Specker B. Nutrition influences bone development from infancy through toddler years. J Nutr. 2004;134(3):691S-S695.
Article
PubMed
Google Scholar
Bowden L, Jones C, Ryan S. Bone mineralisation in ex-preterm infants aged 8 years. Eur J Pediatr. 1999;158(8):658–61.
Article
PubMed
CAS
Google Scholar
Czech-Kowalska J, Czekuc-Kryskiewicz E, Pludowski P, Zaniuk K, Jaworski M, Łuba A, et al. The clinical and biochemical predictors of bone mass in preterm infants. PLoS ONE. 2016;11(11): e0165727.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kinney MV, Lawn JE, Howson CP, Belizan J. 15 Million preterm births annually what has changed this year? Reprod Health. 2019;9:28.
Article
Google Scholar
Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol. 2014;1(3):85–91.
PubMed
PubMed Central
Google Scholar
Heaney R. Effects of caffeine on bone and the calcium economy. Food Chem Toxicol. 2002;40(9):1263–70.
Article
PubMed
CAS
Google Scholar
Erenberg A, Leff RD, Haack DG, Mosdell KW, Hicks GM, Wynne BA, et al. Caffeine citrate for the treatment of apnea of prematurity: a double-blind, placebo-controlled study. Pharmacotherapy. 2000;20(6):644–52.
Article
PubMed
CAS
Google Scholar
Aranda JV, Cook CE, Gorman W, Collinge JM, Loughnan PM, Outerbridge EW, et al. Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr. 1979;94(4):663–8.
Article
PubMed
CAS
Google Scholar
Osswald H, Schnermann J. Methylxanthines and the kidney. Handb Exp Pharmacol. 2011;(200):391–412. https://doi.org/10.1007/978-3-642-13443-2_15.
Article
CAS
Google Scholar
Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357(19):1893–902.
Article
PubMed
CAS
Google Scholar
Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21.
Article
PubMed
CAS
Google Scholar
Natarajan G, Botica M-L, Thomas R, Aranda JV. Therapeutic drug monitoring for caffeine in preterm neonates: an unnecessary exercise? Pediatrics. 2007;119(5):936–40.
Article
PubMed
Google Scholar
Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.
PubMed
CAS
Google Scholar
Charles BG, Townsend SR, Steer PA, Flenady VJ, Gray PH, Shearman A. Caffeine citrate treatment for extremely premature infants with apnea: population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Ther Drug Monit. 2008;30(6):709–16.
Article
PubMed
CAS
Google Scholar
Gillot I, Gouyon J, Guignard J. Renal effects of caffeine in preterm infants. Neonatology. 1990;58(3):133–6.
Article
CAS
Google Scholar
Gouyon J-B, Guignard J-P. Renal effects of theophylline and caffeine in newborn rabbits. Pediatr Res. 1987;21(6):615–8.
Article
PubMed
CAS
Google Scholar
Mitchell SM, Rogers SP, Hicks PD, Hawthorne KM, Parker BR, Abrams SA. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr. 2009;9(1):1–7.
Article
CAS
Google Scholar
Backström MC, Kuusela A-L, Mäki R. Metabolic bone disease of prematurity. Ann Med. 1996;28(4):275–82.
Article
PubMed
Google Scholar
Verrotti A, Coppola G, Parisi P, Mohn A, Chiarelli F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010;112(1):1–10.
Article
PubMed
Google Scholar
Zhang H, Jia Q, Han T. Screening of serum alkaline phosphatase and phosphate helps early detection of metabolic bone disease in extremely low birth weight infants. Front Pediatr. 2021;9:202.
Google Scholar
Abdallah EA, Said RN, Mosallam DS, Moawad EM, Kamal NM, Fathallah MG-D. Serial serum alkaline phosphatase as an early biomarker for osteopenia of prematurity. Medicine. 2016;95(37):e4837.
Article
PubMed
PubMed Central
CAS
Google Scholar
Backström M, Kouri T, Kuusela AL, Sievänen H, Koivisto AM, Ikonen R, et al. Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity. Acta Paediatr. 2000;89(7):867–73.
Article
PubMed
Google Scholar
Faienza MF, D’Amato E, Natale MP, Grano M, Chiarito M, Brunetti G, et al. Metabolic bone disease of prematurity: diagnosis and management. Front Pediatr. 2019;7:143.
Article
PubMed
PubMed Central
Google Scholar
Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med. 2000;154(6):610–3.
Article
PubMed
CAS
Google Scholar
Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: The Framingham Osteoporosis Study. Am J Clin Nutr. 2006;84(4):936–42.
Article
PubMed
CAS
Google Scholar
Massey LK, Whiting SJ. Caffeine, urinary calcium, calcium metabolism and bone. J Nutr. 1993;123(9):1611–4.
Article
PubMed
CAS
Google Scholar
Zanardo V, Dani C, Trevisanuto D, Meneghetti S, Guglielmi A, Zacchello G, et al. Methylxanthines increase renal calcium excretion in preterm infants. Neonatology. 1995;68(3):169–74.
Article
CAS
Google Scholar
Ofek-Shlomai N, Berger I. Inflammatory injury to the neonatal brain–what can we do? Front Pediatr. 2014;2:30.
Article
PubMed
PubMed Central
Google Scholar
Ali E, Rockman-Greenberg C, Moffatt M, Narvey M, Reed M, Jiang D. Caffeine is a risk factor for osteopenia of prematurity in preterm infants: a cohort study. BMC Pediatr. 2018;18(1):1–7.
Article
CAS
Google Scholar
Viswanathan S, Khasawneh W, McNelis K, Dykstra C, Amstadt R, Super DM, et al. Metabolic bone disease: a continued challenge in extremely low birth weight infants. J Parenter Enter Nutr. 2014;38(8):982–90.
Article
Google Scholar
Mohd Kori AM, Van Rostenberghe H, Ibrahim NR, Yaacob NM, Nasir A. A Randomized Controlled Trial Comparing Two Doses of Caffeine for Apnoea in Prematurity. Int J Environ Res Public Health. 2021;18(9):4509.
Article
PubMed
PubMed Central
Google Scholar
Miller JL, Nandyal RR, Anderson MP, Escobedo MB. Relationship of caffeine dosing with serum alkaline phosphatase levels in extremely low-birth-weight infants. The Journal of Pediatric Pharmacology and Therapeutics. 2012;17(1):58–66.
Article
PubMed
PubMed Central
Google Scholar
Glajchen N, Ismail F, Epstein S, Jowell P, Fallon M. The effect of chronic caffeine administration on serum markers of bone mineral metabolism and bone histomorphometry in the rat. Calcif Tissue Int. 1988;43(5):277–80.
Article
PubMed
CAS
Google Scholar
Bosley A, Verrier-Jones E, Campbell M. Aetiological factors in rickets of prematurity. Arch Dis Child. 1980;55(9):683–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Littner Y, Mandel D, Mimouni FB, Dollberg S. Bone ultrasound velocity curves of newly born term and preterm infants. J Pediatr Endocrinol Metab. 2003;16(1):43–8.
Article
PubMed
Google Scholar
Aly H, Moustafa MF, Amer HA, Hassanein S, Keeves C, Patel K. Gestational age, sex and maternal parity correlate with bone turnover in premature infants. Pediatr Res. 2005;57(5):708–11.
Article
PubMed
CAS
Google Scholar
Pereira-da-Silva L, Costa A, Pereira L, Filipe A, Virella D, Leal E, et al. Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr. 2011;52(2):203–9.
Article
PubMed
CAS
Google Scholar
Mutlu GY, Kırmızıbekmez H, Özsu E, Er İ, Hatun Ş. Metabolic bone disease of prematurity: report of four cases. J Clin Res Pediatr Endocrinol. 2014;6(2):111.
Article
Google Scholar
Hellstern G, Pöschl J, Linderkamp O. Renal phosphate handling of premature infants of 23–25 weeks gestational age. Pediatr Nephrol. 2003;18(8):756–8.
Article
PubMed
Google Scholar
Ghannam N, Hammami M, Bakheet S, Khan B. Bone mineral density of the spine and femur in healthy Saudi females: relation to vitamin D status, pregnancy, and lactation. Calcif Tissue Int. 1999;65(1):23–8.
Article
PubMed
CAS
Google Scholar
Glass E, Hume R, Hendry G, Strange R, Forfar J. Plasma alkaline phosphatase activity in rickets of prematurity. Arch Dis Child. 1982;57(5):373–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lucas A, Brooke O, Baker B, Bishop N, Morley N. High alkaline phosphatase activity and growth in preterm neonates. Arch Dis Child. 1989;64(7 Spec No):902–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Faerk J, Peitersen B, Petersen S, Michaelsen K. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch Dis Child Fetal Neonatal Ed. 2002;87(2):F133–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reis AMS, Ribeiro LGR, Ocarino NdM, Goes AM, Serakides R. Osteogenic potential of osteoblasts from neonatal rats born to mothers treated with caffeine throughout pregnancy. BMC Musculoskeletal Disorders. 2015;16(1):1–11.
Article
CAS
Google Scholar