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Abstract 

Background:  Children with transfusion-dependent thalassemia (TDT) suffer from secondary hemosiderosis and 
the delirious effects this iron overload has on their different body organs, including the pancreas. They are also more 
prone to develop zinc deficiency than the general pediatric population. This study aimed to determine the effect of 
zinc deficiency and iron overload on the endocrine and exocrine pancreas in TDT children.

Methods:  Eighty children, already diagnosed with TDT, were included in this study. We assessed the following in the 
participant children: serum ferritin, serum zinc, endocrine pancreatic function (oral glucose tolerance test (OGTT), fast-
ing insulin level and from them, HOMA-IR was calculated), and exocrine pancreatic function (serum lipase and serum 
amylase).

Results:  Forty-four TDT children had a subnormal zinc level, while 36 of them had a normal serum zinc level. TDT 
children with low serum zinc had significantly more impaired endocrine pancreatic function and an abnormally high 
serum lipase than children with normal serum zinc, p < 0.05 in all. Serum zinc was significantly lower in TDT children 
with serum ferritin above the ferritin threshold (≥2500 ng/ml) than those below (59.1 ± 20.2 vs. 77.5 ± 28.13), p = 0.02. 
TDT children, having a serum ferritin ≥2500 ng/ml, had significantly more frequently impaired endocrine pancreatic 
function and abnormally high serum lipase than TDT children below the ferritin threshold, p < 0.05 in all.

Conclusion:  In children with transfusion-dependent thalassemia, zinc deficiency aggravates iron-induced pancreatic 
exocrine and endocrine dysfunction.
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Background
ß-thalassemia is a heterogeneous autosomal recessive 
hereditary anemia, that is caused by either reduced (ß+) 
or absent (ß0) synthesis of the ß-globin chains of the 

hemoglobin. The reduced or absence of ß-globin chains 
result in a relative excess of unbound α-globin chains, 
which precipitate in erythroid precursors in the bone 
marrow leading to their premature death and ineffective 
erythropoiesis [1].

Transfusion-dependent thalassemia (TDT), previ-
ously known as thalassemia major, causes severe ane-
mia with several health problems like enlarged spleen, 
bone deformities, iron overload, hepatitis infection, and 
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requires regular life-long transfusion therapy and medi-
cal supervision [2, 3].

The increased plasma circulating non-transferrin-
bound iron (NTBI) species cause iron overload-induced 
organ dysfunction and is implicated in cellular dysfunc-
tion, and cytotoxicity [4]. The unbound iron, together 
with the chronic hypoxia due to anemia, potentiates 
iron’s toxic effect on the endocrine glands in patients 
with thalassemia [5].

Studies have documented endocrine pancreas dysfunc-
tion in patients with thalassemia [6, 7], but little has been 
published about the alterations of the exocrine pancreas 
in thalassemia.

Chronic blood transfusion in thalassemia changes the 
micronutrient status [8]. One of the most critical micro-
nutrients deficiencies patients with thalassemia suffer 
from is zinc, which is an essential trace element in animal 
and human nutrition and well established in the synthesis 
of cholesterol, protein, and fats [9]. For multiple reasons, 
hemoglobinopathies and thalassemia patients are prone 
to zinc deficiency [10].

Adding to the nutritional obstacles contributing to zinc 
deficiency in children of developing countries in general 
[11, 12], factors contributing to zinc deficiency in thalas-
semia, in particular, are impaired utilization and exces-
sive losses through ongoing hemolysis and the usage of 
iron chelators [13–15]. Previous studies reported that 
deferoxamine and deferiprone might contribute to Zn 
deficiency in thalassemia, eliminating positive divalent 
ions, like iron and Zn, into the urine [16, 17].

Few studies reported the effect of zinc deficiency on 
the endocrine pancreas, but its effect on exocrine pan-
creatic function had not been widely studied as low levels 
of zinc in the blood plasma affect the islets of Langerhans 
secretion and production of insulin. Zinc also plays an 
important role in forming insulin crystals and the release 
and transportation of insulin [18]. Moreover, supplemen-
tation of zinc to type 2 diabetes patients improved their 
symptoms of diabetes because it decreases the level of 
cholesterol and HbA1c levels in the blood [19, 20].

This study aimed to determine the effect of zinc 
deficiency and iron overload on the endocrine and 
exocrine function of the pancreas in children with trans-
fusion-dependent thalassemia (TDT) who have second-
ary hemosiderosis.

Methods
Subjects
This cross-sectional study was carried out at the pediatric 
department, Faculty of Medicine, Minia University, from 
January 2017 till December 2019. We included in this 
study 80 children already diagnosed with transfusion-
dependent thalassemia (TDT). They were recruited from 

the Pediatric hematology outpatient clinic and inpatient 
unit.

Included children were on regular monthly or bi-
monthly blood transfusion programs (transfusion-
dependent). Their age was ≥ 5 years.

Children with a history of chronic illness other than 
thalassemia or a change in chelation therapy drug in 
the last 6 months before participating in the study were 
excluded.

Baseline clinical assessment
All included children were subjected to detailed medical 
history taking and thorough clinical examination with 
special emphasis on history of the age of the first trans-
fusion, transfusion burden/year (ml/kg/year), history of 
splenectomy, the average frequency of transfusion, and 
type and duration of chelation therapy.

Laboratory analysis
The following laboratory investigations were done for 
all participants: serum ferritin (mean serum ferritin for 
each case was calculated from serum ferritin at the time 
of research and those of the previous year from records), 
serum zinc (Zn), endocrine pancreatic function (Oral 
glucose tolerance test (OGTT), fasting insulin level and 
from them, homeostatic model assessment of insulin 
resistance (HOMA-IR) was calculated) and exocrine pan-
creatic function (serum lipase and serum amylase).

From each participant child, we collected 5 ml of 
venous blood samples and put them on serum sepa-
rator gel tubes. They were allowed to clot for 30 min at 
37 °C before centrifugation for 15 min at 3500 rpm. The 
expressed serum was used for measurement of serum 
ferritin and remaining serum was stored at − 20 °C for 
the other investigations.

Serum zinc was assayed by the colorimetric method 
(Greiner Diagnostic GmbH, Germany). A normal zinc 
level range was considered between 63.8–110 μg\dl. Both 
serum lipase and serum amylase were measured by enzy-
matic colorimetric assay according to the IFCC-method 
(Biomed diagnostic, EGY- CHEM for lab technology, for 
both parameters). Reference values of lipase at 37 °C was 
≤38 u\L, while the reference value for serum amylase at 
37 °C was between 53 and 123 IU\ml. Serum insulin was 
assayed by Insulin Human EIA Kit, abcam, ab100578. 
Fasting insulin levels below ten μIU/L were considered 
normal [21].

For OGTT, Blood samples for blood glucose were 
measured at fasting and every half an hour for 2 h (five 
samples were obtained). Results of the OGTT was graded 
on NIH criteria: a 2-h glucose level below 140 was con-
sidered normal; between 140 and 200, impaired glucose 
tolerance; and greater than 200, diabetes mellitus [22]. 
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HOMA-IR was calculated according to the following 
equation: HOMA-IR = fasting insulin uIU/mL X fast-
ing glucose (mg/dl) \ 405. HOMA-IR above 1.9 indicated 
early insulin resistance [23].

The enrolled TDT children were then grouped into two 
groups; first according to their serum zinc level into low 
serum zinc group (serum zinc < 63.8 μg\dl) and normal 
serum zinc group (serum zinc ≥63.8 μg\dl). Then, we 
grouped the children according to their serum ferritin 
level into the first group with serum ferritin ≥2500 ng/ml 
and the second with serum ferritin < 2500 ng/ml.

Statistical analysis
Data were analyzed using SPSS (statistical package for 
the social science) version 21 (SPSS Inc., Chicago, Illi-
nois, USA). Quantitative variables were described as 
mean and standard deviation (SD). Qualitative data were 
expressed as frequency and percentage.

For the comparison of means, unpaired independ-
ent sample student t-test was used. For the comparison 
of qualitative variables, chi-square test was used. Cor-
relation between two quantitative variables was done 
by using Pearson’s correlation coefficient. Simple logis-
tic and multivariate regression analyses were done for 
abnormal serum zinc and serum ferritin levels to deter-
mine their odds ratios for exocrine and endocrine pan-
creatic dysfunction. p-value of < 0.05 was considered 
significant.

Results
The demographic and clinical data of all the studied 
TDT children are represented in Table  1. Forty-four 
TDT children had a subnormal zinc level, they were 21 
(47.7%) males and 23 (52.3%) females, their mean age was 
11.7 ± 3.7 years. While 36 TDT children had a normal 
serum Zn level, 19 (52.8%) were males, and 17 (47.2%) 
were females, with a mean age of 10.7 ± 2.7 years. There 

were no statistically significant differences between the 
two groups regarding age and sex.

On performing OGTT, TDT children with low serum 
zinc had significantly more frequently impaired glucose 
tolerance tests than cases with normal serum zinc, with 
an odds ratio of 6.4 (95% CI: 1.3–30.7). Also, they had 
significantly more frequently abnormally high HOMA-
IR than cases with normal serum zinc. The odds ratio of 
high HOMA-IR was 4.2 (95% CI: 1.08–16.6).

Regarding pancreatic exocrine function, serum lipase 
was significantly higher in TDT children with low serum 
zinc than those with normal serum zinc. Also, TDT chil-
dren with low serum zinc had significantly more fre-
quently abnormally high serum lipase than TDT children 
with normal serum zinc, with an odds ratio of 9.6 (95% 
CI: 2.9–31.8) (Table 2).

When we compared serum ferritin of the two groups, 
we found that TDT children with low zinc had sig-
nificantly higher serum ferritin (4780.36 ± 3974.02 ng/
ml) than TDT children with normal serum zinc level 
(2895.44 ± 2739.65 ng/ml), as p = 0.008. We demon-
strated the correlations between serum zinc and serum 
ferritin in the two groups (Fig. 1).

Moreover, 29 (65.9%) of the TDT children with low 
zinc had serum ferritin above the 2500 ng/ml threshold. 
This was significantly more frequent than children with 
normal serum zinc, as only 14 (38.9%) of them had serum 
ferritin above the threshold.

Serum zinc was significantly lower in TDT chil-
dren with serum ferritin above the ferritin threshold 
than those with serum ferritin below (59.1 ± 20.2 vs. 
77.5 ± 28.13), as p = 0.02.

When we compared the pancreatic functions of the 
TDT children according to their ferritin status i.e., having 
serum ferritin above or below ferritin threshold, which 
is equal to 2500 ng/ml. TDT children, having a serum 
ferritin ≥2500 ng/ml, had significantly more frequently 
impaired oral glucose tolerance test than TDT children 
below the ferritin threshold, with an odds ratio of 1.4 
(95% CI: 0.4–4.5). Also, they had significantly more fre-
quently abnormally high fasting insulin levels than TDT 
children below the ferritin threshold, with an odds ratio 
of 4.2 (95% CI: 1.08–16.6). Regarding pancreatic exocrine 
function, serum lipase was significantly more frequently 
abnormally high in TDT children having serum ferritin 
above ferritin threshold than those with serum ferritin 
below ferritin threshold, with an odds ratio of 4 (95% CI: 
1.5–10.8). (Table 3).

Pearson’s correlation revealed that serum zinc 
had significant negative correlations with both 
serum lipase (r = −0.48, p = 0.2) and serum ferritin 
(r = − 0.38, p = 0.01). Serum ferritin had significant 
positive correlations with OGTT (r = 0.31, p = 0.005), 

Table 1  Demographic and clinical data of the studied TDT 
children

Variable N = 80

Age of start transfusion (years): Mean ± SD 2.2 ± 2.7

Duration of transfusion (years): Mean ± SD 9.3 ± 5.02

BMI: Mean ± SD 16.6 ± 3.02

Iron chelation therapy:
Deferoxamine: n (%) 23 (28.75%)

Deferasirox: n (%) 23 (28.75%)

Deferiprone: n (%) 9 (11.25%)

Combined: n (%) 25 (31.25%)

Splenectomy: n (%) 18 (45%)

Hepatomegaly:: n (%) 49 (61.25%)
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fasting insulin level (r = 0.39, p = 0.005), HOMA-
IR (r = 0.43, p = 0.006), and serum lipase (r = 0.33, 
p = 0.003).

Multiple regression analysis was done to study the 
effect of having abnormal serum zinc and serum fer-
ritin level as a risk factor for exocrine and endocrine 
pancreatic dysfunction. Regarding the exocrine pan-
creatic function expressed by serum amylase and 
serum lipase. Patients with low zinc levels had the 
odds of 23.3 times to have high serum lipase more than 
those with normal serum zinc levels. Also, patients 
with high serum ferritin levels had the odds of 3.6 
times to have high serum lipase, but this did not reach 
statistical significance in this study. There were no 
significant effects of serum zinc nor serum ferritin on 
serum amylase. (Table 4).

For the pancreatic endocrine dysfunction, patients 
with low serum zinc had the odds of 3.9 times to have 
an abnormal HOMA-IR more than those with normal 
serum zinc. Moreover, patients with low serum zinc 
levels had odds of 6.3 times to have impaired OGTT 
and odds of 2.1 times to have high fasting insulin, but 
both odds ratios were not statistically significant.

Nevertheless, patients with high serum ferritin levels 
had odds of 1.5 times to have an abnormal HOMA-IR 
and 1.6 times to have a high fasting insulin level. How-
ever, again, these two odds ratios did not reach statisti-
cal significance in this study (Table 4).

Discussion
This study aimed to study the effect of zinc deficiency 
and iron overload on the pancreatic functions in children 
with transfusion-dependent thalassemia.

We compared the endocrine pancreatic functions in 
TDT children according to their zinc level; we found that 
impaired glucose tolerance tests and increased insulin 
resistance were more frequent in TDT children with zinc 
deficiency. Many researchers studied the relationship 
between glucose metabolism and zinc level in thalas-
semia; they showed that impaired glucose metabolism 
and low serum zinc levels were common among patients 
[24, 25]. Furthermore, another study on patients with 
thalassemia showed that a decline in serum zinc was 
associated with a consistent impairment in glucose toler-
ance test [14].

Zinc deficiency, in general, was linked to insulin resist-
ance. An Australian study on adults with prediabe-
tes showed that higher zinc levels were associated with 
decreased insulin resistance [26], and serum zinc was 
negatively associated with insulin resistance in another 
study on non-diabetics [27]. Adding to the previous stud-
ies, cross-sectional analyses reported that children with 
lower serum zinc concentrations and low dietary zinc 
intakes have significantly higher serum insulin concen-
trations and insulin resistance indexes [28–30].

A recent study by Ravi Kant et  al. demonstrated that 
increasing zinc levels improves pancreatic function in 

Table 2  Endocrine and exocrine pancreatic functions in TDT children according to their zinc status

CI confidence interval; OGTT​ Oral glucose tolerance test; HOMA-IR Homeostatic model assessment of insulin resistance

* Statistical significance< 0.05

Variables Low serum zinc
N = 44

Normal serum zinc
N = 36

p Odds ratio (95% CI)

I. Endocrine pancreatic function
1) OGTT​
Impaired: n (%) 12 (27.3%) 2 (5.6%) 0.01* 6.4 (1.3–30.7)

2) Insulin (μIu/ml):
Mean ± SD 15.4 ± 0.7 12.6 ± 5.8 0.4

High: n (%) 32 (72.7%) 16 (44.4%) 0.07 0.88 (0.7–1.04)

3) HOMA-IR
Mean ± SD 3.32 ± 3.37 2.7 ± 1.55 0.4

High: n (%) 24 (54.5%) 8 (22.2%) 0.03* 4.2 (1.08–16.6)

II. Exocrine pancreatic function
1) Serum amylase (Iu/ml):
Mean ± SD 61.95 ± 16.69 61.13 ± 20.8 0.8

Low: n (%) 14 (31.8%) 12 (33.3%) 0.1 0.79 (0.21–2.9)

2) Serum lipase (u/l):
Mean ± SD 40.23 ± 9.91 31.75 ± 4.9 < 0.001*
High: n (%) 24 (54.5%) 4 (11.1%) < 0.001* 9.6 (2.9–31.8)



Page 5 of 9Mousa et al. BMC Pediatr          (2021) 21:468 	

normoglycemic adults and decreases insulin resistance in 
prediabetic adults. Since zinc has been shown to play an 
essential role in both insulin secretion and insulin action, 
it is not surprising that zinc levels affect both pancreatic 
function and insulin resistance [31]. These data agree 
with the recommendations of De Sanctis and his study 
group in 2016. They recommended serum zinc levels to 
be monitored in patients with thalassemia major, as it 
provides valuable complementary information regarding 
glucose metabolism [6].

Regarding pancreatic exocrine function, zinc-defi-
cient TDT children had higher mean serum lipase and 
had more frequently an abnormally high serum lipase 
(> 38 U/L) than TDT children with normal serum zinc. 

The relation of zinc deficiency with exocrine pancre-
atic dysfunction may be less clear than its relationship 
with endocrine pancreatic function, as there is no clear 
data on whether zinc deficiency aggravates or results 
from chronic pancreatitis. On the one hand, micro-and 
macronutrients and several other nutritional deficien-
cies were found in subjects with chronic pancreatitis, 
including lipid-soluble vitamins A, D, E, and K, zinc, and 
others [32]. Moreover, in patients with chronic pancrea-
titis, erythrocyte and serum zinc levels were reported to 
be significantly lower [33, 34]. On the other hand, zinc 
deficiency may modulate pancreatic digestive enzyme 
activity by decreasing transporter protein ZnT2 expres-
sion. This transporter protein has been implicated in zinc 

Fig. 1  Scatter plots showing correlations between serum zinc and serum ferritin: a among TDT children with normal serum zinc and b among TDT 
children with low serum zinc
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transport into zymogen granules of the exocrine pan-
creas for the metallation of digestive proenzymes [35, 36]. 
Additionally, experimental studies strongly correlated 
zinc deficiency with pancreatic function and structure, 
as rats’ long-term feeding a zinc-deficient diet resulted in 
pancreatic acinar cell degeneration [37, 38].

TDT children with low serum zinc had significantly 
higher serum ferritin than those with normal serum 
zinc. Iron overload leads to overproduction of free radi-
cles aggravating oxidative stress, which alters the levels 
of antioxidant enzymes in serum, causing zinc and other 
trace elements deficiency [39]. Additionally, increased 
iron can inhibit zinc absorption in the gastrointestinal 
tract because iron and zinc compete for the transferrin 
binding sites in blood and inhibit each other absorption 
—moreover, iron chelators in patients with thalassemia 
chelates zinc and other essential minerals besides iron 
[15].

This study found serum zinc to have significant nega-
tive correlations with both serum lipase and serum ferri-
tin. These correlations go with several studies that found 
ferritin levels to have significant negative correlations 
with plasma zinc levels [40–43], which supports that iron 
overload aggravates zinc deficiency [39]. The negative 
association of serum zinc with serum lipase confirms that 
zinc deficiency and pancreatitis have a reciprocal rela-
tionship [33, 34].

Previous studies had set serum ferritin ≥2500 ng/
ml as a threshold above which cardiac, and many iron 
overload-related organ dysfunctions are aggravated. 
Serum ferritin can reliably predict cardiac siderosis and 
endocrine disease in thalassemia when equal to or above 
2500 ng/ml [44].

When we compared pancreatic functions of TDT 
children according to their serum ferritin level, cases 

Table 3  Pancreatic functions and zinc level of TDT children according to their ferritin threshold

CI confidence interval; OGTT​ Oral glucose tolerance test; HOMA-IR Homeostatic model assessment of insulin resistance

* Statistical significance< 0.05

Variables Serum ferritin < 2500 (ng/ml)
N = 40

Serum ferritin ≥ 2500 (ng/ml)
N = 40

p Odds ratio (95% CI)

I. Endocrine pancreatic function
1) OGTT​
Impaired: n (%) 6 (15%) 8 (20%) 0.02* 1.4 (0.4–4.5)

2) Insulin (μIu/ml):
Mean ± SD 12.9 ± 10.9 14.35 ± 10.68 0.6

High: n (%) 16 (40%) 32 (80%) 0.001* 4.2 (1.08–16.6)

3) HOMA-IR
Mean ± SD 2.71 ± 2.29 3.1 ± 2.58 0.6

High: n (%) 18 (45%) 14 (35%) 0.1 0.7 (0.3–1.6)

II. Exocrine pancreatic function
1) Serum amylase (Iu/ml):
Mean ± SD 57.55 ± 16.97 64.85 ± 18.81 0.2

Low: n (%) 14 (35%) 12 (30%) 0.07 0.8 (0.3–2)

2) Serum lipase (u/l):
Mean ± SD 40.23 ± 9.91 38.6 ± 8.5 0.03*
High: n (%) 8 (20%) 20 (50%) 0.005* 4 (1.5–10.8)

Table 4  Multivariate regression analysis of the effect of 
abnormal serum zinc and serum ferritin on exocrine and 
endocrine pancreatic function in TDT children

CI confidence interval; OR Odds ratio; OGTT​ Oral glucose tolerance test; HOMA-IR 
Homeostatic model assessment of insulin resistance.

* Statistical significance< 0.05

Odds ratio 95% CI of OR p

Lower Upper

Exocrine function
- Amylase Zinc 0.605 0.15 2.3 0.4

Ferritin 0.879 0.22 3.4 0.8

- Lipase Zinc 23.378 2.50 218.4 0.006*
Ferritin 3.651 0.69 19.1 0.1

Endocrine function
- OGTT​ Zinc 6.310 0.66 59.8 0.1

Ferritin 1.053 0.18 5.9 0.9

- HOMAIR Zinc 3.9 0.99 15.7 0.04*
Ferritin 1.5 0.38 6.07 0.5

- Fasting Insulin Zinc 2.1 0.9 7.3 0.07

Ferritin 1.667 0.087 31.869 0.2
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with serum ferritin above the ferritin threshold had 
higher first-hour blood glucose and had more frequently 
impaired OGTT and high fasting insulin levels than cases 
with a serum ferritin below ferritin threshold. Exces-
sive iron deposition in the pancreas leads to abnormal 
glucose metabolism [45, 46]. as iron overload-generated 
oxidative damage and functional impairment of insulin-
producing pancreatic ß-cells lead to glucose dysregula-
tion [47]. Besides, insulin resistance developed from iron 
overload-induced hepatic dysfunction [48].

Regarding pancreatic exocrine function relation to 
serum ferritin level, TDT children with serum ferri-
tin ≥2500 ng/ml had significantly higher serum lipase 
(> 38 U/L) than TDT children having serum ferritin 
below this level. Andersson and co-workers suggested 
that secondary hemochromatosis is one of the toxic fac-
tors causing chronic pancreatitis in thalassemia [49]. 
They attributed that chronic oxidative stress induced by 
hemochromatosis is toxic to the pancreatic cells [50]. 
Other studies validated the direct link of iron overload to 
exocrine and endocrine pancreatic dysfunction through 
quantitative measuring the pancreatic iron by MRI 
[51–53].

In this study, zinc deficiency is a significant risk fac-
tor for exocrine and endocrine pancreatic dysfunction 
as zinc is involved in many of these processes within the 
pancreas, including glucagon secretion, digestive enzyme 
activity, and insulin packaging, secretion, and signaling. 
So, zinc deficiency impairs many vital processes of the 
pancreas leading to exocrine dysfunction and impair-
ment of systemic glycemic control [36], aggravating the 
iron overload-induced pancreatic injury.

Conclusion
Zinc deficiency aggravates iron-induced pancreatic exo-
crine and endocrine dysfunction in children with transfu-
sion-dependent thalassemia. Therefore, we recommend 
regular serum zinc level monitoring and zinc supple-
mentation in children with TDT, together with robust 
iron chelation therapy, as this may slow the progression 
of pancreatic function deterioration in those children. 
However, further studies are needed to study the effects 
of zinc supplementation on pancreatic function in TDT 
children.
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