentary time differ in preschool children? BMC Public Health. 2017;17(1):285–017–4195-x.
Google Scholar
Krist L, Bürger C, Ströbele-Benschop N, Roll S, Lotz F, Rieckmann N, Müller-Nordhorn J, Willich SN, Müller-Riemenschneider F. Association of individual and neighbourhood socioeconomic status with physical activity and screen time in seventh-grade boys and girls in Berlin, Germany: a cross-sectional study. BMJ Open. 2017;7(12):e017974.
Article
PubMed
PubMed Central
Google Scholar
Cameron AJ, Spence AC, Laws R, Hesketh KD, Lioret S, Campbell KJ. A Review of the Relationship Between Socioeconomic Position and the Early-Life Predictors of Obesity. Curr Obes Rep. 2015;4(3):350–62.
Article
PubMed
Google Scholar
Cubbin C, Hadden WC, Winkleby MA. Neighborhood context and cardiovascular disease risk factors: the contribution of material deprivation. Ethn Dis. 2001;11(4):687–700.
CAS
PubMed
Google Scholar
Laaksonen M, Talala KF, Martelin TF, Rahkonen OF, Roos EF, Helakorpi SF, Laatikainen TF, Prattala R. Health behaviours as explanations for educational level differences in cardiovascular and all-cause mortality: a follow-up of 60 000 men and women over 23 years. Eur J Pub Health. 2008;18(1):38–43.
Article
Google Scholar
Ross CE, Mirowsky J. Neighborhood disadvantage, disorder, and health. J Health Soc Behav. 2001 Sep;42(3):258–76.
Article
CAS
PubMed
Google Scholar
Gebremariam MK, Altenburg TM, Lakerveld J, Andersen LF, Stronks K, Chinapaw MJ, Lien N. Associations between socioeconomic position and correlates of sedentary behaviour among youth: a systematic review. Obes Rev. 2015;16(11):988–1000.
Article
CAS
PubMed
Google Scholar
Bingham DD, Costa S, Hinkley T, Shire KA, Clemes SA, Barber SE. Physical Activity During the Early Years: A Systematic Review of Correlates and Determinants. Am J Prev Med. 2016;51(3):384–402.
Article
PubMed
Google Scholar
Lehto E, Ray C, Vepsäläinen H, Korkalo L, Lehto R, Kaukonen R, Suhonen E, Nislin M, Nissinen K, Skaffari E, Koivusilta L, Sajaniemi N, Erkkola M, Roos E. Increased Health and Wellbeing in Preschools (DAGIS) Study - Differences in Children's Energy Balance-Related Behaviors (EBRBs) and in Long-Term Stress by Parental Educational Level. Int J Environ Res Public Health. 2018;15(10).
Article
PubMed Central
Google Scholar
Määttä S, Lehto R, Nislin M, Ray C, Erkkola M, Sajaniemi N, Roos E. Increased health and wellbeing in preschools (DAGIS): rationale and design for a randomized control. BMC Public Health. 2015;15(1):402.
Article
PubMed
PubMed Central
Google Scholar
Janssen X, Cliff DP, Reilly JJ, Hinkley T, Jones RA, Batterham M, Ekelund U, Brage S, Okely AD. Predictive validity and classification accuracy of ActiGraph energy expenditure equations and cut-points in young children. PLoS One. 2013;8(11):e79124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. Obes(Silver Spring). 2006;14(11):2000–6.
Article
Google Scholar
Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–7.
Article
PubMed
Google Scholar
Cliff DP, Reilly JJ, Okely AD. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0-5 years. J Sci Med Sport. 2009;12(5):557–67.
Article
PubMed
Google Scholar
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.
Article
PubMed
Google Scholar
Ridgers ND, Salmon J, Ridley K, O’Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012;9:15 5868-9-15.
Article
PubMed
PubMed Central
Google Scholar
Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–8.
Article
PubMed
Google Scholar
Putnam SP, Rothbart MK. Development of Short and Very Short forms of the Children's Behavior Questionnaire. J Pers Assess. 2006;87(1):103–13.
Article
Google Scholar
Carson V, Janssen I. Associations between factors within the home setting and screen time among children aged 0–5 years: a cross-sectional study. BMC Public Health. 2012;12:539 2458–12-539.
Article
PubMed
PubMed Central
Google Scholar
Crawford DA, Ball K, Cleland VJ, Campbell KJ, Timperio AF, Abbott G, Brug J, Baur LA, Salmon JA. Home and neighbourhood correlates of BMI among children living in socioeconomically disadvantaged neighbourhoods. Br J Nutr. 2012;107(7):1028–36.
Article
CAS
PubMed
Google Scholar
Määttä S, Ray C, Roos G, Roos E. Applying a Socioecological Model to Understand Preschool Children’s Sedentary Behaviors from the Viewpoints of Parents and Preschool Personnel. Early Childhood Educ J. 2016;44(5):491–502.
Article
Google Scholar
Ray C, Määttä S, Roos G, Roos E. Vanhempien käsityksiä päiväkoti-ikäisten lasten kasvisten, hedelmien ja sokeripitoisten elintarvikkeiden syömiseen vaikuttavista tekijöistä [Parents perceptions about factors influencing preschool children’s intake of fruit and vegetables, and sugar-enriched foods]. Varhaiskasvatuksen Tiedelehti (J Early Child Educ Res). 2016;5(1):115–35.
Google Scholar
van Ansem WJC, CTM S, Rodenburg G, van D M. Maternal educational level and children’s healthy eating behaviour: role of the home food environment (cross-sectional results from the INPACT study). Int J Behav Nutrit Phys Act. 2014;11:113.
Article
Google Scholar
Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health. 1992;82(6):816–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward D, Hales D, Haverly K, Marks J, Benjamin S, Ball S, Trost S. An instrument to assess the obesogenic environment of child care centers. Am J Health Behav. 2008;32(4):380–6.
Article
PubMed
Google Scholar
Androutsos O, Apostolidou EF, Iotova VF, Socha PF, Birnbaum JF, Moreno L FAU,- De Bourdeaudhuij, De Bourdeaudhuij IF, Koletzko BF, Manios Y: Process evaluation design and tools used in a kindergarten-based, family-involved intervention to prevent obesity in early childhood. The ToyBox-study. Obes Rev s 2014 Aug;15 Suppl 3:74–80. doi: https://doi.org/10.1111/obr.12185.
Article
PubMed
Google Scholar
Manios Y, Androutsos OF, Katsarou CF, Iotova VF, Socha PF, Geyer CF, Moreno LF, Koletzko B FAU,- De Bourdeaudhuij, I: Designing and implementing a kindergarten-based, family-involved intervention to prevent obesity in early childhood: the ToyBox-study. Obes Rev s 2014;15 Suppl 3:5–13. doi: https://doi.org/10.1111/obr.12175.
Article
PubMed
Google Scholar
Geiser C. Data Analysis with Mplus: New York. NY: The Guilford Press; 2012.
Google Scholar
Stride C. Multilevel Modelling using Mplus. London: Falcon Training/Figure It Out; 2013.
Google Scholar
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42.
Article
Google Scholar
Schmutz EA, Leeger-Aschmann CS, Radtke T, Muff S, Kakebeeke TH, Zysset AE, Messerli-Burgy N, Stulb K, Arhab A, Meyer AH, Munsch S, Puder JJ, Jenni OG, Kriemler S. Correlates of preschool children's objectively measured physical activity and sedentary behavior: a cross-sectional analysis of the SPLASHY study. Int J Behav Nutr Phys Act. 2017;14(1):1 -016-0456-9.
Article
PubMed
PubMed Central
Google Scholar
Gubbels JS, Van Kann DH, Cardon G, SPJ K. Activating Childcare Environments for All Children: the Importance of Children's Individual Needs. Int J Environ Res Public Health. 2018;15(7):1400.
Article
PubMed Central
Google Scholar
Radesky JS, Silverstein M, Zuckerman B, Christakis DA. Infant self-regulation and early childhood media exposure. Pediatr. 2014;133(5):e1172–8.
Article
Google Scholar
Thompson AL, Adair LS, Bentley ME. Maternal characteristics and perception of temperament associated with infant TV exposure. Pediatr. 2013;131(2):e390–7.
Article
Google Scholar
Hnatiuk JA, Hesketh KR, van Sluijs EM. Correlates of home and neighbourhood-based physical activity in UK 3-4-year-old children. Eur J Pub Health. 2016 Dec;26(6):947–53. https://doi.org/10.1093/eurpub/ckw067.
Article
Google Scholar
Hesketh KR, Benjamin-Neelon S, van Sluijs E, MF.: How does the UK childcare energy-balance environment influence anthropometry of children aged 3 to 4 years? A cross-sectional exploration. BMJ Open 2018, 8(7):e021520.
Article
PubMed
PubMed Central
Google Scholar
Olesen LG, Kristensen PL, Korsholm L, Froberg K. Physical activity in children attending preschools. Pediatr. 2013;132(5):e1310–8.
Article
Google Scholar
Pate RR, Pfeiffer KA, Trost SG, Ziegler P, Dowda M. Physical activity among children attending preschools. Pediatr. 2004;114(5):1258–63.
Article
Google Scholar
Vanderloo LM, Tucker P, Johnson AM, van Zandvoort M, Burke SM, Irwin JD: The influence of centre-based childcare on preschoolers' physical activity levels: a cross-sectional study. Int J Environ Res Public Health 2014, 11(2):1794–1802.
Article
PubMed
PubMed Central
Google Scholar
Tucker P, Vanderloo LM, Burke SM, Irwin JD, Johnson AM. Prevalence and influences of preschoolers’ sedentary behaviors in early learning centers: a cross-sectional study. BMC Pediatr, 2015;15:128.
Spence JC, Rhodes RE, Carson V. Challenging the Dual-Hinge Approach to Intervening on Sedentary Behavior. Am J Prev Med. 2017;52(3):403–6.
Article
PubMed
Google Scholar
Carson V, Spence J, Cutumisu N, Boulé N, Edwards J. Seasonal Variation in Physical Activity Among Preschool Children in a Northern Canadian City. Res Q Exerc Sport. 2010;81:392–9.
Article
PubMed
Google Scholar
Gracia-Marco L, Ortega FB, Ruiz JR, Williams CA, Hagstromer M, Manios Y, Kafatos A, Beghin L, Polito A, De Henauw S, Valtuena J, Widhalm K, Molnar D, Alexy U, Moreno LA, Sjostrom M, Helena Study Group: Seasonal variation in physical activity and sedentary time in different European regions. HELENA study 4 kapin 2013, 31(16):1831–1840.
Harrison F, Goodman A, van Sluijs EMF, Andersen LB, Cardon G, Davey R, Janz KF, Kriemler S, Molloy L, Page AS, Pate R, Puder JJ, Sardinha LB, Timperio A, Wedderkopp N, Jones AP. on behalf the ICAD collaborators: Weather and children’s physical activity; how and why do relationships vary between countries? Int J Behav Nutr Phys Act. 2017;14(1):74-017–0526-7.
Article
Google Scholar
Hesketh KR, Lakshman R, van Sluijs EMF. Barriers and facilitators to young children's physical activity and sedentary behaviour: a systematic review and synthesis of qualitative literature. Obes Rev. 2017 Sep;18(9):987–1017. https://doi.org/10.1111/obr.12562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uijtdewilligen L, Brown HE, Muller-Riemenschneider F, Lim YW, Brage S, van Sluijs EM. A systematic review of methods to measure family co-participation in physical activity. Obes Rev. 2017;18(12):1454–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindsay AC, Greaney ML, Wallington SF, Mesa T, Salas C. A review of early influences on physical activity and sedentary behaviors of preschool-age children in high-income countries. J Spec Pediatr Nurs. 2017;22(3). https://doi.org/10.1111/jspn.12182. Epub 2017 Apr 13.
Article
Google Scholar
Truelove S, Bruijns BA, Vanderloo LM, O'Brien KT, Johnson AM, Tucker P. Physical activity and sedentary time during childcare outdoor play sessions: A systematic review and meta-analysis. Prev Med. 2018;108:74–85.
Article
PubMed
Google Scholar
Cerin E, MacKinnon DP. A commentary on current practice in mediating variable analyses in behavioural nutrition and physical activity. Public Health Nutr. 2009;12(8):1182–8.
Article
PubMed
Google Scholar
Määttä S, Ray C, Vepsäläinen H, Lehto E, Kaukonen R, Ylönen A, Roos E. Parental Education and Pre-School Children's Objectively Measured Sedentary Time: The Role of Co-Participation in Physical Activity. Int J Environ Res Public Health. 2018;15(2). https://doi.org/10.3390/ijerph15020366.
Article
PubMed Central
Google Scholar
Määttä S, Konttinen H, Lehto R, Haukkala A, Erkkola M, Roos E. Preschool Environmental Factors, Parental Socioeconomic Status, and Children’s Sedentary time: An examination of Cross-Level interactions. Int J Environ Res Public Health. 2019;16(1):46. https://doi.org/10.3390/ijerph16010046
Article
PubMed Central
Google Scholar