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Abstract 

Background:  Although treatment of acute myeloid leukemia (AML) contains neurotoxic agents, studies investigating 
neurocognitive outcomes in children with AML are sparse. We evaluated late cognitive effects in children treated with 
a high-dose cytarabine based regimen, focusing on general intellectual ability and specific neurocognitive domains.

Methods:  We evaluated 12 survivors of childhood AML who were treated between 2006 and 2016 and completed 
the Wechsler Intelligence Scales. One-sample t-tests were used to compare full-scale intelligence quotient (FSIQ) and 
primary index scores to norms. The overall effect of index scores and subtests was examined with one-way ANOVA. 
Univariate analyses and multiple regression models examined demographic and clinical characteristics associated 
with FSIQ.

Results:  Participants who underwent the Wechsler Intelligence Scale for Children demonstrated impairment on 
working memory index and participants who underwent the Wechsler Adult Intelligence Scale showed low score 
in the subtests that reflect working memory, whereas they exhibited no statistical differences versus the population 
means for FSIQ. There were no significant differences in the overall effect of index scores and subtests. On univariate 
analysis, FSIQ were related to time since diagnosis and age at assessment, and both were significant predictors of FSIQ 
on multiple linear regression.

Conclusions:  Survivors of childhood AML exhibited impairment of working memory, even if their FSIQ was within 
the normal range. Difficulties in specific cognitive domains are associated with reduced quality of life. It is important 
to identify survivors who are at risk and provide tailored interventions.
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Background
Acute myeloid leukemia (AML) accounts for 25% of 
all cases of childhood leukemia, and it affects approxi-
mately 150–200 patients annually in Japan [1]. Because 
of improvements in treatment and supportive care over 
time, event-free survival and overall survival rates for 
children with AML have approached 60% and 70%, 
respectively [1, 2]. These improvements have led to an 

increased focus on late effects in long-term survivors 
[3, 4]. Recently, late neurocognitive effects among can-
cer survivors have attracted increasing attention because 
neurocognitive problems may limit the quality of life and 
functional outcomes of patients [5].

Although the majority of the literature has focused on 
evaluating the effects of methotrexate on cognitive out-
comes in survivors of childhood acute lymphoblastic 
leukemia (ALL) [5, 6], many chemotherapeutic agents 
may cause neurocognitive impairment. Several reports 
described acute cerebral and cerebellar toxicity following 
treatment with high-dose cytarabine (HD Ara-C) [7–10], 
which is used as a standard regimen for AML.
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Because chemotherapy for childhood AML also con-
tains neurotoxic agents and intrathecal therapy (IT) [1, 
3], neurocognitive sequelae may occur in AML survivors. 
Nevertheless, few studies have examined neurocognitive 
outcomes associated with childhood AML.

This study evaluated the development of late cognitive 
effects following AML treatment in children with a focus 
on general intellectual ability and specific neurocogni-
tive domains. In addition, we explored the associations 
of neurocognitive performance with clinical and demo-
graphic factors.

Methods
Participants
The inclusion criteria for this cross-sectional study were 
as follows: (1) diagnosis of AML or acute undifferenti-
ated leukemia (AUL); (2) < 20  years of age at diagnosis; 
(3) ≥ 1 year off treatment during a continuous first remis-
sion; and (4) receipt of chemotherapy with HD Ara-C. 
Survivors were excluded if they had been diagnosed with 
a specific neurodevelopmental disorder such as Down 
syndrome, if their primary language was not Japanese, 
or if they had developed any relapse or second malig-
nancy prior to neurocognitive testing. Survivors who 
underwent allogeneic hematopoietic stem cell trans-
plantation (HSCT) were not excluded. The Institutional 
Review Board of the Japanese Red Cross Narita Hos-
pital approved this study (Approval Number: 526–01). 
Informed consent for participation and medical record 
release was obtained from survivors or their proxies 
(for participants younger than 20 years), and assent was 
obtained from survivors where appropriate.

Treatment protocol
In this study, patients with AML were treated with regi-
mens primarily used in the AML-05 or AML-12 trials, 
both of which were nationwide multicenter studies con-
ducted by the Japanese Pediatric Leukemia/Lymphoma 
Study Group. The treatment protocols in these trials con-
sisted of two courses of induction therapy and three to 
four courses of intensification therapy with cytarabine, 
etoposide, mitoxantrone, idarubicin, and an age-adjusted 
dose of triple intrathecal therapy. Central nervous system 
(CNS) disease was defined as either ≥ 5 white blood cells 
with blasts in cerebrospinal fluid (CSF) or with clinical 
and radiographic signs of CNS leukemia. Patients with 
CNS disease received additional weekly IT until the CSF 
was clear of blasts. Cranial radiation therapy was not 
included in the protocols. Allogeneic HSCT was limited 
to the high-risk group [11–13]. The cumulative doses of 
cytarabine, anthracyclines, and etoposide in the AML-05 
and AML-12 trials are noted in Table  1. Japanese trials 

used a higher cumulative dose of cytarabine than major 
studies in other countries [11].

Neurocognitive testing
All participants completed an age-appropriate Japanese 
version of the Wechsler Intelligence Scales to assess gen-
eral intelligence: the Wechsler Preschool and Primary 
Scale of Intelligence-Third Edition (WPPSI-III) for chil-
dren younger than 5  years, the Wechsler Intelligence 
Scale for Children-Fourth Edition (WISC-IV) for chil-
dren aged 5–16  years, and the Wechsler Adult Intelli-
gence Scale-Fourth Edition (WAIS-IV) for survivors aged 
17  years or older. One participant was tested using the 
WPPSI-III, seven patients were tested using the WISC-
IV, and four patients were tested using the WAIS-IV. The 
WISC-IV and WAIS-IV include the full-scale intelligence 
quotient (FSIQ), verbal comprehension index (VCI), per-
ceptual reasoning index (PRI), working memory index 
(WMI), and processing speed index (PSI). The WPPSI-
III includes FSIQ, VCI, PRI, PSI, and a general language 
composite (GLC), whereas PSI and GLC are extrapolated 
from supplemental subtests. FSIQ and each index score 
have a standardized mean (M) and standard deviation 
(SD) of 100 and 15, respectively. The test was adminis-
tered by one experienced psychologist under the supervi-
sion of another licensed psychologist.

Statistical analysis
Descriptive statistics were calculated according to the 
clinical and demographic characteristics of the par-
ticipants, including gender, age at diagnosis, time since 
diagnosis, history of HSCT, age at assessment, parental 
educational history, and household income.

Table 1  Cumulative doses of cytotoxic agents in the AML-05 
and AML-12 studies

LR low-risk, IR intermediate-risk, HR high-risk, A: ECM, B: HD-ECM

AML-12 used two regimens for induction therapy. ECM consisted of cytarabine, 
mitoxantrone, etoposide, and triple intrathecal therapy. HD-ECM consisted of 
high-dose cytarabine, mitoxantrone, etoposide, and triple intrathecal therapy
a The cumulative anthracycline dose was calculated relative to the amount of 
daunorubicin using a conversion rate of 5:1 for daunorubicin to mitoxantrone/
idarubicin

AML-05 AML-12

LR IR (HR) LR; A/B IR (HR); A/B

Cytarabine (g/m2) 77.4 77.4 78.4/95 77.4/94

Anthracycline equiva-
lent (total, mg/m2)a

225 375 300 375

Mitoxantrone 25 55 40 55

Idarubicin 20 20 20 20

Etoposide (mg/m2) 1750 1750 2200 1750
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A one-sample t-test was used to compare FSIQ and 
primary index scores (VCI, PRI, WMI, and PSI) to stand-
ard scores (M = 100, SD = 15). The WISC-IV and WAIS-
IV scores displayed comparability if all common subtests 
are performed [14]; however, study participants were 
only tested for core subtests. For this reason, we sepa-
rately examined primary indices obtained by a group of 
participants who underwent the WISC-IV or WAIS-IV. 
Because only one participant was tested with the WPPSI-
III and PSI and GLC were not evaluated, we excluded 
that subject from the analysis of the primary indices. The 
overall effect of index scores and subtests was tested by 
one-way ANOVA. Univariate analyses (Fisher’s exact 
test, t-test, Pearson’s correlation, and Spearman’s correla-
tion) examined demographic and clinical characteristics 
associated with FSIQ. Demographic and clinical variables 
identified as statistically significant (p < 0.05) on univari-
ate analysis were included in multiple regression models. 
All statistical analyses were performed using EZR for R, a 
modified version of R commander designed to add statis-
tical functions frequently used in biostatistics [15].

Results
Twenty-eight patients < 20  years of age received a 
diagnosis of AML (n = 26) or AUL (n = 2) from 2006 
to 2016. Among them, 18 patients satisfied the eligi-
bility criteria for this study, and neurocognitive data 
were obtained from 12 patients. The reasons for exclu-
sion or a lack of participation are noted in Fig.  1. On 

average, participants were 8.0 years old at diagnosis and 
12.9  years old at assessment. Of the 12 participants, 
five received HSCT, three received total-body irradia-
tion, and one presented with CNS disease at diagnosis. 
Participant with CNS disease showed ≥ 5 white blood 
cells with blasts in the CSF but without clinical CNS 
symptoms. Although brain magnetic resonance imag-
ing performed in all patients before the treatment and 
an intracranial mass was detected in one patient, this 
patient was regarded CNS-negative because lack of 
clinical CNS symptoms. None of the participants devel-
oped neurological events or toxicity that affected other 
nervous systems during chemotherapy. One patient 
had a history of epilepsy, and none of participants had 
family medical history, such as psychiatric illnesses and 
epilepsy. Parental education and household income 
were used as proxies for family socioeconomic status. 
The full demographic characteristics of the participants 
are noted in Table 2.

The participants’ index scores on the Wechsler Intel-
ligence Scales in relation to normative data are sum-
marized in Table  3. The WISC-IV and WAIS-IV were 
completed by seven and four participants, respectively. 
Participants who completed the WISC-IV displayed 
significant impairment on the WMI (t (6) =  − 3.36, 
p = 0.015, M = 83.3 [95% confidence interval = 71.1–
95.4]) but no statistical difference from the normative M 
for FSIQ and other index scores. Among the participants 
who underwent the WAIS-IV, FSIQ and the four primary 

Fig. 1  Patient selection
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index scores did not differ significantly from the norma-
tive M of 100.

As presented in Fig.  2, among the subtest scores, the 
Letter-Number Sequencing subtest score was the low-
est (M = 6.9, SD = 3.2) and the Coding subtest score was 
the highest (M = 12.0, SD = 2.9) in the WISC-IV cases, 
whereas the Digit Span subtest score was the lowest 
(M = 9.5, SD = 2.3) and the Arithmetic subtest score was 
the highest (M = 12.0, SD = 3.7) in the WAIS-IV cases. 
The Digit Span subtest score was also low in the WISC-
IV cases (M = 7.4, SD = 1.8). However, neither group 
exhibited any significant differences in the overall effect 
of the index scores and subtests.

The associations between FSIQ and all demographic 
and clinical variables listed in Table 2 were examined by 
univariate analysis. The t-test revealed no significant dif-
ference in the FSIQ between the WISC-IV and WAIS-
IV cases (M = 93.7, SD = 9.3 and M = 105.0, SD = 15.8, 
respectively, p = 0.16). Among WISC-IV cases, par-
ticipants aged 10  years and older showed higher FSIQ 
score than participants under 10 years of age (M = 100.0, 
SD = 6.1 and M = 85.3, SD = 4.5, respectively, p = 0.017). 
As presented in Fig.  3, FSIQ was moderately related 
to the time since diagnosis (rs = 0.59, p = 0.049) and 
strongly related to age at assessment (r = 0.69, p = 0.013). 
A longer time since diagnosis and older age at assess-
ment were associated with high FSIQ. Multiple linear 
regression was performed to predict FSIQ based on the 
time since diagnosis and age at assessment. A significant 
regression equation was found (F (2, 9) = 11.74, R2 = 0.66, 
p = 0.003). The participants’ predicted FSIQ was equal to 
76.01 + 2.05 (time since diagnosis) + 0.88 (age at assess-
ment), where time since diagnosis and age at assessment 
were measured in years. Both time since diagnosis and 
age at assessment were significant predictors of FSIQ.

Discussion
The results of this study indicate that following treat-
ment with HD Ara-C for AML, survivors exhibit impair-
ment in working memory compared to population norms 
despite their comparable FSIQ. In multiple linear regres-
sion, we revealed that the time since diagnosis and age at 
assessment were both associated with FSIQ in survivors.

FSIQ did not differ between our AML survivor sam-
ple and Japanese population norms; however, deficits in 
working memory emerged among AML survivors. This 
is consistent with the findings of a recent report by the 
CCSS group, which suggested that survivors had a rela-
tive risk of impairment in at least one neurocognitive 
domain [16]. It was previously reported that deficits in 
specific cognitive domains may be unrelated to general 
intelligence [17]. In this study, participants who under-
went the WISC-IV demonstrated significant impairment 

Table 2  Demographic and clinical characteristics of survivors

a 6,000,000 Japanese yen is approximately 54,000 US dollars

SD, standard deviation; CNS, central nervous system; HSCT, hematopoietic stem 
cell transplantation

No
Total 12

Sex

  Male 5

  Female 7

Mean age at diagnosis ± SD (range) 8.0 ± 5.4 (0.4–14.8)

Mean time from diagnosis ± SD (range) 5.2 ± 3.0 (2.3–11.1)

Prior CNS involvement 1

Positive history of HSCT 5

Mean age at assessment ± SD (range) 12.9 ± 6.0 (4.1–24.1)

Parental education

  High school 2

  Vocational school/junior college 8

  University 1

  Unknown 1

Household income (Japanese yen)a

   < 6,000,000 6

   ≥ 6,000,000 4

  Unknown 2

Table 3  Neurocognitive outcomes

*  One-sample t-test. P-value for calculated difference between participants 
and normative means (M = 100, SD = 15). Results with P ≤ 0.05 are regarded as 
statistically significant

FSIQ full-scale intelligence quotient, VCI verbal comprehension index, PRI 
perceptual reasoning index, WMI working memory index, PSI processing speed 
index

N Mean SD Range P*

FSIQ 12 97.5 12.1 81–123 0.488

FSIQ (WISC-IV) 7 93.7 9.30 81–104 0.124

FSIQ (WAIS-IV) 4 105.0 15.8 87–123 0.571

VCI 12 100.3 15.7 75–121 0.943

VCI (WISC-IV) 7 99.3 15.8 76–115 0.908

VCI (WAIS-IV) 4 103.0 19.7 75–121 0.781

PRI 12 98.6 14.2 80–124 0.736

PRI (WISC-IV) 7 94.1 13.3 80–115 0.287

PRI (WAIS-IV) 4 105.5 16.6 85–124 0.555

WMI 11 90.8 17.2 63–117 0.108

WMI (WISC-IV) 7 83.3 13.2 63–103 0.0152

WMI (WAIS-IV) 4 104.0 16.7 82–117 0.665

PSI 11 102.0 14.7 81–127 0.662

PSI (WISC-IV) 7 101.0 14.8 81–118 0.864

PSI (WAIS-IV) 4 103.8 16.8 87–12 0.686
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on the WMI. Participants performed poorly on the Digit 
Span subtest of the WAIS-IV, but impairment in the 
WMI score disappeared because of a high Arithmetic 
subtest score. Previous studies suggested that the Arith-
metic subtest is a poor predictor of working memory 
ability, and the Digit Span and Letter-Number Sequenc-
ing subtests would be the strongest predictor variables 
[18, 19]. Because the Digit Span subtest more strongly 
reflects working memory than the Arithmetic subtest, 
working memory appears to be the most vulnerable func-
tion following childhood AML treatment.

Cerebellar dysfunction may lead to intellectual dis-
orders, such as disturbances of executive function, 

including deficient planning, set-shifting, abstract rea-
soning, working memory, and decreased verbal fluency 
[20]. Cytarabine is known to cause cerebellar toxicity 
[7–10]. Autopsies demonstrated the loss of Purkinje cells 
in the cerebellum and reactive Bergmann glial cell pro-
liferation in adults following HD Ara-C treatment [21]. 
Diffuse heterogeneous brain hypoperfusion, identified 
by single-photon emission computed tomography, has 
been reported in children with AML who received HD 
Ara-C [22]. Although we cannot state so categorically, it 
can be speculated that HD Ara-C treatment may cause 
late neurocognitive effects because of cerebellar toxic-
ity. Prior research supported an association between 

Fig. 2  Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) and Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtest 
scores. In the WISC-IV cases, the Letter-Number Sequencing subtest score was the lowest (mean [M] = 6.9, standard deviation [SD] = 3.2), and the 
Coding subtest score was the highest (M = 12.0, SD = 2.9). In the WAIS-IV cases, the Digit Span subtest score was the lowest (M = 9.5, SD = 2.3), and 
the Arithmetic subtest score was the highest (M = 12.0, SD = 3.7)

Fig. 3  Associations of the full-scale intelligence quotient (FSIQ) with the time since diagnosis and age at assessment. Spearman’s rank correlation 
suggested that FSIQ was moderately correlated with the time since diagnosis (rs = 0.59, p = 0.049). Pearson’s correlation coefficient exhibited a 
strong relationship between FSIQ and the age at assessment (r = 0.69, p = 0.013)
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chemotherapy for childhood ALL and long-term neuro-
cognitive deficiencies [23]. Although IT in AML treat-
ment is less frequent than in ALL treatment [12, 24]., 
similar neurocognitive sequelae may occur in AML since 
it contains same agents (methotrexate, cytarabine, and 
hydrocortisone) used in ALL treatment.

Several studies have described associations of poor 
neurocognitive outcomes following childhood cancer 
treatment with lower socioeconomic status, older age at 
diagnosis, cranial radiation therapy, and a history of sei-
zures [25, 26]. In our study, a longer time since diagnosis 
and older age at assessment were significantly related to 
a higher FSIQ, whereas age at diagnosis, gender, parental 
education, and household income were not significantly 
associated with neurocognitive outcomes. The length of 
schooling or some curriculums might explain partici-
pants’ improvement of the weak cognitive domain; how-
ever, we could not investigate the relationship between 
neurocognitive performance and Japanese educational 
system in this study. The lack of a relationship between 
FSIQ and these variables could reflect our small sample 
size. Although some participants underwent HSCT with 
a total-body irradiation conditioning regimen (maxi-
mum, 12 Gray), no significant difference in FSIQ was 
found between participants who did and did not undergo 
HSCT. This result is consistent with recent findings sug-
gesting that the risk of neurocognitive dysfunction does 
not differ between HSCT and chemotherapy-only treat-
ment in patients with AML [16, 27]. We could not assess 
the impact of seizures on neurocognitive function, as 
only one survivor had a history of seizures in this study. 
This patient had pre-existing epilepsy but being without 
medication because of seizure-free for years.

This study had several limitations. First, the general-
izability of the study findings may have been compro-
mised by the small sample size, and our results need to 
be replicated in a larger sample. Second, the cross-sec-
tional design of this study made it impossible to com-
pare neurocognitive outcomes with baseline data. It is 
possible that participants in this study might have had 
an above-average FSIQ prior to diagnosis and that the 
average results observed in the participants might indi-
cate a decline from a higher baseline level. Third, this 
study lacked a matched comparison group. Although we 
tried to use sibling controls, few participants had siblings 
who were close in age. Thus, we were limited to compar-
ing the outcome to the standard Wechsler Intelligence 
Scale scores. Finally, although some genetic factors may 
contribute to individual vulnerability to chemotherapy 
[28–30], we did not examine any patients for genetic pol-
ymorphisms. Future studies, including an assessment of 
genetic polymorphisms, are required to fully understand 

the association between genetic factors and vulnerability 
to neurotoxic agents such as Ara-C.

The neurocognitive sequelae in children with AML 
have been considered more likely to have been caused 
by leukemia and its complications at presentation rather 
than by treatment [31]. By contrast, in our study, only 
one participant was CNS-positive at diagnosis, and no 
participants exhibited clinical CNS symptoms during 
treatment. Therefore, it is conceivable that the influence 
of the primary disease on cognitive function was small in 
this study.

Conclusions
Participants displayed no impairment in FSIQ, but they 
had poor performance in working memory. Working 
memory is responsible for the temporary storage and 
manipulation of information. It affects all judgments and 
activities in everyday life, such as conversation, reading, 
writing, and calculation. Difficulties in specific cognitive 
domains, even with good general intellectual ability, may 
affect the quality of life of survivors of childhood AML. 
Individually administered intelligence test for survivors 
of childhood AML might be helpful in detecting domains 
of cognitive vulnerability. Early detection of neurocogni-
tive late effects and development of interventions for sur-
vivors with neurocognitive deficit are required to provide 
survivors with optimal psychosocial care.
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