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Abstract 

Background Wilms’ tumor (WT) is the most common renal tumor in childhood. Pyroptosis, a type of inflammation-
characterized and immune-related programmed cell death, has been extensively studied in multiple tumors. In 
the current study, we aim to construct a pyroptosis-related gene signature for predicting the prognosis of Wilms’ 
tumor.

Methods We acquired RNA-seq data from TARGET kidney tumor projects for constructing a gene signature, 
and snRNA-seq data from GEO database for validating signature-constructing genes. Pyroptosis-related genes (PRGs) 
were collected from three online databases. We constructed the gene signature by Lasso Cox regression and then 
established a nomogram. Underlying mechanisms by which gene signature is related to overall survival states 
of patients were explored by immune cell infiltration analysis, differential expression analysis, and functional enrich-
ment analysis.

Results A pyroptosis-related gene signature was constructed with 14 PRGs, which has a moderate to high predicting 
capacity with 1-, 3-, and 5-year area under the curve (AUC) values of 0.78, 0.80, and 0.83, respectively. A prognosis-pre-
dicting nomogram was established by gender, stage, and risk score. Tumor-infiltrating immune cells were quantified 
by seven algorithms, and the expression of CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages 
are positively or negatively correlated with risk score. Two single nuclear RNA-seq samples of different histology were 
harnessed for validation. The distribution of signature genes was identified in various cell types.

Conclusions We have established a pyroptosis-related 14-gene signature in WT. Moreover, the inherent roles 
of immune cells (CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages), functions of differentially 
expressed genes (tissue/organ development and intercellular communication), and status of signaling pathways (pro-
teoglycans in cancer, signaling pathways regulating pluripotent of stem cells, and Wnt signaling pathway) have been 
elucidated, which might be employed as therapeutic targets in the future.
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Introduction
Wilms’ tumor (WT) is the most common renal tumor 
and the second most common malignant abdominal 
tumor in childhood. The incidence of WT in general 
population is 0.5–7.5 per million and is lower in high-
income areas [1]. Current treatment strategy for WT is 
based on genetic markers, histology, stage, and other risk 
factors, which spare children with low-risk tumors from 
intensive treatment and intensify treatment for children 
with high-risk tumors [2]. Outcomes and long-term sur-
vival have improved over the decades [1, 3].

WTs are divided into two histologies: the favorable his-
tology (FH) and the unfavorable histology (UH) which 
includes anaplastic histology (AH), clear cell sarcoma 
of the kidney (CCSK), and malignant rhabdoid tumor 
(MRT) [4]. Despite the advances in multi-disciplinary 
treatment and risk-based management of WT, the cur-
rent prognoses of patients with unfavorable histology 
remain dismal [5].

Pyroptosis is a type of gasdermin-mediated, inflamma-
tion-characterized, and immune-related programmed 
cell death, which has received increasing attention due to 
its association with immune response in neoplastic and 
non-neoplastic diseases [6]. The role of pyroptosis has 
been extensively elucidated in cardiovascular diseases, 
nervous system disorders, psychiatric disorders, infec-
tion diseases, periodontal diseases, etc. [7–11]. Further, 
pyroptosis has been proven to be closely related to the 
biological behavior of multiple tumors [12].

The tumor microenvironment (TME) consists of mis-
cellaneous cell types, such as cancer cells, cancer stem 
cells, immune cells, stromal cells, and vascular endothe-
lial cells. Tumor-infiltrating immune cells are found 
generic in tumor tissues with complex tumor-antagoniz-
ing or tumor-promoting functions, which surprisingly 
can affect the hallmarks of the tumor [13]. Quantification 
methods of these cells are divided into two categories: 
methods of enrichment on marker genes and methods 
leveraging the deconvolution algorithm [14, 15]. Each 
of these methods has a property to allow intra- or inter-
sample comparison. We used several authoritative meth-
ods in current research.

The RNA-sequencing technique has been extensively 
employed to identify transcriptome profiles of various 
tumors [16], based on which several gene signatures 
have been established for the prognosis of WT [17, 18]. 
We have previously constructed a ferroptosis-related 
lncRNA signature in WT [17]. To the best of our knowl-
edge, no signature based on pyroptosis for WT was 
reported. Here, we established a pyroptosis-related gene 
signature from the RNA-seq data of WT and constructed 
a nomogram with the signature and clinical variables. 
Immune infiltration characteristics of the signature were 

then identified. We further used snRNA-seq data for vali-
dation of our signature. The overall workflow is presented 
in Fig. 1.

Material and methods
Acquisition of gene expression profiles and case 
information
RNA-seq data (counts value) of 132 tissue samples 
derived from WT patients were downloaded from Xena 
datasets (https:// xena. ucsc. edu/), which originally came 
from the TARGET kidney tumor projects (https:// ocg. 
cancer. gov/ progr ams/ target) [19]. Of the 132 samples, 
126 were from tumor tissues and six were from normal 
tissues. Supplemental clinical and survival information 
was acquired from the same source. Preprocessing of 
expression matrices was completed before further analy-
sis. Briefly, the logarithmed count values downloaded 
from Xena datasets were transformed by taking anti-
logarithms. Genes with counts equal to zero in all the 
samples were eliminated and a processed counts matrix 
was obtained, which was used for differential expression 
analysis. The processed counts data was transformed to 
transcript per million (TPM) [20], which was used for 
other subsequent analyses.

Identification of prognosis‑associated pyroptosis‑related 
genes
Pyroptosis-related genes (PRGs) were obtained from 
three online databases, among which were Gene Ontol-
ogy Biological Process database (http:// geneo ntolo gy. 
org/) [21, 22], Molecular Signatures Database (MSigDB) 
(https:// www. gsea- msigdb. org/ gsea/ index. jsp) [23, 24], 
and GeneCards database (https:// www. genec ards. org/) 
[25]. The union of genes was considered PRGs. The PRGs 
were then filtered by univariate Cox analysis (uniCox) 
of overall survival (OS) with R package survival (version 
3.5–5, https:// github. com/ thern eau/ survi val), in which 
PRGs with p-values less than 0.05 were selected as prog-
nosis-associated PRGs.

Generation of a pyroptosis‑related gene signature
The prognosis-associated PRGs were further admitted 
into Lasso Cox regression analysis with R package glmnet 
(version 4.1–7, https:// glmnet. stanf ord. edu/) [26]. The 
function “cv.glmnet” was run for cross-validation and 
returned a lambda sequence, among which the value of 
lambda that gave a minimum mean cross-validated error 
(cvm) was used to extract model coefficients for each 
PRG. Only PRG with a non-zero coefficient was included 
in constructing a prognostic gene signature which was 
then established with eligible PRGs and their coeffi-
cients. After, the risk score was calculated for each sam-
ple as the following formula: Risk score = Σ Coefficient 

https://xena.ucsc.edu/
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
http://geneontology.org/
http://geneontology.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.genecards.org/
https://github.com/therneau/survival
https://glmnet.stanford.edu/
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(PRGs) × Expression (PRGs). Further, samples were 
divided into high- and low-risk groups by the median 
risk score. The signature was then verified by plotting 
Kaplan–Meier (K-M) curve and time-dependent receiver 
operating characteristic (ROC) curves of 1, 3, and 5 years.

Construction of a prognosis‑predicting model
Univariate Cox regression was applied to risk scores 
and four clinical variables including gender, age, histol-
ogy of the tumor, and stage to test the predicting capac-
ity of each variable for OS of patients. Only variables 
with p-values < 0.05 were included into Multivariate Cox 
regression (multiCox). Multivariate Cox regression 
method was then applied to these variables, based on 
which a nomogram was further constructed for the pre-
diction of 1-, 3-, and 5-year overall survival states. And 
the model was validated by C-index, calibration curves, 
and decision curve analysis (DCA). Uni- and multi-Cox 
regression was performed by R package survival (version 
3.5–5, https:// github. com/ thern eau/ survi val) and the 
nomogram was constructed by R package rms (version 
6.7–0, https:// hbios tat. org/r/ rms/).

Quantification of tumor‑infiltrating immune cells
Three categories of immune cell infiltration analysis 
were performed among tumor samples. First, the ESTI-
MATE algorithm was employed to estimate tumor purity 
with R package estimate (version 1.0.13/r21, https://R- 
Forge.R- proje ct. org/ proje cts/ estim ate/) [27]. Second, 
three marker-gene-based approaches including ssGSEA, 
xCell, and MCP-counter algorithm were used to calcu-
late enrichment scores of various immune cell types by R 
packages GSVA (version 1.50.1, https:// github. com/ rcast 
elo/ GSVA) [28], xCell (version 1.1.0, https:// github. com/ 
dvira ran/ xCell) [29], and MCPcounter (version 1.2.0, 
https:// github. com/ ebecht/ MCPco unter) [30], respec-
tively. Last, three deconvolution-based approaches which 
include quanTIseq, CIBERSORT, and CIBERSORT abs. 
mode were employed to compute relative or absolute 
fractions of different immune cell types with R packages 
quantiseqr (version 1.8.0, https:// bioco nduct or. org/ packa 
ges/ quant iseqr) [31] and immunedeconv (version 2.0.3, 
https:// github. com/ omnid econv/ immun edeco nv) [14], 
respectively. Intra- or inter-sample comparisons were 
performed in accordance with the characteristic of each 
algorithm [15].

WT samples from TARGET 
kidney tumor projects

PRGs from GO BP, MSigDB, 
and GeneCards databases

RNA-seq data uniCox regression

Lasso Cox regression

14-gene signature validation by snRNA-seq 
data from GEO database

clinical and survival information

prognosis-predicting 
by risk score

K-M curve, time-de-
pendent ROC curves

immune infiltration 
analysis

7 algorithms

prediction model by risk 
score and clinical variables

nanogram, C-index, calibra-
tion curves, DCA curves

Fig. 1 Work flowchart of current study
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Identification of differentially expressed genes 
and functional enrichment analysis
Differentially expressed genes (DEGs) were identified 
between high- and low-risk groups by R package limma 
(version 3.56.2, https:// bioinf. wehi. edu. au/ limma/) [32]. 
The Benjamini-Hochberg’s method was used to adjust 
p-values for multiple comparisons [33]. Cut-off threshold 
was set as |log2FC|> 1 and adjusted p-value < 0.05. Func-
tion and pathway enrichment analysis of Gene Ontology 
(GO) database and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database were performed by R pack-
age clusterProfiler (version 4.8.1, https:// www. liebe rtpub. 
com/ doi/ full/ 10. 1089/ omi. 2011. 0118) [34].

Validation of pyroptosis‑related gene signature 
by snRNA‑seq data
Single nuclear RNA-seq (snRNA-seq) data of two WT 
samples (GSM6025607, and GSM6025616) were gained 
from GEO database (https:// www. ncbi. nlm. nih. gov/ 
geo/). The two snRNA-seq samples are of two different 
histological types (GSM6025607 was the anaplastic type 
whereas GSM6025616 was the favorable type) and were 
analyzed by R package Seurat (version 4.3.0.1, https:// 
github. com/ satij alab/ seurat) [35]. The number of genes 
in each cell and the fraction of mitochondrial genes were 
detected. Cells with unique feature counts of 200–4000 
and mitochondrial counts < 5% were sustained. After, the 
snRNA-seq data was normalized by method “LogNor-
malize”. Further, principal component analysis (PCA) and 
t-distributed statistical neighbor embedding (tSNE) were 
performed to accomplish dimensional reduction. Based 
on the marker genes, clusters were annotated by results 
of authoritative literature [36].

Statistical analysis and data visualization
All statistical analyses were conducted by R (ver-
sion 4.1.2). Comparative analysis for quantitative data 
between groups was performed by Wilcoxon rank test 
and for qualitative data was performed by Chi-square 
test. Linear correlation analysis between variables was 
performed by Spearman correlation analysis. P-value 
threshold was set as 0.05. Data visualization processes 
were conducted with R, except a Venn diagram was pro-
cessed by Python (version 3.10.2).

Results
Prognosis‑associated PRGs were identified by uniCox 
regression
A union gene list of 265 genes was exhibited in Fig. 2A 
and Table S1, among which were not only protein-coding 
genes but also genes that do not code for proteins. All 
of them were included in univariate Cox analysis (Table 
S2), after which 16 genes were kept for further research. 

The hazard ratio (HR) and p-value of each gene were 
presented in Fig.  2B. The differential expression levels 
of these genes between tumors and normal tissues were 
exhibited in Fig. 2C.

A Pyroptosis‑related gene signature was constructed 
by Lasso Cox regression
The model-fitting and cross-validation processes were 
exhibited in Fig.  3A, B. The selected value of lambda 
that gave a minimum mean cross-validated error (cvm) 
was marked by the left dotted line in Fig. 3B. 16 candi-
date PRGs were analyzed by Lasso Cox regression and 14 
PRGs were eligible to construct a prognostic gene signa-
ture. Signature-constructing genes and their coefficients 
were listed in Table 1. Among tumor patients, the corre-
lations between risk scores and OS states were presented 
in Fig. 3C. K-M curves showed that patients in the low-
risk group have better survival states than patients in the 
high-risk group (Fig. 3D).

The distribution of risk scores, OS states, and signature 
genes’ expression was presented in Fig. 3E-G. To confirm 
the independent predicting power of the gene signature, 
time ROC curves were plotted (Fig.  3H). And the sig-
nature was proved to have a moderate to high predict-
ing capacity with 1-, 3-, and 5-year area under the curve 
(AUC) values of 0.78, 0.80, and 0.83, respectively.

A prognosis‑predicting model was constructed with 3 
variables
Despite our best efforts, only four clinical variables with 
high-quality information were extracted, including gen-
der, age, histology of the tumor, and stage (Table  2). 
Univariate Cox regression analysis was employed to risk 
score and four clinical variables (Fig. 4A, Table S3). Gen-
der, stage, and risk score were further included into mul-
tivariate Cox regression analysis (Fig.  4B, Table S4). A 
nomogram based on multiCox was exhibited in Fig. 4C. 
The C-index was 0.758, which indicated a moderate pre-
dicting efficiency of the model. The model showed good 
calibration with the diagonal (Fig.  4D). Moreover, DCA 
curves showed good benefits in prediction (Fig. 4E-G).

Tumor‑infiltrating immune cells were quantified 
by multiple algorithms
Various infiltrating immune cells exert complex func-
tions and impact on biological behavior of tumors. Stro-
mal cells are also thought to be significant for tumor 
growth [13]. Stromal Score, Immune Score, ESTIMATE 
Score, and Tumor Purity of each sample were evaluated. 
The Stromal Scores were significantly higher in low-risk 
group than those in high-risk group (Fig.  5A). How-
ever, no statistical difference was sighted in the Immune 
Scores (Figure S1A). The ESTIMATE Scores and Tumor 

https://bioinf.wehi.edu.au/limma/
https://www.liebertpub.com/doi/full/10.1089/omi.2011.0118
https://www.liebertpub.com/doi/full/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/satijalab/seurat
https://github.com/satijalab/seurat
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Purities indicated that tumors in high-risk group had 
higher tumor purity (Fig. 5B, C), which might be domi-
nantly caused by Stromal Scores.

The results of marker-gene-based immune cells infil-
tration analyses were exhibited in heatmap (Fig.  5D). 
The enrichment scores (ES) of three immune cell types 
(Th2 cells, CD8( +) T cells, and B cells) were statistically 
significant between groups in more than one algorithm. 
The correlation between ES of these three cell types and 
risk score is shown in Fig.  5E-J. Except for Th2 cells in 
ssGSEA algorithm, 5 scatter plots showed a low or negli-
gible positive correlation between ES and risk score.

The absolute fractions of immune infiltrating cells were 
quantified by quanTIseq algorithm (Fig. 6A, B). Immune 
cells took up a minority of tumor tissue, while “other” 
cells occupied the majority. Among the immune cell 
types, CD4 + T cells had a predominantly quantity advan-
tage over other immune cells, while macrophages type 1 
had a minute quantity in both groups. Between high- and 
low-risk groups, three types of immune cells (dendritic 
cells, macrophages type 2, and CD8( +) T cells) were sta-
tistically different in absolute fractions. The correlations 

of fractions of these three cell types with risk score were 
shown in Fig. 6C-E, of which CD8( +) T cells had a low or 
negligible positive correlation with risk score, while mac-
rophages type 2 and dendritic cells had a low or negligi-
ble negative correlation with risk score. The correlations 
among cell types in quanTIseq algorithm were exhibited 
in Figure S1B.

The fraction of each type of immune infiltrating cells 
in all immune cells was evaluated by CIBERSORT, as is 
shown in Fig.  6F. Further, CIBERSORT abs. mode was 
applied and estimated absolute fractions of each immune 
cell type were exhibited in Fig. 6G, in which the fraction 
differences of three immune cell types (resting CD4 + T 
memory cells, resting NK cells, and macrophages type 2) 
were statistically significant.

Differential expression and functional enrichment analysis
DEGs between the two groups were visualized in Fig. 7A. 
Results of functional enrichment analyses for GO and 
KEGG databases for DEGs were shown in Fig.  7B, C. 
Overall, enrichment for biological process (BP), cellular 
component (CC), and molecular function (MF) mainly 
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focused on tissue/organ development and intercellu-
lar communication. Of note, enrichment for pathways 
in KEGG database indicated that DEGs were mainly 
enriched in proteoglycans in cancer, signaling pathways 
regulating pluripotent of stem cells, and Wnt signaling 
pathway, which were highly related to tumor invasion 
and metastasis [37–43].

Validation of pyroptosis‑related gene signature 
by snRNA‑seq data
Favorable histology and anaplastic histology are two 
distinct groups of WT. The snRNA-seq data of sam-
ples from each histologic type were analyzed respec-
tively. Consistent with the annotation method of an 

authoritative research, clusters of the two samples were 
annotated in Fig. 8A, C. The sample of favorable histol-
ogy had clusters of intermediate population-like cancer 
cells, ureteric bud-like cancer cells, fibroblasts-like can-
cer cells, nephron epithelial cells, proliferating T cells, 
and mononuclear phagocytes. The sample of anaplastic 
histology had clusters of ureteric bud-like cancer cells, 
primitive vesicle-like cancer cells, endothelium-like 
cancer cells, mesangial cells, proliferating T cells, and 
mononuclear phagocytes.

Of the 14 signature genes, NAIP and TP63 were con-
sidered marker genes for mononuclear phagocytes and 
ureteric bud-like cancer cells respectively in the sample 
of favorable histology. In the sample of anaplastic his-
tology, GLMN and NAIP were considered marker genes 
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for primitive vesicle-like cancer cells and endothelium-
like cancer cells, respectively.

The distribution of 14 signature genes in each cell type 
and all cells was exhibited in Fig. 8B, D, and Figure S1C, 
D. The signature genes’ expression was relatively low in 
ureteric bud-like cancer cells, fibroblasts-like cancer cells, 
and endothelium-like cancer cells in the two samples. Of 

note, NLRP6 and NAIP had the highest expression while 
GSDMD and TP63 had the lowest expression in both the 
samples.

Discussion
Wilms’ tumor is an embryonal malignancy derived 
from nephrogenic blastemal cells in nephrogenic rests 
[2]. Current treatment strategy for WT from Children’s 
Oncology Group (COG) is based on traditional risk 
factors, including histology, stage, age, tumor weight, 
response to therapy, and loss of heterozygosity at 1p and 
16q [44]. These prognostic factors are derived from elab-
orate clinical trials and have been guiding operative ther-
apy, chemotherapy, and radiotherapy of WT. Here, we 
have screened out gender and stage as prognostic clinical 
factors in WT. To acquire a more precise risk-classifying 
approach, exploring specific patterns of gene expression 
profiles in tumor tissue is necessary.

Characterized by inflammation, pyroptosis is a more 
intense pattern of cell death compared with apoptosis, 
leading to pore formation on cell membrane, chromatin 
fragmentation, cell swelling, and osmotic lysis of the cell 
[6]. Exact molecular relationship between pyroptosis and 
tumors’ bio-behavior remains unclear, but studies have 
found that enhancement of pyroptosis in tumors leads 
to inhibition of tumor progression [45–49]. To the best 
of our knowledge, few studies have elucidated the role of 
pyroptosis in WT.

In this study, we have established a pyroptosis-associ-
ated gene signature with 14 PRGs, among which CARD8, 
GSDMD, TP63, TFAP2A, IRF2, and PCSK9 were nega-
tively correlated with risk score, while NAIP, NLRP6, 
SDHB, MIR30C1, APIP, CASP9, MIR103A1, and GLMN 
were positively correlated with risk score.

Caspase recruitment domain family member 8 
(CARD8) is an inflammasome sensor, which ultimately 
activates GSDMD and inflammatory cytokines, lead-
ing to pyroptosis [50]. Gasdermin D (GSDMD) is the 
main executioner of pyroptosis, and is considered as a 
tumor suppressor [51, 52]. It has been deeply studied in 
pyroptotic cell death. Transcription factor AP-2 alpha 
(TFAP2A) and interferon regulatory factor 2 (IRF2) were 
proven to transcriptionally induce GSDMD by binding 
to its promoter, which subsequently induces pyropto-
sis [53, 54]. The role of proprotein convertase subtilisin/
kexin type 9 (PCSK9) in pyroptosis has been clarified in 
cardiomyocytes and vascular endothelial cells [55, 56]. 
These five genes are pyroptosis-executive or pyroptosis-
promoting, and in the sight of the tumor-suppressing 
role of pyroptosis, these are reasonable to be negatively 
correlated with risk score.

APAF1 interacting protein (APIP) is validated to inhibit 
pyroptosis and apoptosis [57, 58]. Glomulin, FKBP 

Table 1 14 signature-constructing genes

Gene symbol Gene type Coefficient

NAIP protein-coding 1.810846993

NLRP6 protein-coding 0.859953893

SDHB protein-coding 0.61105682

MIR30C1 miRNA 0.581803409

APIP protein-coding 0.344031843

CASP9 protein-coding 0.317758755

MIR103A1 miRNA 0.231369542

GLMN protein-coding 0.061898532

CARD8 protein-coding -0.097182671

GSDMD protein-coding -0.119052922

TP63 protein-coding -0.137417683

TFAP2A protein-coding -0.181394255

IRF2 protein-coding -0.566583108

PCSK9 protein-coding -0.736539164

Table 2 Clinical information of patients between high- and low-
risk groups

IQR interquartile range, DAWT  diffuse anaplasia Wilms’ tumor, FHWT favorable 
histology Wilms’ tumor

Overall (126) High‑risk (63) Low‑risk (63) P value

Risk score (median [IQR])
3.00 [2.42, 3.73] 3.74 [3.33, 4.15] 2.42 [2.04, 2.74]  < 0.001

Gender (%)
 Female 70 (55.6) 33 (52.4) 37 (58.7) 0.591

 Male 56 (44.4) 30 (47.6) 26 (41.3)

Age (median [IQR])
4.30 [2.82, 6.07] 4.50 [3.40, 6.00] 4.00 [2.25, 6.05] 0.307

Histologic classification (%)
 DAWT 40 (31.7) 23 (36.5) 17 (27.0) 0.339

 FHWT 86 (68.3) 40 (63.5) 46 (73.0)

Stage (%)
 I 16 (12.7) 8 (12.7) 8 (12.7) 0.663

 II 52 (41.3) 23 (36.5) 29 (46.0)

 III 45 (35.7) 24 (38.1) 21 (33.3)

 IV 13 (10.3) 8 (12.7) 5 (7.9)

Vital status (%)
 Alive 73 (57.9) 22 (34.9) 51 (81.0)  < 0.001

 Dead 53 (42.1) 41 (65.1) 12 (19.0)
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Associated Protein (GLMN) is a negative regulator of 
pyroptosis via regulating cIAP-mediated inflammasome 
activation [59, 60]. These two genes have the pyroptosis-
inhibiting effect, which is easy to explain the positive cor-
relations with risk score.

NLR family apoptosis inhibitory protein (NAIP) is 
necessary for inflammasome assembly which subse-
quently cleaves caspase-1 and leads to pyroptosis [61]. 
Like CARD8, NLR family pyrin domain containing 6 
(NLRP6) is also an inflammasome sensor that mediates 
inflammasome activation and promotes recruitment of 

effector proinflammatory caspases [62]. Overexpression 
of succinate dehydrogenase complex iron sulfur subu-
nit B (SDHB) has been proven to enhance pyroptosis in 
vascular endothelial cells [63]. Caspase 9 (CASP9) has 
the ability to cleave and activate caspase-3, which subse-
quently activates Gasdermin E (GSDME) [64]. These four 
genes are pyroptosis-executive or pyroptosis-promoting 
genes. Providing the negative correlation of pyroptosis 
with tumor progression, the four genes are supposed to 
be negatively correlated with risk score, which contra-
dicts our observations.
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Here are possible explanations. First, the predomi-
nant role of pyroptosis in the bio-behavior of tumors 
is tumor suppressor, but the adverse effect may exist 
in certain tumor microenvironments. Second, except 

for pyroptosis, the functions of genes are most likely to 
relate to multiple biological processes. Such as NAIP 
can also act as an anti-apoptotic protein by inhibiting 
caspase-3, and caspase-7 [65, 66], which may promote 
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tumorigenesis and tumor invasion. Third, few studies 
have explored the exact roles of certain genes (NLRP6 
and SDHB) in WT. Although NLRP6 was reported to 
serve as a tumor suppressor in colorectal cancer, hepa-
tocellular carcinoma, and gastric cancer [67–69], it was 

reported to restore immune evasion and radio-resist-
ance in glioma through ASC/caspase-1/IL-1β axis [70]. 
The SDHB gene encodes the iron-sulfur protein subunit 
of the succinate dehydrogenase enzyme complex which 
plays a critical role in respiratory electron transport 

Fig. 7 Differential expression and functional enrichment analysis between high- and low-risk groups. A The valcano plot of DEGs. B, C Function 
and pathway enrichment analysis of GO and KEGG database. GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes. p.adjust, 
adjusted p-value; FC, fold change
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and tricarboxylic acid cycle [71]. Higher gene expres-
sion of SDHB may provide more energy for tumor cells 
in WT. The roles of these genes in WT need further 
investigation. Last but not the least, genes may have 
complex interactions with the tumor microenviron-
ment. For example, CASP9 inhibition triggers immu-
nogenic cell death, increases tumor-intrinsic innate 
sensing, and induces remarkable anti-tumor effects 
in chemotherapy-induced anti-tumor immunity [72]. 
Higher gene expression of CASP9 may exhibit less 
immunogenic cell death and worse prognosis in WT. 
The above-mentioned theoretical deductions need fur-
ther experiment-based validation.

Tumor protein p63 (TP63) has two isoforms, in which 
TAp63 is thought of as a tumor suppressor, while ΔNp63 
is considered as an oncogene [73]. In the sample set of 
our study, TAp63 may be functionally predominant over 
ΔNp63. MicroRNA 30c-1 (MIR30C1) is known to inhibit 
the progression of prostate cancer and the invasion of 
melanoma [74, 75]. MicroRNA 103a-1 (MIR103A1) was 
found to have dual effects on different tumor types [76–
78]. In our results of bioinformatics analysis, MIR103A1 

is most likely to negatively regulate the progression of 
WT.

Solid tumor tissue does not only have cancer cells but 
also immune inflammatory cells, endothelial cells, etc. 
Tumor-promoting and tumor-antagonizing immune cells 
exist simultaneously in tumors [13]. In our observations 
of immune cell infiltration, the expression of CD8( +) T 
cells, B cells, and Th2 cells are positively correlated with 
risk score, while the expression of dendritic cells and type 
2 macrophages are negatively correlated with risk score.

Dendritic cells can either suppress tumor progression 
or drive tolerance in the TME [79]. As for our results, 
dendritic cells are most likely to play a tumor suppressor 
role in WT. B cells are considered to have dual effects in 
the TME, and Th2 cells are the intrinsic helper for B cells 
[80]. They are both positively related to risk score in our 
research, based on which we can assume that the tumor-
promoting effect overweighs the tumor-suppressing 
effect.

CD8( +) T cells, also called cytotoxic lymphocytes 
(CTLs), have long been known to relate to better sur-
vival in tumors [81–83]. But in our results, it is positively 
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related to risk score. Type 2 macrophages are known to 
be tumor-promoting [84, 85], which contradicts our 
observations, too. There are several explanations. First, 
it is the enrichment scores or fractions of immune cells 
that stand for expression levels, but not the real quantity 
of them. Second, despite our best efforts, only one data-
set in TARGET database was included in our research, 
and no validating dataset of good quality was harnessed. 
Thereby, the sample number of tumors is only 126, which 
may be too small to get completely correct results. Third, 
it may be reasonable to assume that the more invasive the 
tumor is, the more activation of immune system to fight 
against it. Based on this assumption, the role of immune 
infiltrating cells in WT is more of a defensive reactor 
than a prognostic indicator.

Hence, the distinct immune cells infiltration landscape 
between high- and low-risk groups was mainly made up 
of CD8( +) T cells, B cells, Th2 cells, dendritic cells, and 
type 2 macrophages, which were validated by various 
algorithms.

WT classically consists of three elements: blastemal, 
stromal, and epithelial tubules, which are normal com-
ponents of developing kidneys. Less commonly, skeletal 
muscle, cartilage, osteoid, or adipose tissue can also be 
found in WT [2, 4]. In our study, GO BP analysis showed 
DEGs between two groups were mainly enriched in tis-
sue/organ development, the top five of which were pat-
tern specification process, muscle tissue development, 
connective tissue development, cartilage development, 
and ossification. These observation indicates that the 
extent of development of embryonal components in WT 
is correlated with tumor progression and prognostic risk. 
KEGG analysis showed pathway enrichment in signal-
ing pathways regulating pluripotency of stem cells, pro-
teoglycans in cancer, and Wnt signaling pathway. WT 
has similar components to fetal kidneys, where pluripo-
tent stem cells (PSCs) play a key role in tissue formation 
and organ development. Our results suggest the signaling 
pathway that regulates PSCs is correlated with tumori-
genesis of WT. Proteoglycans (PGs) and the Wnt sign-
aling pathway have been extensively studied in multiple 
cancers, both of which are closely related to tumor pro-
gress and invasion [37–43].

Therefore, the extent of development of embryonal 
components in WT together with the status of proteogly-
cans and Wnt signaling pathway might be intermediate 
contributors to tumor progression.

Single-cell RNA-seq (scRNA-seq) and single-nucleus 
RNA-seq (snRNA-seq) have received increasing attention 
over the years. Both techniques have remarkable advan-
tages over bulk RNA-seq. We have employed a recently 
published snRNA-seq dataset of WT to validate our gene 
signature. In accordance with a former authoritative 

study [36], cell clusters are similar to normal constituents 
in fetal kidneys, which is a distinct characteristic of WT. 
Combined with the results of GO/KEGG analysis, we 
might infer that the capacity of tumor cells to generate 
various renal cells isn’t lost or is required in WT.

Thus, the snRNA-seq dataset has facilitated the valida-
tion of signature-establishing genes and has supported 
the renal lineage-generating ability of tumor cells in WT.

The tumor microenvironment has complex gene inter-
actions and cell cross-talks, which form latent networks. 
Identifying key modules and hub genes by weighted gene 
co-expression network analysis might provide a deeper 
understanding of the roles of signature-constructing 
genes and tumor-infiltrating immune cells like another 
study [86], which needs future exploration.

Several limitations are supposed to be acknowledged. 
First, as mentioned before, only one bulk RNA-seq data-
set of good quality was used in our research, which might 
not draw completely correct conclusions. Second, due 
to the particularities of constituents of WT, the annota-
tion process for each cluster in snRNA-seq analysis was 
mainly based on one literature of authority, which might 
lack rigor. Last, compared with clinical factors, there is 
still a long way to go to perform risk classification based 
on tumor transcriptome.

The current study is mainly based on retrospective data 
analysis and in silico experiments. Further validation 
is essential to confirm the exact roles of signature-con-
structing genes and tumor-infiltrating immune cells. For 
future investigation, we aim to perform gene-overexpres-
sion or knockdown in WT cell lines and observe changes 
in proliferation, migration, invasion, and other malignant 
behavior in vitro and in vivo. Moreover, a long-term fol-
low-up of patient cohorts grouped by the gene signature 
will provide validation for the current study.

Conclusions
Here, we have established a pyroptosis-related gene sig-
nature of moderate to high predicting capacity with 14 
PRGs and have constructed a prognostic-predicting 
nomogram with risk score and two clinical variables. 
Moreover, immune cell infiltration analysis, differential 
expression analysis, and functional enrichment analysis 
were performed to further explore underlying mecha-
nisms contributing to the differences in survival states. 
Our research provides insights into the role of pyroptosis 
and possible therapeutic targets in Wilms’ tumor.
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