Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur YM, Cozen W et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017;106(2):457–466. doi: https://doi.org/10.3945/ajcn.117.153643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muthuirulan, P. & Capellini, T.D. Complex phenotypes: mechanisms underlying variation in human stature. Curr Osteoporos Rep. 2019;17(5):301–323. doi: https://doi.org/10.1007/s11914-019-00527-9.
Article
PubMed
PubMed Central
Google Scholar
Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47(7):702–9. doi: https://doi.org/10.1038/ng.3285.
Article
CAS
PubMed
Google Scholar
Lello L, Avery SG, Tellier L, Vazquez AI, de Los Campos G, Hsu SDH. Accurate Genomic Prediction of Human Height. Genetics. 2018;210(2):477–497. doi: https://doi.org/10.1534/genetics.118.301267.
Article
PubMed
PubMed Central
Google Scholar
Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–3649. doi: https://doi.org/10.1093/hmg/ddy271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol. 2012;3:29. doi: https://doi.org/10.3389/fendo.2012.00029.
Article
Google Scholar
Elder SJ, Neale MC, Fuss PJ, Lichtenstein AH, Greenberg AS, McCrory MA, et al. Genetic and Environmental Influences on Eating Behavior - A Study of Twin Pairs Reared Apart or Reared Together. Open Nutr J. 2012;6:59–70. doi: https://doi.org/10.2174/1874288201206010059.
Article
PubMed
PubMed Central
Google Scholar
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015 Feb 12;518(7538):197–206. doi: https://doi.org/10.1038/nature14177.
Silventoinen K, Huppertz C, van Beijsterveldt CE, Bartels M, Willemsen G, Boomsma DI. The genetic architecture of body mass index from infancy to adulthood modified by parental education. Obesity. 2016;24(9):2004–11. doi: https://doi.org/10.1002/oby.21588.
Article
PubMed
Google Scholar
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3. doi: https://doi.org/10.1136/bmj.320.7244.1240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maynard LM, Wisemandle W, Roche AF, Chumlea WC, Guo SS, Siervogel RM. Childhood body composition in relation to body mass index. Pediatrics. 2001;107(2):344–50. doi: https://doi.org/10.1542/peds.107.2.344.
Article
CAS
PubMed
Google Scholar
McCarthy HD. Body fat measurements in children as predictors for the metabolic syndrome: focus on waist circumference. Proc Nutr Soc. 2006;65(4):385–92. doi: https://doi.org/10.1017/s0029665106005143.
Article
PubMed
Google Scholar
Alberti KG, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80. doi: https://doi.org/10.1111/j.1464-5491.2006.01858.x.
Article
CAS
PubMed
Google Scholar
Hunter GR, Singh H, Carter SJ, Bryan DR, Fisher G. Sarcopenia and Its Implications for Metabolic Health. J Obes. 2019;2019:8031705. doi: https://doi.org/10.1155/2019/8031705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brener A, Peleg I, Rosenfeld T, Kern S, Uretzky A, et al. Beyond Body Mass Index - Body Composition Assessment by Bioimpedance in Routine Endocrine Practice. Endocr Pract. 2021;27(5):419–25. doi:https://doi.org/10.1016/j.eprac.2020.10.013.
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303. doi: https://doi.org/10.1136/adc.44.235.291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23. doi: https://doi.org/10.1136/adc.45.239.13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11. 2002;(246):1–190.
Tanner JM, Goldstein H, Whitehouse RH. Standards for children’s height at ages 2–9 years allowing for heights of parents. Arch Dis Child. 1970;45(244):755–62. doi: https://doi.org/10.1136/adc.45.244.755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566–72. doi: https://doi.org/10.1097/MCO.0b013e32830b5f23.
Article
PubMed
PubMed Central
Google Scholar
Shypailo RJ, Motil KJ. The Use of Bioimpedance in Pediatric Health, Nutrition, and Disease. J Pediatr Gastroenterol Nutr. 2018;67(4):435–436. doi: https://doi.org/10.1097/MPG.0000000000002068.
Article
PubMed
Google Scholar
Israel Central Bureau of Statistics (CBS). Characterization and classification of geographical units by the socio-economic level of the population, 2015. https://www.cbs.gov.il/he/publications/DocLib/2020/1765_socio_economic_2015/e_print.pdfref.
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86. doi: https://doi.org/10.1038/ng.3097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livshits G, Gao F, Malkin I, Needhamsen M, Xia Y, Yuan W, et al. Contribution of heritability and epigenetic factors to skeletal muscle mass variation in United Kingdom twins. J Clin Endocrinol Metab. 2016;101(6):2450–9. doi: https://doi.org/10.1210/jc.2016-1219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zempo H, Miyamoto-Mikami E, Kikuchi N, Fuku N, Miyachi M, Murakami H. Heritability estimates of muscle strength-related phenotypes: A systematic review and meta-analysis. Scand J Med Sci Sports. 2017;27(12):1537–1546. doi: https://doi.org/10.1111/sms.12804.
Article
CAS
PubMed
Google Scholar
You JY, Kim YJ, Shin WY, Kim NY, Cho SH, Kim JH. Heritability of muscle mass in Korean parent-offspring pairs in the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V). Maturitas. 2018;114:67–72. doi: https://doi.org/10.1016/j.maturitas.2018.06.001.
Article
PubMed
PubMed Central
Google Scholar
Pei YF, Liu YZ, Yang XL, Zhang H, Feng GJ, Wei XT, et al. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol. 2020;3(1):608. doi: https://doi.org/10.1038/s42003-020-01334-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran S, Jiang ZX, He X, Liu Y, Zhang YX, Zhang L, et al. Replication of FTO Gene associated with lean mass in a Meta-Analysis of Genome-Wide Association Studies. Sci Rep. 2020;10(1):5057. doi: https://doi.org/10.1038/s41598-020-61406-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21(3):415–30. doi: https://doi.org/10.1016/j.beem.2007.04.007.
Article
PubMed
Google Scholar
Rodríguez G, Samper MP, Olivares JL, Ventura P, Moreno LA, Pérez-González JM. Skinfold measurements at birth: sex and anthropometric influence. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F273-5. doi: https://doi.org/10.1136/adc.2004.060723.
Article
PubMed
Google Scholar
Wang Z, Heo M, Lee RC, Kotler DP, Withers RT, Heymsfield SB. Muscularity in adult humans: proportion of adipose tissue-free body mass as skeletal muscle. Am J Hum Biol. 2001;13(5):612-9. doi: https://doi.org/10.1002/ajhb.1099. PMID: 11505469.
Rico H, Revilla M, Hernandez ER, Villa LF, Alvarez del Buergo M. Sex differences in the acquisition of total bone mineral mass peak assessed through dual-energy X-ray absorptiometry. Calcif Tissue Int. 1992;51(4):251–4. doi: https://doi.org/10.1007/BF00334483.
Article
CAS
PubMed
Google Scholar
Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues - the biology of pear shape. Biol Sex Differ. 2012;3(1):13. doi: https://doi.org/10.1186/2042-6410-3-13.
Article
PubMed
PubMed Central
Google Scholar
Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6 Suppl 1(Suppl 1):60–75. doi: https://doi.org/10.1016/j.genm.2009.02.002.
Hinney A, Hebebrand J. Polygenic obesity in humans. Obes Facts. 2008;1(1):35–42. doi: https://doi.org/10.1159/000113935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young EH, Wareham NJ, Farooqi S, Hinney A, Hebebrand J, Scherag A, et al. The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29 563 individuals. Int J Obes. 2007;31(9):1437–41. doi: https://doi.org/10.1038/sj.ijo.0803609.
Article
CAS
Google Scholar
Henry BA, Loughnan R, Hickford J, Young IR, St John JC, Clarke I. Differences in mitochondrial DNA inheritance and function align with body conformation in genetically lean and fat sheep. J Anim Sci. 2015;93(5):2083–93. doi: https://doi.org/10.2527/jas.2014-8764.
Article
CAS
PubMed
Google Scholar
Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187–196. doi: https://doi.org/10.1038/nature14132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herzog B, Lacruz ME, Haerting J, Hartwig S, Tiller D, Medenwald D, et al. Socioeconomic status and anthropometric changes-A meta-analytic approach from seven German cohorts. Obesity. 2016;24(3):710–8.
Article
PubMed
Google Scholar
Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990–2005. Obesity. 2008;16(2):275–84. doi: https://doi.org/10.1038/oby.2007.35.
Article
PubMed
Google Scholar
Bridger Staatz C, Kelly Y, Lacey R, Hardy R. Socioeconomic position and body composition across the life course: a systematic review protocol. Syst Rev. 2019;8(1):263. doi: https://doi.org/10.1186/s13643-019-1197-z.
Article
PubMed
PubMed Central
Google Scholar
Xiong KY, He H, Zhang YM, Ni GX. Analyses of body composition charts among younger and older Chinese children and adolescents aged 5 to 18 years. BMC Public Health. 2012;12:835. doi: https://doi.org/10.1186/1471-2458-12-835.
Article
PubMed
PubMed Central
Google Scholar