Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Human Kinetics: Champaign; 2004.
Book
Google Scholar
Janz KF, Dawson JD, Mahoney LT. Predicting heart growth during puberty: the Muscatine study. Pediatrics. 2000;105:63.
Article
Google Scholar
Dekkers C, Treiber FA, Kapuku G, Van Den Oord EJCG, Snieder H. Growth of left ventricular mass in African American and European American youth. Hypertension. 2002;39:943–51.
Article
CAS
PubMed
Google Scholar
Sabo RT, Yen MS, Daniels S, Sun SS. Associations between childhood body size, composition, blood pressure and adult cardiac structure: the Fels Longitudinal Study. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0106333.
George K, Sharma S, Batterham A, Whyte G, McKenna W. Allometric analysis of the association between cardiac dimensions and body size variables in 464 junior athletes. Clin Sci (Lond). 2001;100:47–54.
Article
CAS
Google Scholar
Dewey FE, Rosenthal D, Murphy DJ, Froelicher VF, Ashley EA. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008;117:2279–87.
Article
PubMed
Google Scholar
Pressler A, Haller B, Scherr J, Heitkamp D, Esefeld K, Boscheri A, et al. Association of body composition and left ventricular dimensions in elite athletes. Eur J Prev Cardiol. 2012;19:1194–204.
Article
PubMed
Google Scholar
Fagard RH. Athlete’s heart: a meta-analysis of the echocardiographic experience. Int J Sports Med. 1996;17(Suppl 3):140–4.
Article
Google Scholar
Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W. Athlete’s heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol. 2002;40:1856–63.
Article
PubMed
Google Scholar
Haykowsky MJ, Samuel TJ, Nelson MD, La Gerche A. Athlete’s heart: is the Morganroth hypothesis obsolete? Heart Lung Circ. 2018;27:1037–41.
Article
PubMed
Google Scholar
Demirelli S, Sam CT, Ermis E, Degirmenci H, Sen I, Arisoy A, et al. Long-term cardiac remodeling in elite athletes: assessment by tissue Doppler and speckle tracking echocardiography. Echocardiography. 2015;32:1367–73.
Article
PubMed
Google Scholar
Golbidi S, Laher I. Exercise and the cardiovascular system. Cardiol Res Pract. 2012. https://doi.org/10.1155/2012/210852.
George KP, Birch KM, Pennell DJ, Myerson SG. Magnetic-resonance-imaging-derived indices for the normalization of left ventricular morphology by body size. Magn Reson Imaging. 2009;27:207–13.
Article
PubMed
Google Scholar
Giraldeau G, Kobayashi Y, Finocchiaro G, Wheeler M, Perez M, Kuznetsova T, et al. Gender differences in ventricular remodeling and function in college athletes, insights from lean body mass scaling and deformation imaging. Am J Cardiol. 2015;116:1610–6.
Article
PubMed
Google Scholar
Kooreman Z, Giraldeau G, Finocchiaro G, Kobayashi Y, Wheeler M, Perez M, et al. Athletic remodeling in female college athletes, the “Morganroth hypothesis” revisited. Clin J Sport Med. 2018;29:224–31.
Article
Google Scholar
Valente-Dos-Santos J, Coelho-e-Silva MJ, Vaz V, Figueiredo AJ, Castanheira J, Leite N, et al. Ventricular mass in relation to body size, composition, and skeletal age in adolescent athletes. Clin J Sport Med. 2013;23:293–9.
Article
PubMed
Google Scholar
Dai S, Harrist RB, Rosenthal GL, Labarthe DR. Effects of body size and body fatness on left ventricular mass in children and adolescents: project HeartBeat! Am J Prev Med. 2009;37(Suppl 1):97–104.
Article
Google Scholar
Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the strong heart study. J Am Coll Cardiol. 2006;47:2267–73.
Article
PubMed
Google Scholar
Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol Occup Physiol. 1992;65:110–7.
Article
CAS
PubMed
Google Scholar
Nevill AM, Holder RL. Modelling maximum oxygen uptake-a case-study in non-linear regression model formulation and comparison. J R Stat Soc Ser C Appl Stat. 1994;43:653–66.
Google Scholar
de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.
Article
PubMed
Google Scholar
Malina RM, Geithner CA. Body composition of young athletes. Am J Lifestyle Med. 2011;5:262–78.
Article
Google Scholar
Malina RM, Figueiredo AJ, Coelho-E-Silva MJ. Body size of male youth soccer players: 1978-2015. Sports Med. 2017;47:1983–92.
Article
PubMed
Google Scholar
Valente-dos-Santos J, Sherar L, Coelho-E-Silva MJ, Pereira JR, Vaz V, Cupido-Dos-Santos A, et al. Allometric scaling of peak oxygen uptake in male roller hockey players under 17 years old. Appl Physiol Nutr Metab. 2013;38:390–5.
Article
CAS
PubMed
Google Scholar
Roche AF, Thissen D, Chumlea W. Assessing the skeletal maturity of the hand-wrist: Fels method. Charles C Thomas: Springfield, Illinois; 1988.
Google Scholar
Malina RM. Skeletal age and age verification in youth sport. Sports Med. 2011;41:925–47.
Article
PubMed
Google Scholar
Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Human Kinetics: Champaign, Illinois; 1988.
Google Scholar
Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.
CAS
PubMed
Google Scholar
Castanheira J, Valente-Dos-Santos J, Costa D, Martinho D, Fernandes J, Duarte J, et al. Cardiac remodeling indicators in adolescent athletes. Rev Assoc Med Bras. 2017;63:427–34.
Article
PubMed
Google Scholar
Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.
Article
CAS
PubMed
Google Scholar
Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.
Article
PubMed
Google Scholar
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.
Article
PubMed
Google Scholar
Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11. 2002;246:1–190.
Google Scholar
Malina RM, Pena Reyes ME, Eisenmann JC, Horta L, Rodrigues J, Miller R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11-16 years. J Sports Sci. 2000;18:685–93.
Article
CAS
PubMed
Google Scholar
Coelho E, Silva MJ, Figueiredo AJ, Simoes F, Seabra A, Natal A, Vaeyens R, et al. Discrimination of u-14 soccer players by level and position. Int J Sports Med. 2010;31:790–6.
Article
Google Scholar
Malina RM, Coelho E, Silva MJ, Figueiredo AJ, Carling C, Beunen GP. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players. J Sports Sci. 2012;30:1705–17.
Article
PubMed
Google Scholar
Valente-Dos-Santos J, Coelho-E-Silva MJ, Tavares OM, Brito J, Seabra A, Rebelo A, et al. Allometric modelling of peak oxygen uptake in male soccer players of 8-18 years of age. Ann Hum Biol. 2015;42:125–33.
Article
PubMed
Google Scholar
Watson AM, Coutinho C, Haraldsdottir K, Brickson S, Dunn W, Eldridge M. In-season changes in ventricular morphology and systolic function in adolescent female athletes. Eur J Sport Sci. 2018;18:534–40.
Article
PubMed
Google Scholar
Csajagi E, Szauder I, Major Z, Pavlik G. Left ventricular morphology in different periods of the training season in elite young swimmers. Pediatr Exerc Sci. 2015;27:185–91.
Article
PubMed
Google Scholar
Naylor LH, George K, O’Driscoll G, Green DJ. The athlete’s heart: a contemporary appraisal of the “Morganroth hypothesis”. Sports Med. 2008;38:69–90.
Article
PubMed
Google Scholar
Petek BJ, Wasfy MM. Cardiac adaption to exercise training: the female athlete. Curr Treat Options Cardiovasc Med. 2018;20:68.
Article
PubMed
Google Scholar
Pela G, Crocamo A, Li Calzi M, Gianfreda M, Gioia MI, Visioli F, et al. Sex-related differences in left ventricular structure in early adolescent non-professional athletes. Eur J Prev Cardiol. 2016;23:777–84.
Article
PubMed
Google Scholar
Batterham AM, George KP, Mullineaux DR. Allometric scaling of left ventricular mass by body dimensions in males and females. Med Sci Sports Exerc. 1997;29:181–6.
Article
CAS
PubMed
Google Scholar
Welsman JR, Armstrong N. Scaling for size: relevance to understanding effects of growth on performance. In: Hebestreit H, Bar-Or, editors. editors The Young Athlete. Oxford: Blackwell; 2008. p. 50–62.
Google Scholar
Valente-Dos-Santos J, Coelho-E-Silva MJ, Ferraz A, Castanheira J, Ronque ER, Sherar LB, et al. Scaling left ventricular mass in adolescent boys aged 11-15 years. Ann Hum Biol. 2014;41:465–8.
Article
PubMed
Google Scholar
Beunen GP, Malina RM, Lefevre JA, Claessens AL, Renson R, Vanreusel B. Adiposity and biological maturity in girls 6-16 years of age. Int J Obes Relat Metab Disord. 1994;18:542–6.
CAS
PubMed
Google Scholar
Werneck AO, Conde J, Coelho-E-Silva MJ, Pereira A, Costa DC, Martinho D, et al. Allometric scaling of aerobic fitness outputs in school-aged pubertal girls. BMC Pediatr. 2019;19:96.
Article
PubMed
PubMed Central
Google Scholar
Coelho E, Silva MJ, Figueiredo AJ, Moreira Carvalho H, Malina RM. Functional capacities and sport-specific skills of 14-to 15-year-old male basketball players: size and maturity effects. Eur J Sport Sci. 2008;8:277–85.
Article
Google Scholar
Emmonds S, Morris R, Murray E, Robinson C, Turner L, Jones B. The influence of age and maturity status on the maximum and explosive strength characteristics of elite youth female soccer players. Sci Med Footb. 2017;1:209–15.
Article
Google Scholar
Malina RM, Koziel SM. Validation of maturity offset in a longitudinal sample of polish girls. J Sports Sci. 2014;32:1374–82.
Article
PubMed
Google Scholar
Malina RM, Choh AC, Czerwinski SA, Chumlea WC. Validation of maturity offset in the Fels longitudinal study. Pediatr Exerc Sci. 2016;28:439–55.
Article
PubMed
Google Scholar
Maron BJ, Roberts WC, McAllister HA, Rosing DR, Epstein SE. Sudden death in young athletes. Circulation. 1980;62:218–29.
Article
CAS
PubMed
Google Scholar
Maron BJ, Epstein SE, Roberts WC. Causes of sudden death in competitive athletes. J Am Coll Cardiol. 1986;7:204–14.
Article
CAS
PubMed
Google Scholar
Burke AP, Farb A, Virmani R, Goodin J, Smialek JE. Sports-related and non-sports-related sudden cardiac death in young adults. Am Heart J. 1991;121:568–75.
Article
CAS
PubMed
Google Scholar
Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task force 3: hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. J Am Coll Cardiol. 1994;24:880–5.
Article
CAS
PubMed
Google Scholar
Sharma S, Maron BJ, Whyte G, Firoozi S, Elliott PM, McKenna WJ. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:1431–6.
Article
PubMed
Google Scholar
Lozano-Berges G, Matute-Llorente A, Gomez-Bruton A, Gonzalez-Aguero A, Vicente-Rodriguez G, Casajus JA. Accurate prediction equation to assess body fat in male and female adolescent football players. Int J Sport Nutr Exerc Metab. 2019;29:297–302.
Article
PubMed
Google Scholar