Use of CPAP without mechanical ventilation for neonates increased from 2001 to 2008, with a particularly notable rise among infants of > 32 weeks gestation and at non-tertiary hospitals in 2008. Although the rates of CPAP use were highest among infants ≤30 weeks, in terms of absolute numbers of neonates exposed, the burden was higher among more mature neonates. The relatively slower increase in CPAP use among neonates ≤32 weeks may relate to greater difficulty in supporting very premature neonates on CPAP alone without a period of mechanical ventilation or may reflect the lack of evidence regarding use of CPAP in very preterm neonates available during the study period. Trials in very preterm neonates published from 2008 support the consideration of CPAP as an alternative to intubation and surfactant, [7, 8] and as these findings are translated into practice we may see a further increase in CPAP rates.
CPAP use among neonates > 32 weeks increased slowly from 2001 through 2004, followed by greater increases, particularly in 2008. During this period, there was no increase in the temporal trend of births ≤32 or > 32 weeks gestation. The overall increase in neonates receiving CPAP was offset by a small decrease in rate of mechanical ventilation, resulting in a significant increase in total number of infants receiving ventilatory support (CPAP or mechanical ventilation). This suggests that the increase was primarily due to an increase in CPAP in neonates who would previously have received only supplemental oxygen in either a tertiary or non-tertiary unit. The 2007 increase coincided with publication of the Buckmaster CPAP trial results, which showed CPAP for selected neonates at appropriately resourced non-tertiary hospitals could reduce transfers to a NICU [6]. At the hospitals involved in the CPAP trial the number of neonates receiving CPAP doubled after the trial, implying that neonates who would previously have been randomized to oxygen were instead being given CPAP.
The use of large, linked, validated population-based databases that provide information on all neonates is a strength of this study. However, these data do not have detailed clinical information such as the severity of disease, use of surfactant or the duration of CPAP. Furthermore, the temporal sequence of events (eg CPAP, mechanical ventilation, pneumothorax) cannot be determined, only that the events occurred during an admission. This limits the ability to assess complications or reasons for changes in the respiratory support methods.
Nasal CPAP has been adopted by many NICUs as a way of reducing rates of bronchopulmonary dysplasia in premature neonates, but assessment of its benefits is complicated by questions about the simultaneous effects of concomitant surfactant treatments and other NICU interventions [20]. Most research into the potential benefit of CPAP has used a study population of very preterm or extremely preterm neonates who were delivered in tertiary referral hospitals. Little is known about the benefits of CPAP use in more mature neonates in tertiary NICUs. The Buckmaster trial compared CPAP use with supplemental oxygen in neonates > 30 weeks gestation in non-tertiary centres [6] to prevent transfer of neonates for intensive care. The study showed a reduction in both treatment 'failure' (RR = 0.54; 95% CI 0.32, 0.91) and the rate of up-transfer (RR = 0.51; 95% CI 0.31, 0.89), but did not show any statistically significant reduction in outcomes such as length of admission. The results also show an increased risk of pneumothorax in the CPAP arm but the confidence interval is wide (RR = 2.76; 95% CI 1.02, 7.48). The possibility of increased rates of pneumothorax has been a concern with use of CPAP, and the COIN trial [8] reported a rate of pneumothorax three times higher in the CPAP group compared with the mechanical ventilation group. However, the recently published results of the SUPPORT trial found no difference in the rates of pneumothorax for extremely preterm neonates randomized to initial treatment with either CPAP or endotracheal administration of surfactant [7]. Further, the long term consequences of CPAP remain undetermined and need to be monitored.
Although our findings highlight that most neonates treated with CPAP are cared for in tertiary centres, there was an increase in the proportion treated outside these hospitals. Our study found that most non-tertiary non-CPAP-trial hospitals that provided CPAP support treated relatively few neonates in 2007-2008; and this may be inadequate to ensure safety and cost-effectiveness of the intervention. CPAP is resource-intensive and caution has been advised with the use of CPAP in units that are not well staffed or experienced in its use [21–23]. Furthermore, it is important that the availability of CPAP facilities does not lead to complacency regarding policies of antenatal transfer of high risk pregnancies, particularly as in utero transfer has been demonstrated to be more beneficial and improve neonate outcomes [24].
Buckmaster estimated that on average, across an neonatal population, a cost saving of ~AU$1,700 would accrue for every neonate treated with CPAP [6]. However, increased use of CPAP is likely to increase costs at an individual hospital if additional resources, such as experienced staff and ongoing monitoring of CPAP neonates, are required [2]. Additional costs associated with CPAP use in non-tertiary hospitals may be offset by a reduction in neonatal transfers, decreased length of stay or better outcomes for neonates [24] and should be investigated. Although the Buckmaster CPAP trial did show a benefit in reduced transfers,[6] it is not known if this remains true in the wider group of hospitals now providing CPAP and among the potentially broader group of neonates exposed, especially given the small numbers treated at each hospital. Recommendations should be developed regarding which neonates should be considered for CPAP, and the appropriate resources necessary for a unit to offer CPAP. In addition, longer term outcomes for neonates who receive CPAP need to be monitored.