In the setting of a paediatric ED in Pakistan, the CRS at a cut off of 3 performed well in discriminating severe and non-severe illness with a sensitivity of 94%, a negative predictive value of 94% and an LR+ of 1.6. Although the CRS was originally and specifically validated for respiratory distress presentation in paediatric patients with asthma presenting to the ED and then in sickle cell anaemia patients in a high resource country setting [15,16,17], we have demonstrated that it is equally applicable in low resource countries and for paediatric respiratory distress for a number of etiologies. Arguably of greatest utility as a triage tool is its good predictive value both for ruling severe illness in and out.
Despite or perhaps because of the number of tools available, there is a lack of clarity as to which are best suited to specific settings. There is lack of uniformity in different scores being utilised and even though studies have been conducted to validate respiratory scores in various settings and for different etiologies [18,19,20,21], and to the best of our knowledge, our study is the first to validate any respiratory score for any etiology in an ED in Pakistan.
As alluded to before, there are several respiratory scores, with respective advantages and disadvantages that one may utilise and thus validate in one’s clinical setting. For example, Paediatric Respiratory Assessment Measure (PRAM) can predict asthma severity and response to treatment, using vital signs, oxygen saturation, accessory muscle use, degrees of air entry and wheezing as parameters [10]. It is thus a valid clinical respiratory score with good internal consistency and inter-rater reliability to asses acute asthma severity from toddlers to teenagers [10]. Respiratory Distress Assessment Instrument (RDAI) and Respiratory Assessment Change Score have been used to assess in particular the response to bronchodilator therapy in patients with asthma [18]. These scores comprise degrees of wheezing, use of accessory muscle and in case of the latter, respiratory rate [18]. Paediatric Asthma Severity Score is based on three clinical findings: wheezing, prolonged expiration, and work of breathing; as such, it was found to be a reliable and valid measure of asthma severity in children and showed both discriminative and responsive properties [22]. Respiratory Clinical Score demonstrated good inter-observer agreement between medical doctors, nurses and respiratory therapists [23].
The rationale for choosing CRS for our study versus any of the others, was its versatility vis-à-vis its ability to gauge different clinical signs and symptoms, e.g. respiratory rate, findings on auscultation, ability to finish sentences, presence of wheeze and so on [15,16,17]. Furthermore, it is among the simpler ones, as opposed to the others. The main advantage of using the CRS as a tool for assessment of respiratory distress is that it is easy to use, and requires no expert training to use, is cheap and can easily be used in resource limited LMIC’s. Since it does not take a lot of time to assess a patient using the CRS, it is appropriate for use in the ED setting, where time is of the utmost importance. It is also important to note that the CRS takes into account the mental status and appearance of the child, which are absent in PRAM [10] and RDAI [18], and that gives it greater sensitivity in children in the pre-terminal stages of illness when other signs (such as respiratory rate) might have deceptively normalised. Moreover, it serves to provide a uniform standardized method of classifying severity of respiratory distress, helping in deciding the most appropriate course of action for management [18]. In the study by Crabtree et al., the CRS proved more sensitive than the RDAI in terms of predicting discharge [16]. This study also determined that the CRS has a significant test-retest reliability, offering consistent results when administered by different health professionals. Rodriguez et al. assessed a tool for use primarily for respiratory infection in young infants (mean age 16 weeks) while our aim was to test whether the signs of decompensation measured in the CRS could predict overall (respiratory and non-respiratory) degree of illness severity [19]. Though the two studies were fundamentally different, the comparison is important to provide context.
Another important reason for using CRS over any other scale was the fact that the senior author (AIM) was previously working at a paediatric ED in the US where he was very familiar with the CRS as a tool for children presenting with respiratory distress because of varied etiology (bronchiolitis, asthma, pneumonia, etc. in addition to sickle cell disease). When he started practicing paediatric emergency medicine in Pakistan he incorporated the CRS into contextual evidence-based guidelines for bronchiolitis, pneumonia and asthma for the paediatric ED at AKU. Over time, the paediatric clinical team there had become familiar with using the CRS as a tool in their daily practice. Thus, utilizing the CRS for a research-based study in that setting was simpler versus implementing an unknown, differently named respiratory tool.
In our study, we showed that CRS predicted admission to SCU / PICU. These results are similar to those obtained by Duarte-Dorado et al. who used the Modified Woods Clinical Asthma Score in paediatric patients in Colombia, and they too, concluded that there was an association between increased score and admission to PICU [20]. A similar study conducted by Chan et al. in Malaysia using the RDAI also concluded the same [24]. In this study, the prevalence of severe respiratory distress was found to be 8%, which is the same as the prevalence of severe respiratory distress in our study [24]. The study by Crabtree et al. concluded that the CRS at the time of admission was sensitive in predicting the discharge in patients with sickle cell disease, and patients with a higher CRS were more likely to receive blood transfusion during their hospital stay. Unlike the results of our study, however, CRS was not shown to predict the transfer to a critical care unit [16].
Our study has several limitations. It was conducted at a single centre. Many children assessed at the AKU ED would have had pre-referral management in primary care (for example nebulization) which might have resulted in them having a lower CRS at initial presentation and an underestimate of the severity of the illness. The physicians who were calculating the CRS were also managing the patients, so that might have introduced some degree of bias. Scoring was undertaken prospectively which should have mitigated against bias, but, as assessment was unblinded (for logistical reasons) we could not have excluded it altogether. Given the lack of uniformity between different scores, we cannot comment on how the CRS will compare with other respiratory scores in our setting. Though this study shows good predictive value for the CRS, we cannot infer whether it would enhance management if used adjunctively. This requires a randomised controlled trial in which participants are allocated to standard observations alone or standard observations and a CRS score. Furthermore, high percentage of patients who left against medical advice (LAMA) and were thus lost to follow up might limit the generalizability of our study. However, this issue is common in our setting likely for a number of reasons, such as financial constraints, referrals and cultural beliefs and we feel, therefore, that our findings represent the on-the-ground-reality.
Since almost half our patients had obstructive respiratory conditions such as asthma and bronchiolitis, it may be important to further define the epidemiology of the studied population and important clinical features (lung findings, for instance, i.e., how many patients had no wheezing), need for assisted ventilation (CPAP/BIPAP, intubation, etc.). That additional piece of information can provide further evidence for using the CRS. As for applicability of CRS in conditions that may present primarily without wheezing (pneumonia, pneumonitis, croup tracheitis, etc.), based on our data set, a substantial component represented pneumonia (almost 52%). Thus, we may safely speculate that in our setting the CRS can accurately evaluate respiratory conditions without wheezing.
Overall, the CRS is an easy to use tool that has utility in evidence-based ED protocols and quality initiatives implemented early on in the patient encounter - as early as at the level of triage - for improving patient outcomes. Additionally, respiratory therapists can be trained to measure CRS in order to provide a more uniform approach, as opposed to having physicians in various stages of training measure it. Finally, with increasing availability of technology, smartphone apps that contain standard medical guidelines can be developed using m-health platforms that allow easy administration of CRS particularly in resource-limited EDs, in order to save time and effort. In an era in which the merits of paediatric early warning scores are still actively debated [25], we feel our study provides a potential practical answer in an LMIC setting.