We have measured the aluminium content of the 30 most popular brands of infant formula available in the UK. We have included ready-to-drink products, which are available in both cardboard laminate cartons and plastic bottles, and milk powders, which are sold in tins (Sma), containers (Cow & Gate) and boxes (Hipp Organic). Generally the aluminium content of ready-to-drink products (Mean (SD) 250 (101) μg/L) were similar to the powdered milk products (Mean (SD) 246 (180) μg/L) though these ‘average’ values have no practical meaning as is clear from scrutiny of the data for the individual products (Tables 1 & 2). The aluminium content of ready-to-drink milks was highest in the two products which were contained in plastic bottles (Cow & Gate Growing Up, Aptamil Toddler) as compared to long-life cartons. Both of the plastic bottles have a seal between the cap and the product which is made of aluminium foil and this may be a significant source of aluminium contamination in these milks. All of the long-life cartons are composed of classic trilaminate packaging which in each case includes an aluminium foil central layer. While this form of packaging is a source of aluminium contamination in the stored product it alone is unlikely to explain the wide difference in aluminium content of milks in similar packaging, for example, Sma Toddler milk and Aptamil Follow-On milk (Table 1).
The highest content of aluminium in powdered milks was found in both of the soya-based products (Table 2). It has been known for decades that soya is a significant source of aluminium contamination in infant formulas [6, 7]. Powdered milk products are stored within 3 different containers and all of these include substantial amounts of aluminium in their packaging materials. Both Sma and Cow & Gate use containers which are lined with an aluminium-based composite and have a tear-away aluminium foil seal between the powder and the plastic lid. There are clearly opportunities for contamination of the stored milk powder by aluminium. Hipp Organic uses simple cardboard containers though the milk powders are actually contained in aluminium foil-based pouches inside these boxes. Again, this type of packaging may represent opportunities for contamination of the stored milk powder by aluminium [8]. While there have not been any scientific studies to determine if the packaging used for infant formula preparations is a source of aluminium contamination indirect confirmation of such was recently obtained by a reporter working for NBC in New York, USA where a formula manufacturer admitted that aluminium found in a customer’s powdered formula came from the aluminium-based packaging [9]. However, packaging is only one potential source of aluminium contamination in these milk powders as Hipp Organic supplies both the least (Hipp Organic Growing Up) and the most contaminated (Hipp Organic First Infant) of the non-soya-based milk powders and these products appear to use the same packaging materials. It should be of some concern that all of the infant formulas investigated herein are stored in containers which use a significant amount of aluminium-based packaging materials. The origins of the non-packaging-based contamination must include myriad ingredients used in these formulations and their processing to produce the final packaged product as those manufacturers that responded to our questions were adamant that aluminium in any form was not knowingly added to their formulas.
The concentration of aluminium in each of the 30 infant formulas is at least twice that which is recommended in the European Union for drinking water (50 μg/L) and in 14 of the milks it exceeds the maximum admissible level for drinking water of 200 μg/L [10]. While these recommended values for aluminium in drinking water were, historically at least, not set with human health as a criterion, they are used today in general practice to ascertain whether or not potable waters are fit for human consumption [10]. We consider that the aluminium content of all infant formulas investigated herein is too high and especially so considering that these products constitute either all or a substantial proportion of an infant’s diet in the first months of their lives. Based upon the criteria for drinking water they are not fit for human consumption and they contravene article 5 of the Food Safety Act which states that ‘infant formulas should not contain anything which might endanger the health of infants and young children’ [11]. Organisations such as the Food Standards Agency (FSA) in the UK and the EFSA in Europe have argued that the daily intake of aluminium from infant formulas is unlikely to exceed the tolerable weekly intake (TWI) of 1 mg/kg body weight set by the joint FAO/WHO Expert Committee on Food Additives [12]. However, these organisations, charged with the responsibility of protecting the public from additives in their food, need to recognise and emphasise that this value was determined for adults and, critically, it was not based upon any studies on humans, whether infants, adolescents or adults. The validity and usefulness of this TWI has repeatedly been questioned by those scientists working on human exposure to aluminium [13]. This issue can only be resolved through future research on infant exposure to aluminium through formula feeds and other routes. However, precautionary practical solutions to this public health issue should now be sought. The data published herein on the aluminium content of infant formulas can be used by parents and other interested parties as their best indicators of infant exposure to aluminium through formula feeds. Parents and others might now at the very least choose an appropriate formula with the lowest content of aluminium. Overall, the figures are slightly lower than the data we published in 2010 [1] and one would like to think that this is because manufacturers’ have taken precautions against the contamination of their products by aluminium. However, evidence of the widespread use of aluminium-based packaging does not support this. In addition, for these data we were able to apply a method blank approximation of aluminium contamination of the methods which was based upon 120 method blanks [5]. This value, which is based upon a much more rigorous statistical approach to levels of contamination in method blanks, was subtracted from the milk digests and was a greater value than that used for the previous data and so is probably a major factor behind the generally slightly lower aluminium contents reported herein. Clearly, the contamination of infant formulas by aluminium highlighted in this research can only be a snapshot of all formulas available at any one time. However, the consistency between the data in this study and our previous work [1] does suggest that the data are an accurate estimate of aluminium in infant formulas.
Comments
View archived comments (1)