Drossman DA, Hasler WL. Rome IV-Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology. 2016;150(6):1257–61. https://doi.org/10.1053/j.gastro.2016.03.035.
Article
PubMed
Google Scholar
Morais LH, Schreiber HLt, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241–55. https://doi.org/10.1038/s41579-020-00460-0.
Article
CAS
PubMed
Google Scholar
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. https://doi.org/10.1126/scitranslmed.3000322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolke D, Bilgin A, Samara M. Systematic review and meta-analysis: fussing and crying durations and prevalence of colic in infants. J Pediatr. 2017;185:55-61.e54. https://doi.org/10.1016/j.jpeds.2017.02.020.
Article
PubMed
Google Scholar
Benninga MA, Faure C, Hyman PE, St James Roberts I, Schechter NL, Nurko S. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.016.
Article
PubMed
PubMed Central
Google Scholar
Fatheree NY, Liu Y, Taylor CM, Hoang TK, Cai C, Rahbar MH, Hessabi M, Ferris M, McMurtry V, Wong C, et al. Lactobacillus reuteri for infants with colic: a double-blind, placebo-controlled, randomized clinical trial. J Pediatr. 2017;191(170–178):e172. https://doi.org/10.1016/j.jpeds.2017.07.036.
Article
Google Scholar
Nation ML, Dunne EM, Joseph SJ, Mensah FK, Sung V, Satzke C, Tang MLK. Impact of Lactobacillus reuteri colonization on gut microbiota, inflammation, and crying time in infant colic. Sci Rep. 2017;7(1):15047. https://doi.org/10.1038/s41598-017-15404-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savino F, Montanari P, Galliano I, Dapra V, Bergallo M. Lactobacillus rhamnosus GG (ATCC 53103) for the management of infantile colic: a randomized controlled trial. Nutrients. 2020;12(6). https://doi.org/10.3390/nu12061693.
Maldonado-Lobon JA, Blanco-Rojo R, Maldonado J, Ali MA, Almazan MV, Suanes-Cabello A, Callejon E, Jaldo R, Benavides MR, Negrillo AM, et al. Efficacy of Bifidobacterium breve CECT7263 for infantile colic treatment: an open-label, parallel, randomised, controlled trial. Benef Microbes. 2021;12(1):55–67. https://doi.org/10.3920/BM2020.0105.
Article
CAS
PubMed
Google Scholar
Pereira AR, Rodrigues J, Albergaria M. Effectiveness of probiotics for the treatment of infantile colic. Aust J Gen Pract. 2022;51(8):573–6. https://doi.org/10.31128/AJGP-07-21-6062.
Article
PubMed
Google Scholar
Korpela K, Renko M, Paalanne N, Vänni P, Salo J, Tejesvi M, Koivusaari P, Pokka T, Kaukola T, Pirttilä AM, et al. Microbiome of the first stool after birth and infantile colic. Pediatr Res. 2020;88(5):776–83. https://doi.org/10.1038/s41390-020-0804-y.
Article
PubMed
Google Scholar
Rhoads JM, Collins J, Fatheree NY, Hashmi SS, Taylor CM, Luo M, Hoang TK, Gleason WA, Van Arsdall MR, Navarro F, et al. Infant colic represents gut inflammation and dysbiosis. J Pediatr. 2018;203:55-61.e53. https://doi.org/10.1016/j.jpeds.2018.07.042.
Article
PubMed
PubMed Central
Google Scholar
Pham VT, Lacroix C, Braegger CP, Chassard C. Lactate-utilizing community is associated with gut microbiota dysbiosis in colicky infants. Sci Rep. 2017;7(1):11176. https://doi.org/10.1038/s41598-017-11509-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng J, Wittouck S, Salvetti E, Franz C, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782–858. https://doi.org/10.1099/ijsem.0.004107.
Article
CAS
PubMed
Google Scholar
Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, et al. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics. 2011;10(2):M110.002741. https://doi.org/10.1074/mcp.M110.002741.
Article
CAS
PubMed
Google Scholar
Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA. 2009;106(40):17193–8. https://doi.org/10.1073/pnas.0908876106.
Article
PubMed
PubMed Central
Google Scholar
Savijoki K, Lietzén N, Kankainen M, Alatossava T, Koskenniemi K, Varmanen P, Nyman TA. Comparative proteome cataloging of lactobacillus rhamnosus strains GG and Lc705. J Proteome Res. 2011;10(8):3460–73. https://doi.org/10.1021/pr2000896.
Article
CAS
PubMed
Google Scholar
Gueimonde M, Kalliomäki M, Isolauri E, Salminen S. Probiotic intervention in neonates-will permanent colonization ensue? J Pediatr Gastroenterol Nutr. 2006;42(5):604–6. https://doi.org/10.1097/01.mpg.0000221897.45910.d3.
Article
PubMed
Google Scholar
Savino F, Montanari P, Galliano I, Daprà V, Bergallo M. Lactobacillus rhamnosus GG (ATCC 53103) for the management of infantile colic: a randomized controlled trial. Nutrients. 2020;12(6). https://doi.org/10.3390/nu12061693.
Partty A, Lehtonen L, Kalliomaki M, Salminen S, Isolauri E. Probiotic Lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic: a randomized, controlled trial. Pediatr Res. 2015;78(4):470–5. https://doi.org/10.1038/pr.2015.127.
Article
CAS
PubMed
Google Scholar
Gordon M, Biagioli E, Sorrenti M, Lingua C, Moja L, Banks SS, Ceratto S, Savino F. Dietary modifications for infantile colic. Cochrane Database Syst Rev. 2018;10(10):Cd011029.https://doi.org/10.1002/14651858.CD011029.pub2
Article
PubMed
Google Scholar
Iacovou M, Craig SS, Yelland GW, Barrett JS, Gibson PR, Muir JG. Randomised clinical trial: reducing the intake of dietary FODMAPs of breastfeeding mothers is associated with a greater improvement of the symptoms of infantile colic than for a typical diet. Aliment Pharmacol Ther. 2018;48(10):1061–73. https://doi.org/10.1111/apt.15007.
Article
CAS
PubMed
Google Scholar
Lucassen PL, Assendelft WJ, Gubbels JW, van Eijk JT, Douwes AC. Infantile colic: crying time reduction with a whey hydrolysate: a double-blind, randomized, placebo-controlled trial. Pediatrics. 2000;106(6):1349–54. https://doi.org/10.1542/peds.106.6.1349.
Article
CAS
PubMed
Google Scholar
Taubman B. Parental counseling compared with elimination of cow’s milk or soy milk protein for the treatment of infant colic syndrome: a randomized trial. Pediatrics. 1988;81(6):756–61.
Article
CAS
Google Scholar
Jakobsson I, Lothe L, Ley D, Borschel MW. Effectiveness of casein hydrolysate feedings in infants with colic. Acta Paediatr. 2000;89(1):18–21. https://doi.org/10.1080/080352500750028997.
Article
CAS
PubMed
Google Scholar
Lothe L, Lindberg T. Cow’s milk whey protein elicits symptoms of infantile colic in colicky formula-fed infants: a double-blind crossover study. Pediatrics. 1989;83(2):262–6.
Article
CAS
Google Scholar
Lothe L, Lindberg T, Jakobsson I. Cow’s milk formula as a cause of infantile colic: a double-blind study. Pediatrics. 1982;70(1):7–10.
Article
CAS
Google Scholar
Scalabrin DM, Johnston WH, Hoffman DR, P’Pool VL, Harris CL, Mitmesser SH. Growth and tolerance of healthy term infants receiving hydrolyzed infant formulas supplemented with Lactobacillus rhamnosus GG: randomized, double-blind, controlled trial. Clin Pediatr (Phila). 2009;48(7):734–44. https://doi.org/10.1177/0009922809332682.
Article
Google Scholar
Sung V, Hiscock H, Tang M, Mensah FK, Heine RG, Stock A, York E, Barr RG, Wake M. Probiotics to improve outcomes of colic in the community: protocol for the Baby Biotics randomised controlled trial. BMC Pediatr. 2012;12:135. https://doi.org/10.1186/1471-2431-12-135.
Article
PubMed
PubMed Central
Google Scholar
Bazanella M, Maier TV, Clavel T, Lagkouvardos I, Lucio M, Maldonado-Gòmez MX, Autran C, Walter J, Bode L, Schmitt-Kopplin P, et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr. 2017;106(5):1274–86. https://doi.org/10.3945/ajcn.117.157529.
Article
CAS
PubMed
Google Scholar
Barr RG, Kramer MS, Boisjoly C, McVey-White L, Pless IB. Parental diary of infant cry and fuss behaviour. Arch Dis Child. 1988;63(4):380–7. https://doi.org/10.1136/adc.63.4.380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barr RG, Kramer MS, Pless IB, Boisjoly C, Leduc D. Feeding and temperament as determinants of early infant crying/fussing behavior. Pediatrics. 1989;84(3):514–21. https://doi.org/10.1542/peds.84.3.514.
Article
CAS
PubMed
Google Scholar
Hunziker UA, Barr RG. Increased carrying reduces infant crying: a randomized controlled trial. Pediatrics. 1986;77(5):641–8. https://doi.org/10.1542/peds.77.5.649.
Article
CAS
PubMed
Google Scholar
Jacobi SK, Yatsunenko T, Li D, Dasgupta S, Yu RK, Berg BM, Chichlowski M, Odle J. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J Nutr. 2015;146(2):200–8. https://doi.org/10.3945/jn.115.220152.
Article
PubMed
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96. https://doi.org/10.1093/nar/gkm864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, Winker K, Kado DM, Orwoll E, Manary M et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3(3). https://doi.org/10.1128/mSystems.00021-18.
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1):90. https://doi.org/10.1186/s40168-018-0470-z.
Article
PubMed
PubMed Central
Google Scholar
Robeson MS 2nd, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput Biol. 2021;17(11):e1009581. https://doi.org/10.1371/journal.pcbi.1009581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/peerj.2584.
Article
PubMed
PubMed Central
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bokulich NA, Dillon MR, Zhang Y, Rideout JR, Bolyen E, Li H, Albert PS, Caporaso JG. q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. mSystems 2018;3(6). https://doi.org/10.1128/mSystems.00219-18.
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26(1):32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
Article
Google Scholar
Jari Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Wagner H. vegan: Community Ecology Package. R package version 2.5–3. In: HttpsCRANR-Proj. 2018. https://github.com/vegandevs/vegan.
Google Scholar
Bokulich NA, Dillon MR, Bolyen E, Kaehler BD, Huttley GA, Caporaso JG. q2-sample-classifier: machine-learning tools for microbiome classification and regression. J Open Res Softw. 2018;3(30). https://joss.theoj.org/papers/10.21105/joss.00934.
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.
Article
Google Scholar
Foster ZS, Sharpton TJ, Grünwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017;13(2):e1005404. https://doi.org/10.1371/journal.pcbi.1005404.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: A language and environment for statistial computing. R Foundation for Statistical Computing, Vienna. 2018. https://www.R-project.org.
Google Scholar
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663. https://doi.org/10.3402/mehd.v26.27663.
Article
PubMed
Google Scholar
Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R, Roos S, Matteuzzi D. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics. 2010;126(3):e526-533. https://doi.org/10.1542/peds.2010-0433.
Article
PubMed
Google Scholar
Brazelton TB. Crying in infancy. Pediatrics. 1962;29(4):579–88.
Article
CAS
Google Scholar
Guest JF, Fuller GW. Effectiveness of using an extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG compared with an extensively hydrolysed whey formula in managing cow’s milk protein allergic infants. J Comp Eff Res. 2019;8(15):1317–26. https://doi.org/10.2217/cer-2019-0088.
Article
PubMed
Google Scholar
Garcia Rodenas CL, Lepage M, Ngom-Bru C, Fotiou A, Papagaroufalis K, Berger B. Effect of formula containing Lactobacillus reuteri DSM 17938 on fecal microbiota of infants born by cesarean-section. J Pediatr Gastroenterol Nutr. 2016;63(6):681–7. https://doi.org/10.1097/mpg.0000000000001198.
Article
PubMed
Google Scholar
Navarro-Tapia E, Sebastiani G, Sailer S, Almeida Toledano L, Serra-Delgado M, García-Algar Ó, Andreu-Fernández V. Probiotic supplementation during the perinatal and infant period: effects on gut dysbiosis and disease. Nutrients. 2020;12(8):2243.
Article
CAS
Google Scholar
Petschow BW, Figueroa R, Harris CL, Beck LB, Ziegler E, Goldin B. Effects of feeding an infant formula containing Lactobacillus GG on the colonization of the intestine: a dose-response study in healthy infants. J Clin Gastroenterol. 2005;39(9):786–90. https://doi.org/10.1097/01.mcg.0000177245.53753.86.
Article
CAS
PubMed
Google Scholar
Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R, Roos S, Matteuzzi D. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind. Placebo-Controlled Trial Pediatrics. 2010;126(3):e526–33. https://doi.org/10.1542/peds.2010-0433.
Article
PubMed
Google Scholar
Pärtty A, Kalliomäki M, Endo A, Salminen S, Isolauri E. Compositional development of bifidobacterium and lactobacillus microbiota is linked with crying and fussing in early infancy. PLoS ONE. 2012;7(3):e32495. https://doi.org/10.1371/journal.pone.0032495.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Weerth C, Fuentes S, Puylaert P, de Vos WM. Intestinal microbiota of infants with colic: development and specific signatures. Pediatrics. 2013;131(2):e550–8. https://doi.org/10.1542/peds.2012-1449.
Article
PubMed
Google Scholar
Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417. https://doi.org/10.3389/fmicb.2012.00417.
Article
PubMed
PubMed Central
Google Scholar
Underwood MA, Gaerlan S, De Leoz MLA, Dimapasoc L, Kalanetra KM, Lemay DG, German JB, Mills DA, Lebrilla CB. Human milk oligosaccharides in premature infants: absorption, excretion, and influence on the intestinal microbiota. Pediatr Res. 2015;78(6):670–7. https://doi.org/10.1038/pr.2015.162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Can Med Assoc J. 2013;185(5):385–94. https://doi.org/10.1503/cmaj.121189.
Article
Google Scholar
Koninckx CR, Donat E, Benninga MA, Broekaert IJ, Gottrand F, Kolho KL, Lionetti P, Miele E, Orel R, Papadopoulou A, et al. The use of fecal calprotectin testing in paediatric disorders: a position paper of the European Society for Paediatric Gastroenterology and Nutrition Gastroenterology Committee. J Pediatr Gastroenterol Nutr. 2021;72(4):617–40. https://doi.org/10.1097/mpg.0000000000003046.
Article
CAS
PubMed
Google Scholar
Sýkora J, Siala K, Huml M, Varvařovská J, Schwarz J, Pomahačová R. Evaluation of faecal calprotectin as a valuable non-invasive marker in distinguishing gut pathogens in young children with acute gastroenteritis. Acta Paediatr. 2010;99(9):1389–95. https://doi.org/10.1111/j.1651-2227.2010.01843.x.
Article
CAS
PubMed
Google Scholar
Olafsdottir E, Aksnes L, Fluge G, Berstad A. Faecal calprotectin levels in infants with infantile colic, healthy infants, children with inflammatory bowel disease, children with recurrent abdominal pain and healthy children. Acta Paediatr. 2002;91(1):45–50. https://doi.org/10.1080/080352502753457932.
Article
CAS
PubMed
Google Scholar
Beşer OF, Sancak S, Erkan T, Kutlu T, Cokuğraş H, Cokuğraş F. Can fecal calprotectin level be used as a markers of inflammation in the diagnosis and follow-up of cow’s milk protein allergy? Allergy Asthma Immunol Res. 2014;6(1):33–8. https://doi.org/10.4168/aair.2014.6.1.33.
Article
CAS
PubMed
Google Scholar
Fatheree NY, Liu Y, Ferris M, Van Arsdall M, McMurtry V, Zozaya M, Cai C, Rahbar MH, Hessabi M, Vu T, et al. Hypoallergenic formula with Lactobacillus rhamnosus GG for babies with colic: a pilot study of recruitment, retention, and fecal biomarkers. World J Gastrointest Pathophysiol. 2016;7(1):160–70. https://doi.org/10.4291/wjgp.v7.i1.160.
Article
PubMed
PubMed Central
Google Scholar
Dorosko SM, Mackenzie T, Connor RI. Fecal calprotectin concentrations are higher in exclusively breastfed infants compared to those who are mixed-fed. Breastfeed Med. 2008;3(2):117–9. https://doi.org/10.1089/bfm.2007.0036.
Article
PubMed
Google Scholar
Gengaimuthu K. The cross contamination (Cross Colonization) phenomenon of probiotic use in neonatal intensive care units: putative mechanisms and clinical and research implications. Cureus. 2018;10(5):e2691. https://doi.org/10.7759/cureus.2691.
Article
PubMed
PubMed Central
Google Scholar
Segers ME, Lebeer S. Towards a better understanding of Lactobacillus rhamnosus GG–host interactions. Microb Cell Fact. 2014;13 Suppl 1(Suppl 1):S7. https://doi.org/10.1186/1475-2859-13-s1-s7.
Article
PubMed
Google Scholar