Jones KL. Smith’s recognizable patterns of human malformation. 6th ed. Philadelphia: Elsevier Saunders; 2006.
Google Scholar
Dobyns WB. Developmental aspects of lissencephaly and the lissencephaly syndromes. Birth Defects Orig Artic Ser. 1987;23(1):225–41.
CAS
PubMed
Google Scholar
Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell. 1998;92(1):63–72.
Article
CAS
Google Scholar
Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, et al. Isolation of a Miller-Dicker lissencephaly gene containing G protein β-subunit-like repeats. Nature. 1993;364(6439):717–21.
Article
CAS
Google Scholar
Di Donato N, Chiari S, Mirzaa GM, Aldinger K, Parrini E, et al. Lissencephaly: expanded imaging and clinical classification. Am J Med Genet A. 2017;173(6):1473–88.
Article
Google Scholar
Cardoso C, Leventer RJ, Dowling JJ, Ward HL, Chung J, et al. Clinical and molecular basis of classical lissencephaly: mutations in theLIS1 gene (PAFAH1B1). Hum Mutat. 2001;19(1):4–15.
Article
Google Scholar
Hattori M, Adachi H, Tsujimoto M, Arai H, Inoue K. Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature. 1994;370:216–8.
Article
CAS
Google Scholar
Hattori M, Aoki J, Arai H, Inoue K. PAF and PAF acetylhydrolase in the nervous system. J Lipid Mediators Cell Signal. 1996;14:99–102.
Article
CAS
Google Scholar
Cardoso C, Leventer RJ, Matsumoto N, Kuc JA, Ramocki MB, et al. The location and type of mutation predict malformation severity in isolated lissencephaly caused by abnormalities within the LIS1 gene. Hum Mol Genet. 2000;9(20):3019–28.
Article
CAS
Google Scholar
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Maglott DR. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.
Article
CAS
Google Scholar
VCV001162266.1 - ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/variation/1162266/#id_first. Accessed Jun 2021.
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164–e164.
Article
Google Scholar
Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.
Article
CAS
Google Scholar
Tarricone C, Perrina F, Monzani S, Massimiliano L, Kim MH, et al. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron. 2004;44(5):809–21.
CAS
PubMed
Google Scholar
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics. 2020;36(6):1765–71.
Article
CAS
Google Scholar
Hong SE, Shugart YY, Huang DT, Al Shahwan S, Grant PE, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet. 2000;26(1):93–6.
Article
CAS
Google Scholar
Poirier K, Keays DA, Francis F, Saillour Y, Bahi N, et al. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat. 2007;28(11):1055–64.
Article
CAS
Google Scholar
Alkuraya FS, Cai X, Emery C, Mochida GH, Al-Dosari MS, et al. Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am J Hum Genet. 2011;88(5):536–47.
Article
CAS
Google Scholar
Radmanesh F, Caglayan AO, Silhavy JL, Yilmaz C, Cantagrel V, et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet. 2013;92(3):468–74.
Article
CAS
Google Scholar
Mishra-Gorur K, Çağlayan AO, Schaffer AE, Chabu C, Henegariu O, et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron. 2014;84(6):1226–39.
Article
CAS
Google Scholar
Magen D, Ofir A, Berger L, Goldsher D, Eran A, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with a loss-of-function mutation in CDK5. Hum Genet. 2015;134(3):305–14.
Article
CAS
Google Scholar
Jerber J, Zaki MS, Al-Aama JY, Rosti RO, Ben-Omran T, et al. Biallelic mutations in TMTC3, encoding a transmembrane and TPR-containing protein, lead to cobblestone lissencephaly. Am J Hum Genet. 2016;99(5):1181–9.
Article
CAS
Google Scholar
Dobyns WB, Aldinger KA, Ishak GE, Mirzaa GM, Timms AE, et al. MACF1 mutations encoding highly conserved zinc-binding residues of the GAR domain cause defects in neuronal migration and axon guidance. Am J Hum Genet. 2018;103(6):1009–21.
Article
CAS
Google Scholar
Tsai MH, Muir AM, Wang WJ, Kang YN, Yang KC, et al. Pathogenic variants in CEP85L cause sporadic and familial posterior predominant lissencephaly. Neuron. 2020;106(2):237–45.
Article
CAS
Google Scholar
Kato M, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration. Human Mol Genet. 2003;12(suppl_1):R89–96.
Article
CAS
Google Scholar
Richards S, Aziz N, Bale S, Bick D, Das S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23.
Article
Google Scholar
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.
Article
CAS
Google Scholar
Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–13.
Article
CAS
Google Scholar
Abou Tayoun AN, Pesaran T, DiStefano MT, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 2018;39(11):1517–24. https://doi.org/10.1002/humu.23626.
Article
PubMed
PubMed Central
Google Scholar
VCV000021181.4 - ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/variation/21181/#id_first. Accessed 20 Dec 2020.