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Abstract
Background Radiologic volumetric evaluation of Wilms’ tumor (WT) is an important indicator to guide treatment 
decisions. However, due to the heterogeneity of the tumors, radiologists have main-guard differences in diagnosis 
that can lead to misdiagnosis and poor treatment. The aim of this study was to explore whether CT-based outlining of 
WT foci can be automated using deep learning.

Methods We included CT intravenous phase images of 105 patients with WT and double-blind outlining of lesions 
by two radiologists. Then, we trained an automatic segmentation model using nnUnet. The Dice similarity coefficient 
(DSC) and 95th percentile Hausdorff distance (HD95) were used to assess the performance. Next, we optimized the 
automatic segmentation results based on the ratio of the three-dimensional diameter of the lesion to improve the 
performance of volumetric assessment.

Results The DSC and HD95 was 0.83 ± 0.22 and 10.50 ± 8.98 mm. The absolute difference and percentage difference in 
tumor size was 72.27 ± 134.84 cm3 and 21.08% ± 30.46%. After optimization according to our method, it decreased to 
40.22 ± 96.06 cm3 and 10.16% ± 9.70%.

Conclusion We introduce a novel method that enhances the accuracy of predicting WT volume by integrating AI 
automated outlining and 3D tumor diameters. This approach surpasses the accuracy of using AI outcomes alone 
and has the potential to enhance the clinical evaluation of pediatric patients with WT. By intertwining AI outcomes 
with clinical data, this method becomes more interpretive and offers promising applications beyond Wilms tumor, 
extending to other pediatric diseases.
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Introduction
Wilms’ tumor (WT) is one of the most common solid 
tumors in infants and children, ranking second in pri-
mary abdominal malignancies in children after neu-
roblastoma [1]. The diagnosis of WT relies heavily on 
imaging, such as abdominal plain film, excretory urog-
raphy, abdominal ultrasound, abdominal CT or MRI [2]. 
Among these, plain abdominal CT scans and enhance-
ment scans are the most important examinations, with a 
diagnostic accuracy of over 95% [3]. Treatment for WT 
typically involves a combination of surgery and chemo-
therapy, resulting in a survival rate of up to 90% [3]. The 
choice of treatment primarily depends on clinical staging 
[4].

Currently, puncture biopsy is still the main tool for the 
clinical diagnosis of WT. However, in children, puncture 
biopsy not only increases injury but also poses risks. The 
North American Children’s Oncology Research Col-
laborative (COG) believes that preoperative application 
of fine-needle aspiration biopsy, core-needle biopsy, or 
open biopsy may lead to increased recurrence and mor-
tality rates. This would result in the upgradation of WT 
to Stage III, requiring the addition of radiation therapy, 
which can further damage the child’s organism [5]. On 
the other hand, the European Society for International 
Pediatric Oncology (SIOP), another authoritative organi-
zation for WT research, has ruled that preoperative open 
wedge biopsy artificially ruptures the tumor envelope, 
upgrading WT to stage III. However, fine-needle aspira-
tion biopsy or core-needle biopsy is not a criterion for 
upgrading to stage III [6].

Tumor volume measurement is crucial for the treat-
ment of nephroblastoma. It is considered an indicator of 
response to therapy and risk stratification, as suggested 
by the SIOP UMBRELLA guidelines [2]. According to 
these guidelines, patients with a unilateral tumor volume 
of less than 300 ml at the time of diagnosis and without 
susceptibility tumor syndrome exclusively undergo renal 
unit-sparing surgery (NSS) [7, 8]. Furthermore, tumor 
volume has been found to have predictive value in deter-
mining patient prognosis [9, 10]. However, the current 
method for tumor volume measurement relies on manual 
outlining of the lesion by radiologists, making it a labor-
intensive and experience-dependent process.

Deep learning, a branch of artificial intelligence, uti-
lizes neural networks for learning. By applying a spe-
cific network structure, accurate manual results can be 

achieved. However, extensive training can automate this 
process [11]. Many scholars have conducted research on 
deep learning, recognizing its potential for automatically 
segmenting lesions and saving time while minimizing 
subjective errors. The objective of this study is to explore 
the application of deep learning for the segmentation of 
WT lesions and evaluate the feasibility of automated seg-
mentation for imaging analysis [12–14].

Materials and methods
DATA
Retrospective analysis was conducted on data from 106 
patients with WT who were hospitalized at Children’s 
Hospital of Zhejiang University between October 2014 
and October 2021. The inclusion criteria were as follows: 
(i) pathologically verified WT; (ii) abdominal enhance-
ment CT prior to treatment; and (iii) CT-enhanced 
images including the portal phase.

A total of 105 patients were enrolled in the study after 
excluding those with low-resolution images or motion 
artifacts. Among the 105 patients included in the analy-
sis, 51 were male (49%), and 54 were female (51%). The 
median age at 24 months ranged from 1 to 123 months 
(Table  1). To ensure unbiased results, all patients were 
randomly divided into two groups: the training group 
(n = 75) and the test group (n = 30).

According to the COG staging guidelines, tumors were 
classified based on whether the tumor was confined to 
the kidney or not. Based on this categorization, we classi-
fied patients into stage I and > I.

Image acquisition
All CT examinations were randomized using a 16-row 
CT (Siemens Somatom Emotion 16, Germany) and 
64-row CT (GE Optima CT660, Japan) were performed 
(Table  2). Various scanning parameters lead to differ-
ences in CT image resolution. We believe that enhancing 
the dataset’s complexity will help address the constraints 
of depending solely on a single-center data source.

After CT scanning, nonionic iodinated contrast agent 
was injected intravenously using a high-pressure syringe 
at a dose of 1.5 ml/kg body weight at a flow rate of 1.5-2 
ml/sec, with a delay of 50  s for acquiring intravenous 
phase images. The study was approved by the hospital 
ethics committee.

Table 1 Baseline characteristics (n = 105). Numbers are count unless otherwise specified
DATASET Sex Age (month)

Male Female Median Mean
Train 36 39 21 26.57
Test 15 15 36.5 42.79
Total 51 54 24 31.21
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Image processing
The whole process involved outlining the regions of 
interests (ROIs) for all renal masses in WT patients using 
portal intravenous CT images. In collaboration with two 
diagnostic radiologists with more than 10 years of clinical 
experience, the 3D Slicer platform was employed for this 
purpose. To analyze the interobserver reproducibility, 
the two diagnostic imaging physicians blindly segmented 
30 randomly selected tumor ROIs. To assess intraob-
server reproducibility, these 30 tumor ROIs were repeat-
edly outlined over a 2-week period following the same 
procedure.

Tumor size was calculated by multiplying the number 
of voxels in the tumor segmentation by the voxel size in 
cm3.

Deep learning
The deep learning network nnU-Net, a U-net-based 
adaptive segmentation framework, was employed for 
automatic tumor segmentation [15]. The source code 
for nnU-Net is publicly available on GitHub (https://
github.com/MIC-DKFZ/nnunet). Three models, namely, 
2D Unet, 3D Unet, and 3Dres Unet (U-Net Cascade), 
were trained using the training set data. To fully utilize 
the patient data, a 5-fold cross-validation strategy was 
applied throughout the training process. After training, 
the outputs of the three models were combined in pairs 
to further fuse the results. Subsequently, the best model 
from the selection was validated on the test set of images. 

The results were then compared and analyzed with the 
manual segmentation results. An overview of the deep 
learning workflow is shown in Fig. 1.

We trained all neural networks for 1000 iterations. 
During training, the 2D and 3D networks were sampled 
at 512 × 512 and 80 × 192 × 160, with batch sizes of 12 
and 2, respectively. The models were implemented using 
Python (3.9) and PyTorch (2.1).

Statistical analysis
The Dice similarity coefficient (DSC) would be utilized 
to evaluate both inter- and intra-observer consistency. 
Reproducibility was deemed satisfactory if DSC > 0.9. To 
evaluate the performance of automated tumor volume 
measurements based on deep learning, the quality of 
automated segmentation was assessed using DSC and the 
95th percentile Hausdorff distance (HD95). Furthermore, 
intergroup correlation coefficients were employed to 
evaluate the agreement between automatic and manual 
segmentation. The statistical procedure was performed 
using Python 3.9, and P < 0.05 was considered signifi-
cantly different.

Results
Distribution of tumors
The distributions of tumor sizes in the total dataset and 
the training set are relatively close to each other, with 
median and mean values not differing much and consis-
tent ranges. Both the total dataset and the training set 

Table 2 CT imaging parameters
Parameters Siemens CT GE CT
Tube voltage 110 kV 120 kV
Tube current 75 mA 80 mA
Layer thickness 1.5 mm 0.625 mm
FOV 350 mm×  350 mm 350 mm×  350 mm
Matrix 512 ×  512 512 ×  512

Fig. 1 Overview of the deep learning workflow. The image in the figure is a 2D schematic representation of the 3D volume
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have slightly higher median and mean values compared 
to the test set. In the total dataset, the ratio of the num-
ber of stage I tumors to nonstage I tumors was 0.78. This 
ratio was similar in the training set, while in the test set, 
it was lower at 0.67 (Table 3).

Deep learning-based segmentation
Based on the three networks, we performed five-fold 
cross-validation in the training set and selected the 
model with the highest DSC for each network (Table 4). 
These models were then combined, resulting in six seg-
mentation models. Among the six models, 3D-3Dres, the 
combined model, produced the best segmentation effect. 
It achieved a median DSC of 0.9489, a mean of 0.8976, 
a median HD95 of 5.39 mm, and a mean of 11.29 mm. 
Hence, the 3D-3Dres model was selected as the best 
model for testing.

The results of the statistical analysis comparing the 
tumor lesions predicted by the BEST model with manual 
segmentation in the test set showed that the entire test 
set had a median DSC value of 0.9296, with a mean value 
of 0.8543 and a range of 0.2927–0.9715. Three cases had 
a DSC value less than 0.6. Moreover, the median HD95 
value was 8.093 mm, with a mean value of 10.50 mm 
and a range of 2.449–39.87 mm. Two cases had values 
exceeding 30 mm (Table  5). Additionally, when assess-
ing the autosegmented lesions, more consistent results 
were obtained for both stage I and nonstage I tumors. 
The median DSC value was above 0.9, with a mean value 
above 0.85. The median HD95 value was approximately 8 

mm, with a mean value of approximately 10.5 mm. None 
of these values showed statistical significance.

Figure  2. Examples of automated prediction of tumor 
lesions. A: CT image of a patient with DSC of 0.9715. B: 
CT image of a patient with DSC of 0.2927. In each set of 
images, the left column is the original image and the right 
column is the lesion image. Each row displays horizontal, 
coronal and sagittal images in order from top to bottom. 
In the lesion image, the green area is the overlapping part 
of manual segmentation and automatic segmentation, the 
blue area is the manual segmentation only, and the yellow 
area is the automatic segmentation only.

Tumor size
Based on the manual segmentation size of tumors (0-300 
cm3, 300–500 cm3, and > 500 cm3), there was a significant 
increase in the difference between automatically seg-
mented and manually segmented volumes. Particularly, 
the difference was highest in the 300–500 cm3 tumor size 
group, surpassing the other groups (Table 6). For tumor 
volumes below 300 cm3, both the absolute and percent-
age differences were smaller compared to the total group. 
For tumor volumes exceeding 500 cm3, the absolute dif-
ference was second highest after the 300–500 cm3 group.

When calculating the tumor volume, we found a strong 
correlation between the product of the 3D diameter ratio 
and the tumor size for automatically segmented and 
manually segmented lesions (Fig. 3).

Specifically, for tumor sizes between 300 and 500 cm3, 
the mean difference decreased by 118.03 cm3 (39.10%), 

Table 3 Tumors Information
DATASET Tumor staging Tumor Size(cm3)

Stage I Stage > I Median Mean
Train(n = 75) 34 41 324.9 409.9
Test(n = 30) 12 18 154.8 298.2
Total(n = 105) 46 59 315.5 378.0

Table 4 Deep learning training results
TRAIN DSC HD 95(mm)

Median Mean Median Mean
2D_Unet 0.9409 0.8878 6.5574 16.7306
3D_Unet 0.9488 0.8913 5.7446 11.8477
3Dres_Unet 0.9443 0.8941 5.7446 12.4469
2D-3D_Unet 0.9468 0.8937 5.3852 12.9013
2D-3Dres_Unet 0.9463 0.8971 5.3852 11.5593
3D-3Dres_Unet 0.9489 0.8976 5.3852 11.2877

Table 5 Deep learning testing results
TEST DSC HD95(mm)

Median Mean Median Mean
Stage I (n = 12) 0.9300 0.8548 8.0623 10.1052
> Stage I (n = 18) 0.9158 0.8540 8.3632 10.7680
Total (n = 30) 0.9296 0.8543 8.0931 10.5029
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and the mean percentage difference decreased by 14.42% 
(Table 6). Figure 4 illustrates the percentage error distri-
bution of the two volume measurement methods.

The predicted volume based on the 3D diameter ratio 
was more accurate and in better agreement with manual 
segmentation than the direct calculation of volume after 
automatic segmentation. There was no significant differ-
ence between the volume of both methods and the vol-
ume of manual segmentation (PDL=0.93, PPre=0.95). The 
overall consistency of automatically segmented tumor 
size was strong. However, this consistency weakened 
significantly when the tumor volume exceeded 300 cm3 
(Fig.  5). Conversely, the predicted volume exhibited 
superb consistency (ICC > 0.95), except for the > 500 cm3 
group (ICC = 0.83), demonstrating the effectiveness of the 
prediction method.

Discussion
The results of this study demonstrate that deep learning 
can partially replace manual tumor lesion segmentation. 
Moreover, when combined with manual measurement 
of the maximum diameter of the three dimensions, deep 
learning can provide more accurate predictions of tumor 
size. This further supports the feasibility of automated 
lesion segmentation in tumor radiomics studies.

In terms of the clinical information, the clinical details 
of the training and test sets in our data are largely simi-
lar to those of the total data. However, it is worth noting 
that patients in the test set were older. For tumor lesion 
size, the distribution of the training set closely resembles 
that of the total dataset, whereas the lesion size in the 
test set is slightly smaller. The smaller lesion size in the 
test set might have affected the model’s validation [16, 
17]. Despite this, our trained automatic segmentation 

Table 6 Absolute and percentage differences in tumor size between automatic and manual segmentation
Tumor Size(cm3) Absolute Difference(cm3) Percentage Difference

DL Pre DL Pre
< 300 (n = 17) 15.96 6.36 21.89% 9.27%
300–500 I (n = 8) 301.85 183.82 34.84% 20.42%
> 500(n = 5) 48.43 22.41 10.76% 5.64%
Total (n = 30) 72.27 40.22 21.08% 10.16%
a The values in the table are averages
b DL and Pre represent the automatic tumor segmentation volume and optimized prediction volume, respectively

Fig. 2 shows tumor lesions with the highest and lowest DSC scores. It is evident that in tumors with a high DSC score, the automatically segmented le-
sions closely match the manually segmented lesions. In contrast, tumors with a low DSC score exhibit larger automatically segmented foci than manually 
segmented foci. Additionally, these foci are identified in regions that physicians would usually classify as lesion-free
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model exhibited relatively good performance in the test 
set, with a median DSC value of 0.93 and a mean value of 
0.85. Nevertheless, the model did not adequately identify 
lesion edges in certain tumors. The lowest DSC value in 
the test set was 0.29, indicating oversegmentation of the 
tumor lesion for this particular patient (Fig. 2). This out-
come could be attributed to the low frequency of small 
lesions in the test set, resulting in a decrease in the mod-
el’s accuracy in identifying such lesions [17].

Based on the variations in tumor size observed among 
patients, it appears that tumor size plays a crucial role 
in model performance. Our analysis reveals a range of 
tumor sizes, with the smallest tumor measuring 5.9 cm3 
and the largest tumor measuring 1136.8 cm3, indicating 
a significant difference of 1130.9 cm3 (19,268%). Figures 2 
and 4a illustrate the distribution of manually segmented 
lesion sizes, which appears relatively discrete, while the 
automatically segmented lesion sizes demonstrate a more 
centralized distribution. We attribute this difference to 

Fig. 3 Linear correlation plot of the percentage difference in volume and three-dimensional maximum diameter product between the lesions obtained 
from automatic segmentation and manual segmentation. DL% is the percentage difference in volume, and WHD% is the percentage difference in three-
dimensional maximum diameter
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Fig. 5 Pearson’s correlation coefficients between manual segmentation and automated segmentation and 3D predicted tumor volumes, respectively. 
(A-D) Scatterplots representing the automated segmentation. (E-H) Scatterplots representing the 3D predicted. Man, manual segmentation volumes; DL, 
automated segmentation volumes; Pre, 3D predicted tumor volumes

 

Fig. 4 Two deep learning-based vs. manual-based tumor volumes. The x-axis is the artificial tumor volume and the y-axis is the percentage difference 
in predicted volume. DL and Pre represent the automatic tumor segmentation volume and optimized prediction volume, respectively. The red line cor-
responds to no difference with the manually determined reference volume. Points above the red line indicated that the model underestimates tumor 
volume, and points below the red line indicated that it overestimates tumor volume
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the mathematical nature of the deep learning algorithm, 
which favors continuous data types. Additionally, the lim-
ited data available and the incomplete understanding of 
the actual complex distribution might contribute to this 
disparity. Our evaluation of tumor size grouping shows 
that the model performs significantly better in segment-
ing small tumors (less than 300 cm3) compared to other 
tumor sizes. However, the worst performance is observed 
in segmenting average-sized tumors (300–500 cm3). We 
hypothesize that the correlation between tumor size and 
the degree of deterioration plays a role in this disparity. 
As tumor size increases, it may invade surrounding tis-
sues, and the extent of invasion varies across patients, 
leading to the model’s inadequate understanding of this 
feature. The slightly suboptimal segmentation of large 
tumors (> 500 cm3) may be due to the model’s relative 
proficiency in segmenting large tumors, given the limited 
presence of only five large tumors in the test set, which 
may have occurred by chance. To validate these findings 
further, expanding the sample size is necessary.

Regarding the tumor stage, we currently only focus on 
stage I patients because this will directly affect the choice 
of subsequent surgical strategies. The small amount of 
data is one of the reasons why we did not make further 
distinctions for patients with other stages. Additionally, 
we collected preoperative examinations from patients 
with low tumor deterioration and fewer patients with 
high-grade tumors. Our data confirm that tumor stag-
ing I or not had no significant effect on manual and auto-
mated segmentation. It is worth noting that the number 
of different pathological subtypes of WT in the dataset 
can affect the model performance of deep learning seg-
mentation, as shown by Buser, Myrthe A D et al. [18]. 
However, it is important to clarify that the task of tumor 
staging classification belongs to our previous work [19], 
and the focus of this study was on lesion segmentation 
independent of tumor staging.

In clinical practice, the routine practice for describing 
the size of a tumor is to use the maximum diameter in 
three directions [20–23]. However, it has been found that 
this method underestimates the actual volume of tumors. 
Müller et al. conducted a study on Wilms tumors and 
discovered that the volume was underestimated by an 
average of 22% when compared to measurements made 
by human experts using ellipsoid-based measurements 
[24]. Similarly, a research study by Buser et al. found that 
ellipsoid-based measurements underestimated volumet-
ric measurements based on manual segmentation by an 
average of 10% [18]. Although manual segmentation is 
highly accurate, it is a time-consuming process and heav-
ily relies on the experience of the radiologist [24, 25].

In our study, automated segmentation combined with 
manual outlining of the 3D maximum diameter could 
more accurately predict the true size of the tumor. The 

maximum diameter indirectly represents tumor size [26]. 
This method exhibits less error and more stability com-
pared to automatic segmentation of lesions. However, 
due to the lack of samples, the model is less effective in 
segmenting large tumors and does not agree well with 
manually segmented tumors. Nonetheless, the prediction 
method effectively compensates for this limitation, as the 
predicted tumor size is highly consistent with manual 
segmentation.

This study has some limitations that need to be 
acknowledged. First, our sample size was small, as it only 
included WT patients from our institution between 2014 
and 2021. Nonetheless, when compared to the study 
conducted by Buser, Myrthe A D et al., our sample size 
still stands out [24]. Second, we were unable to deter-
mine the specific pathological staging and tumor type of 
WT patients at our institution, which necessitates fur-
ther investigation to exclude any potential pathological 
differences. Third, although the prediction method has 
improved the application of automated segmentation, its 
effectiveness for clinical decision-making has yet to be 
fully explored. Fourth, while we collected data from two 
different devices and had two physicians perform lesion 
segmentation, it should be noted that all the patients 
were from the same institution. Consequently, we plan 
to conduct a large-scale multidisciplinary multidisease 
cohort study to validate our findings.

Conclusions
Our study confirms the efficacy of deep learning in auto-
matically outlining WT lesions. Additionally, we intro-
duce a novel approach for predicting WT volume by 
integrating tumor three-bit diameter measurements with 
AI-generated outcomes. This advanced method not only 
enhances efficiency and precision but also demonstrates 
greater reliability compared to using AI alone for volume 
prediction. The implementation of this technique has the 
potential to enhance the clinical evaluation of pediatric 
patients with WT and may even impact treatment strat-
egies for individual cases. Furthermore, the application 
of this combined 3D diameter approach for volume pre-
diction holds promise for potential adaptations to other 
types of pediatric tumors and could serve as a benchmark 
for future research endeavors.
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