According to a 2011 CDC report, the incidence of MRSA in the community in general has increased rapidly in the past decade, with little or no evidence of recent decline, despite clear evidence that invasive MRSA infections in the health care setting is declining [6]. The implementation of aggressive infection control techniques in the health care environment has proved successful in reducing the incidence of health care-associated infections in various NICUs [8]. Our study demonstrates a rise in the overall incidence of Staphylococcus aureus blood stream infections observed in the NICU in the last 10 years, with a peak period around the year 2004. This period coincides with widespread reports of CA-MRSA outbreaks in the NICUs [1, 2, 4, 5, 8]. The incidence of MRSA infections in the NICU is still unacceptably high, and this may be likely linked to the acquisition of CA-MRSA strains, which have evolved in the community and penetrated the NICU through either parents or care providers of the patient [8, 9, 16–19].
During the study period we detected that significantly more MRSA infections were seen in the last 6 years, and that these cases were more frequently associated with severe clinical presentations and worse outcomes. In previous studies, there was earlier onset of MRSA infections compared to MSSA infections, which was attributed to possible vertical transmission of infection [16]. This was not, however, the finding in our study, where the median age at presentation for MSSA infections was 27 days in Period A and 22 days in Period B, while the median age at diagnosis for MRSA infections was 25 days in the two periods.
The rate of skin and soft tissue infections was not significantly different for either MRSA or MSSA cases during the two periods reviewed in the study. Similar findings were reported by Carey et al., who compared 123 infections caused by MSSA and 49 caused by MRSA in a neonatal ICU. The rate of skin and soft tissue infections was similar for both groups at 45% [16]. However, in our study, there may have been an underestimation of skin and soft tissue infection cases, as those without positive blood culture were excluded from the study.
Duration of hospital stay in the second period of our study was significantly less than in the initial 4-year period. It is unclear whether the increased incidence of MRSA infections with more severe complications in the subsequent 6 years led to increased mortality or whether an improvement in neonatal care and management approach led to shorter hospital stay for ELBW infants. An earlier study by Burke et al. found 164 episodes of S. aureus bacteremia in 151 children and infants [3]. In this study, children with MRSA infection stayed in the hospital longer (with a mean of 36 days) than did children with MSSA infection (mean 16.3 days). However, the study was done in a cluster of not just neonates, but children and infants.
In our study, the predominant weight category of all infants with Staphylococcus aureus blood stream infection in the NICU was noted to be less than 750 g (51% of all cases), and they were extremely preterm. Reasons for this were described by Healy et al. [4] in an earlier study, emphasizing risk factors for staphylococcal infections that are peculiar to extremely low birth weight infants; namely, poorly developed host defense mechanisms, central venous catheter requirements, need for endotracheal or upper gastrointestinal tube placement, and procedures that might compromise skin integrity. However, a trend analysis of mortality revealed no change in risk with increasing birth weight in MRSA infections. The risk of death was significantly higher in infants < 750 g birth weight, with MSSA infections. Shane et al. [20] study, demonstrated no significant difference in morbidity or mortality of very low birth weight (VLBW) infants with MRSA compared with those with MSSA bacteremia. This conclusion probably reflected the multi-center nature of their study, as 40% (8 out of 20) of the study centers, actually reported zero cases of MRSA infection. This also probably demonstrated the variability in the population and practice of these study centers.
The exposure of all infected infants in our study, to risk factors was assessed (such as device utilization and exposure to invasive procedures) and no difference was found between study periods in the degree of exposure to risk factors.
Emphasis remains on infection control practices and the prevention of transmission in identified cases. The importance of judicious compliance to standard infection control practices such as hand hygiene, gloving, protection of eyes, nose and mouth; gowning and appropriate handling of patient care equipment and devices cannot be over-emphasized. Contact precautions must be adhered to in all identified cases [6, 7].
Our study emphasizes the changing pattern of S. aureus infection in our NICU in the last decade as it relates to increasing reports of MRSA outbreaks. This study is, however, limited by the inability to determine the pathological characteristics and phage –type of isolates, as data were retrospectively collected. The retrospective nature of data collection inherently led to some diagnostic biases. Other limitations that are commonly associated with retrospective chart reviews, such as incomplete documentation, missing data and problematic verification of information are also possible with this study.