
RESEARCH ARTICLE Open Access

Contemporary epidemiology of rising atrial
septal defect trends across USA 1991–2016:
a combined ecological geospatiotemporal
and causal inferential study
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Abstract

Background: Cardiovascular anomalies are the largest group of congenital anomalies and the major cause of death
in young children, with various data linking rising atrial septal defect incidence (ASDI) with prenatal cannabis
exposure. Objectives / Hypotheses. Is cannabis associated with ASDI in USA? Is this relationship causal?

Methods: Geospatiotemporal cohort study, 1991–2016. Census populations of adults, babies, congenital anomalies,
income and ethnicity. Drug exposure data on cigarettes, alcohol abuse, past month cannabis use, analgesia abuse
and cocaine taken from National Survey of Drug Use and Health (78.9% response rate). Cannabinoid concentrations
from Drug Enforcement Agency. Inverse probability weighted (ipw) regressions. Analysis conducted in R.

Results: ASDI rose nationally three-fold from 27.4 to 82.8 / 10,000 births 1991–2014 during a period when tobacco
and alcohol abuse were falling but cannabis was rising. States including Nevada, Kentucky, Mississippi and
Tennessee had steeply rising epidemics (Time: Status β-estimate = 10.72 (95%C.I. 8.39–13.05), P < 2.0 × 10 − 16). ASDI
was positively related to exposure to cannabis and most cannabinoids.
Drug exposure data was near-complete from 2006 thus restricting spatial modelling from 2006 to 2014, N = 282. In
geospatial regression models cannabis: alcohol abuse term was significant (β-estimate = 19.44 (9.11, 29.77), P = 2.2 ×
10 − 4); no ethnic or income factors survived model reduction. Cannabis legalization was associated with a higher
ASDI (Time: Status β-estimate = 0.03 (0.01, 0.05), P = 1.1 × 10 -3). Weighted panel regression interactive terms
including cannabis significant (from β-estimate = 1418, (1080.6, 1755.4), P = 7.3 × 10 -15). Robust generalized linear
models utilizing inverse probability weighting interactive terms including cannabis appear (from β-estimate = 78.88,
(64.38, 93.38), P = 1.1 × 10 -8). Marginal structural models with machine-aided SuperLearning association of ASDI with
high v. low cannabis exposure R.R. = 1.32 (1.28, 1.36). Model e-values mostly > 1.5.
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Conclusions: ASDI is associated with cannabis use, frequency, intensity and legalization in a spatiotemporally
significant manner, robust to socioeconomicodemographic adjustment and fulfilled causal criteria, consistent with
multiple biological mechanisms and similar reports from Hawaii, Colorado, Canada and Australia. Not only are these
results of concern in themselves, but they further imply that our list of the congenital teratology of cannabis is as
yet incomplete, and highlight in particular cardiovascular toxicology of prenatal cannabinoid and drug exposure.

Keywords: Atrial septal defect, Cannabis, Cannabinoid, Δ9-tetrahydrocannabinol, Cannabigerol, Cannabidiol,
Mechanisms, Congenital anomalies, Cardiac malformations

Introduction
Atrial Septal Defect (secundum type) (ASD) is one of
the commonest of the cardiovascular congenital anomal-
ies which are themselves the commonest form of con-
genital defect. Congenital defects are the commonest
cause of mortality in children under the age of 5 years
[1]. The Centres for Disease Control Atlanta, Georgia,
(CDC) publishes rates of congenital anomalies across the
USA annually based on reports from state-based regis-
tries through the National Births Defects Prevention
Network which CDC sponsor. Review of these data indi-
cate that in recent years ASD appears to be increasing in
some US States for reasons which were not apparent.
Previous reports from Hawaii and Colorado had linked

ASD with cannabis exposure [2, 3]. Indeed the report on
Colorado showed that ASD incidence (ASDI) followed a
sigmoidal trajectory and closely tracked the decade of
cannabis legalization there [3]. Canada Health recently
issued a major report of that nation’s teratological ex-
perience which noted a rise in total cardiovascular de-
fects in the northern territories of Canada [4, 5] which
are known to consume more cannabis [6]. Since ASD is
one of the most common cardiovascular defects it is
likely that ASD was represented in this general increase.
Government reports from Australia similarly link high
ASDI with areas of high cannabis use [7]. Moreover 34
congenital defects including nine cardiovascular defects
were recently noted to be more common in the highest
quintile of cannabis using states in the USA than in the
remainder of the country [8].
A previous joint position statement from the American

Academy of Pediatric and the American Heart Associ-
ation linked prenatal cannabis exposure with ventricular
septal defect and Ebsteins anomaly [9]. The American
College of Obstetricians and Gynaecologists and the So-
ciety of Obstetricians and Gynecologists of Canada rec-
ommend that women avoid the use of cannabis during
pregnancy [10, 11]. However a detailed investigation of
the association and its potentially causal relationship has
not been reported.
The current study explored three nested hypotheses

which were conceived before beginning the study.
Firstly, was there indeed an increase in ASDI? Secondly,

was the association robust to adjustment for definable
sociodemographic, socioeconomic and drug exposure
covariates across space and time? And thirdly, was the
relationship causal? We were particularly interested to
apply the powerful methods of formal geotemporospatial
analysis and causal inference to these problems. If these
hypotheses were confirmed this would raise the intri-
guing possibility that, notwithstanding statements from
official authorities, our list of cannabis-associated birth
anomalies remains incomplete, and there is more to
learn in this important area.

Methods
Design
This study was a retrospective observational geotempor-
ospatial epidemiological study of publicly available data-
sets looking at the relationships of ASD with drug
exposure, ethnicity and socioeconomic data in USA
1989–2016. This study was performed in January 2020.

Data
Data on birth defects was sourced from the National
Birth Defect Prevention Network (NBDPN) annual re-
ports 1988–1989 to 2012–2016 [12]. This report com-
piles the reports of the State Birth Defects registries in
multi-year groups. The reference year for each report
was the middle year of each report. Data on drug use
was accessed from the National Survey of Drug Use and
Health (NSDUH) conducted annually by the Substance
Abuse and Mental Health Services Administration
(SAMHSA) [13]. This is a nationally representative sam-
ple of the non-institutionalized US population. Data on
five drugs was extracted at state level: last month:
cigarette, alcohol abuse or dependence, and cannabis
use; and last year: analgesic abuse and cocaine use. Data
on cannabis use rates by ethnicity was also extracted at
the national level. Data on cannabinoid concentration is
the average concentration of the various cannabinoids
found annually in Drug Enforcement Agency seizures
[14, 15]. Data for the ethnic population of each state was
sourced from the US Census Bureau’s decennial and 5
year annual community surveys via the tidycensus pack-
age in “R”.
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Derived variables
Frequency of cannabis use in the last month by ethnicity
was sourced from the Substance Abuse and Mental
Health Data Archive and used to calculate a mean num-
ber of days used at the Federal level for each year [16].
These measures were multiplied by the last month can-
nabis use for that state and then by the mean annual
concentration of Δ9-tetrahydrocannabinol (THC) to de-
rive an index of annual ethnic THC exposure at state
level (AETES) referred to in the Tables as an ethnic
“score”. This variable was used to standardize population
ethnicity compositions for known different use rates and
intensity of cannabis use.

Statistics
This analysis was conducted in January 2020 using “R”
Studio version 1.2.5042 based on “R” version 4.0.0 ob-
tained from CRAN [17]. Variables were log-transformed
guided by the Shapiro test. Data was matched and for-
matted using “R” package dplyr [18], maps and graphs
were drawn in ggplot2 [18, 19] and sf [20], linear regres-
sion was performed in base, geofacetting was done in
geofacet, panel regression was done in plm [21], geospa-
tial linkages and weights were assigned in spdep [22],

and Alaska and Hawaii were elided using albersusa and
sp. Factor analysis was done with factoextra. Two-stage
regression including instrumental variables (as indicated)
was conducted in panel and geospatial regression. Model
reduction was by the classical method of serial deletion
of the least significant term. For non-spatial models
missing data was casewise deleted. Missing data was im-
puted for spatial analysis by temporal kriging (mean sub-
stitution) as indicated. Spatial regression was performed
in splm::spreml using a full model with Kapoor, Kelejian,
and Prucha -type spatial errors, spatial lagging, random
errors and serially autocorrelated errors (sem2srre + lag)
in all cases [22–26]. Geospatial models were compared
using the spatial Hausman test.
To balance confounding for measured covariates inverse

probability weights over time (iptw) were computed for
the kriged longitudinal data in a time-based paradigm
(from package ipw [27]) and added to the dataset. Robust
inferential analysis was conducted with iptw using mixed
effects models (nlme), panel models (plm [21]) and gener-
alized linear models (survey [28]). Marginal structural
models were performed in doubly robust targeted mini-
mum loss-based estimation (drtmle) which includes
augmented-iptw. Adaptive machine learning was also

A B

C D

Fig. 1 Univariate ASD trends. a ASDI over time. b ASDI by state THC exposure. c ASDI by THC exposure dichotomized into high and low ASDI
states. d Cluster Analysis of the ASD – Cannabis exposure data
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conducted using drtmle to access SuperLearner libraries
which heightened inferential power. Generalized linear
models was used to specify model structure and machine
learning was used to increase inferential sensitivity. eVa-
lues were computed (EValue [29–31]) to assess the re-
quired impact of unmeasured confounding. P < 0.05 was
considered significant.

Data availability statement
Data including software programming in R has been made
publicly available through the Mendeley data repository at
URL: https://doi.org/10.17632/vrnfbytrrr.1.

Ethics
The study was approved by the Human Ethics Research
Committee of the University of Western Australia April
1st 2019, No. RA/4/20/4724.

Results
Across the NBDPN annual reports 1988–1989 to 2012–
2016 (referred to as reference years 1989–2014) there
were 347 reports of rates of atrial septal defect

(secundum type). Across the period 2002–2016 the
NSDUH was completed by 952,717 respondents out of
1,207,606 selected for the survey, a mean response rate
of 78.89%. The survey quotes a mean weighted interview
response rate of 74.1%.
The data for the 37 states contributing data are shown

in eTable 1 and map-graphically in eFigure 1.
Figure 1a shows the time course of ASD across the

USA and notes a rising trend. The mean rate in 1991
was 27.4/10,000 births and 82.4/10,000 in 2014, a 3.02-
fold rise. Figure 1b plots the ASD Rate against the prod-
uct of the last month cannabis use rate and the THC po-
tency, and importantly, also shows an apparently rising
trend with cannabis exposure. Close inspection of Fig. 1b
shows that it seems to be bimodal with both upper and
lower zones. When the highest ASD states from the
2012–2016 period, Nevada, Alaska, Mississippi, Tennes-
see, Ohio, Oregon and Kentucky are grouped together
the appearance found in Fig. 1c is derived. eTable 2
quantitates these changes by linear regression and notes
highly significant changes with time (β-estimate = 2.52,
(95%C.I. 1.56, 3.48); with THC exposure index (β-

Fig. 2 ASDI by (a) Drugs and (b) Cannabinoids by US State
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estimate = 24.93, (1.06, 45.8)) and between the high and
average ASD-rate states (Exposure: Status interaction (β-
estimate = 10.72 (8.39–13.05), P < 2.2 × 10− 16). Figure 1d
shows that formal cluster analysis correctly dissects out
these zones. The reason for this bimodality is unclear,
but may relate to local cannabinoid concentrations or
intensity of use.
eFigure 2A shows the ASDI by cannabis consumption

quintiles. An abrupt jump is noted between quintiles 3
and 4 shown as non-overlapping notches on the box-
plots (ChiSq. for trend = 8147.9, df = 4, P < 10− 300). This
is highlighted in eFig. 2B which dichotomizes the data
around this point (Students-t = 3.48, df = 40.07, P =
0.0012). Ranges are provided in eTable 3 (Quintiles 1–3
45.46 (24.50, 93.30) (median, interquartile range) and
Quintiles 4–5 94.70 (35.35, 175.20)).
eFigure 3 is a geofacetted plot of the ASDI by state

across the USA with each state in approximately is ac-
tual position. Strongly rising trends are noted in Nevada,
Kentucky, Tennessee, Mississippi, Missouri, Colorado
and Alaska. eFigure 4 is a similar geofacetted plot of the
ASDI this time against the THC exposure index. Curi-
ously strongly rising trends are noted in states including
Nevada, Kentucky, Mississippi and Tennessee.
Figure 2a shows the relationship of the ASDI to the

drug exposure level in each state. Falling ASDI are noted
with alcohol abuse, binge alcohol, cocaine and alcohol or
drug abuse categories. Figure 2b is a similar illustration
of the relationship of ASD to various cannabinoids but
here one notes a rising relationship with most cannabi-
noids with the notable exception of cannabidiol.
eFigure 5A displays the rate of cannabinoid exposure

by year and notes that for cannabidiol this has been a
negative trend which makes interpretation of its rela-
tionship with ASD complex (Fig. 2b). Figure 5B is an

annual plot of the ASD: cannabidiol relationship and
notes a more positive relationship in 2006 and 2007 at a
time when cannabidiol exposure levels were higher.
eFigure 6 charts the ASDI by the ethnic composition.

Whilst the relationship is negative in the African-
American community it appears to be positive amongst
American Indians / Alaskan Natives (AIAN). As shown
in eTable 4 these differences are significant.
When the ASDI is charted against the ethnic exposure

to THC (AETES) as in eFigure 7, these ethnic differ-
ences disappear as uniform rising trends are seen.
As noted in eFigure 8 there is a non-significant rela-

tionship of ASDI with median household income.
These data may be regressed in their totality by panel

regression which is a technique well suited to serial geo-
spatial panel data with missing values. The results shown
in eTable 5 are notable in that when median household
income and racial composition are regressed by them-
selves they are not significant. When drugs, income and
ethnicity are regressed together ethnicity and income re-
main in the final model but have negative β-coefficients,
and terms including cannabis also remain in the final
model (from β-estimate = 22.25 (10.13, 150.24), P = 3.8 ×
10− 4).
When one charts the impact of the legal status of can-

nabis on the ASDI the data shown in Fig. 3 is obtained
for the (A) raw and (B) log-transformed data respect-
ively. As shown in eTable 6 the time:legal status inter-
action is highly significant (β-estimate = 0.03 (0.012,
0.48), P = 0.0011) for legal cannabis compared to other
categories.
Missing data are not permitted in geospatial analytical

techniques. Temporal kriging is an accepted method of
completing such values. eTable 7 shows all the data with
kriged values coloured. From 2006 when all the drug

A B

Fig. 3 ASDI by legal status of cannabis. a Raw data plot. b log(ASDI) plot
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data is available there are 267 ASD datapoints. 29
(eTable 8) have been inserted by kriging bringing the
total (eTable 9) to 296 points. The complete spatial data-
set is map-graphed in eFigure 9.
The spatial links used to derive the spatial weights are

shown in eFigure 10 (A) in edited and (B) in final format
after conceptually eliding (moving) Alaska and Hawaii
into relationship with California.
The outcomes of spatial regression are shown in Table 1.

Median household income and demographics was not

significant either with or without instrumental variables ei-
ther alone or in combination (not shown). When the drugs
alone were regressed the results shown in the upper part of
the table were derived. When drugs and race and a
full complement of instrumental variables was
regressed the same model was returned with terms
including cannabis continuing to be significant. When
a drug-only model was regressed at 2 years lag the
results shown were derived. When the procedure was
repeated at 4 years of lag to account for the moving

Table 1 Geotemporospatial Regression

Instrumental ± Lagged
Variables

Parameters & Values Model

Parameter β-Coefficient (95%C.I.) P-value LogLik Parameters Value P-Value

Drugs

0 Lags

spreml(ASD_Rate ~ cigmon * mrjmon * abodalc + anlyr + cocyr)

Δ9THC_Exposure mrjmon 0.49 (0.16, 0.82) 0.0033 −56.071 phi 2.57E-05 1

Cannabigerol_Exposure cocyr −0.25 (− 0.43, − 0.07) 0.0085 psi 0.9629 <2e-16

cigmon: mrjmon −0.87 (−1.71, − 0.03) 0.0416 rho − 0.0414 0.7944

lambda −0.0455 0.7702

Drugs & 4 Races

0 Lags

Δ9THC_Exposure spreml(ASD_Rate ~ cigmon * mrjmon * abodalc + anlyr + cocyr + 4_Races)

Cannabigerol_Exposure mrjmon 0.49 (0.16, 0.82) 0.0033 −56.071 phi 2.57E-05 1

Caucasian_Daily_Score cocyr −0.25 (−0.43, − 0.07) 0.0085 psi 0.9629 <2e-16

African.Am_Daily_Score cigmon: mrjmon −0.87 (−1.71, − 0.03) 0.0416 rho − 0.0414 0.7944

Asian.Am_Daily_Score lambda −0.0455 0.7702

AIAN_Daily_Score

Drugs

2 Lags

spreml(ASD_Rate ~ cigmon * mrjmon * abodalc + anlyr + cocyr)

Δ9THC_Exposure, 0:2 mrjmon 0.46 (0.07, 0.85) 0.0237 − 73.445 phi 15.4679 7.26E-07

Cannabigerol_Exposure, 0:2 psi 0.6471 0.0002

rho −0.0352 0.8684

lambda −0.0667 0.7517

Drugs

4 Lags

spreml(ASD_Rate ~ cigmon * mrjmon * abodalc + anlyr + cocyr)

Δ9THC_Exposure, 0:4 mrjmon: abodalc 19.44 (9.11, 29.77) 0.0002 −55.133 phi 1.3947 NA

Cannabigerol_Exposure, 0:4 cigmon: mrjmon: abodalc −45.14 (− 75.09, − 15.19) 0.0031 psi 0.9530 <2e-16

rho 0.0204 0.9361

lambda −0.1420 0.5256

Abbreviations
4_Races Caucasian-American, African-American, Hispanic-American, Asian-American
AIAN American Indian / Alaska Native
Technical Notes:
phi Idiosyncratic component of the spatial error term
psi Individual time-invariant component of the spatial error term
rho Spatial autoregressive parameter
lambda Spatial autocorrelation coefficient
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average style of data published by NBDPN the results
were again as shown. In each model terms including
cannabis remain significant in final models.
Models were compared. Based on their logLik

values the first and fourth models are best. When
these are directly compared spatial Hausman tests
(ChiSq. = 11.18, df = 1, P = 8.25 × 10− 4) indicate the su-
periority of the drug model lagged to 4 years. One
notes that in this model terms including cannabis
were significant from (β-estimate = 19.44 (9.11, 29.77),
P = 2.2 × 10− 4).
The kriged dataset may also be used to derive inverse

probability weights (iptw). These are applied to panel
models in eTable 10 with a marked gain in both power
(F = 15.62 on df = 7280 to F = 1062.95, df = 13,274) and
inferential sensitivity with interactive terms including
cannabis significant (from β-estimate = 1418, (1080.6,
1755.4), P = 7.3 × 10− 15).
iptw can be applied to mixed models (eTable 11)

where interactive terms including cannabis are signifi-
cant (from β-estimate = 6.80, (5.86, 7.74), P < 10− 4).
iptw can be utilized in robust conditional generalized

linear models (glm). Table 2 sets out these results in an
additive model, and in interactive models with a four-
way interaction in drug terms, a four-way interaction in
ethnic cannabis exposure index, and an additive combin-
ation of two three way interactions between drugs and
ethnic cannabis exposure. Highly significant interactive
terms including cannabis appear (from β-estimate =
78.88, (64.38, 93.38), P = 1.1 × 10− 8).
iptw can also be used in glm in drtmle models to for-

mulate marginal structural models with both glm and
adaptive machine learning algorithms using the above
noted increment from the third to the fourth cannabis
exposure quintile as a switch to signal high v. low dose
cannabis exposure (Table 3).
The top line shows that in a SuperLearner model can-

nabis exposure is significant alone with high v low ex-
posure (0.08, (0.04, 0.13)).
Remaining models include all the covariates shown in

the first column. Models become progressively more
complex moving down the table. The most refined
model is the final one which shows a marginal associ-
ation of ASDI with high v. low cannabis exposure of
0.93 (0.92, 0.94) v. 0.70 (0.68, 0.72), a relative risk of 1.32
(1.28, 1.36), Wald Z = 18.52, P = 1.3 × 10− 76).
Sensitivity analyses may be conducted for these results

using the eValue which quantitates the association an
unobserved variable would have to have with both the
measured parameter and the outcome to obviate the re-
sults. eTable 12 presents a variety of analyses with many
results significantly divergent from unity making uncon-
trolled confounding unlikely across all major models and
all major findings.

Discussion
This is the first study to our knowledge to use geotem-
porospatial and formal inferential analysis to assess the
association between cannabis use and ASDI. Data con-
firm a positive relationship between cannabis use and
ASDI. Specifically, we firstly confirmed that ASDI in-
creased three-fold 1989–2016. Notably this ASDI eleva-
tion is largely accounted for by states such as Nevada,
Kentucky, Mississippi and Tennessee and associated
with the legalization of cannabis. Second, increases in
ASDI occurred over a period when alcohol, tobacco and
cocaine use were falling, which implicates rising canna-
bis exposure [32]. Cannabis legalization was associated
with higher ASDI.
In multivariable geotemporospatial regression the

cannabinoid-ASDI link was confirmed across space and
time together and was robust to adjustment for other so-
cioeconomic and ethnodemographic variables.
Formal investigation of the cannabinoid-ASDI link by

the tools of causal inference including by inverse prob-
ability time-based weighting in robust generalized linear
models, doubly robust augmented inverse probability
weighting and machine SuperLearning techniques con-
firmed the link and confirmed its robustness to adjust-
ment for other measured variables in pseudorandomized
populations. Sensitivity analysis utilizing evalues con-
firmed that unmeasured variables were unlikely to ac-
count for the size of the effect observed.
This combination of geotemporal analysis, the iptw in-

ferential analysis and the sensitivity analysis in the con-
text of the preliminary concordant trends together make
a powerful combined epidemiological argument for a
causal relationship between cannabinoid exposure and
ASDI.
Hence this study made affirmative findings in relation

to all three opening hypotheses. ASDI is indeed rising;
drug and cannabinoid exposure account for this in a
manner robust to adjustment for the usual socioecono-
micodemographic covariates in final geospatial models;
and finally the cannabinoid-ASDI relationship fulfills cri-
teria for causality.
The association of cannabis use with atrial septal de-

fect was first described in a report from Hawaii where
its use in isolation was noted to be linked to an increase
in ASDI of 6.12-fold (95%C.I. 1.98–14.35) [2]. It is inter-
esting that many of these findings were also recently ob-
served in Colorado [3]. The pronounced increase in
ASDI across the decade of cannabis legalization there
was noted above. Similar findings were also seen in rela-
tion to cannabidiol.
One important issue to consider is the existence of

biological pathways from cannabis exposure to cardio-
vascular embryogenesis. Embryologically the heart forms
from a complex series of sources including the primary
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Table 2 Robust General Linear Model with Inverse Probability Weights

Parameter β-Coefficient (95%C.I.) P-value

Additive Model

AIAN.Amn 0.73 (0.46, 1) 2.8E-05

NHCauc.Amn_Cannabis 5.42 (2.42, 8.42) 0.0015

Analgesics 0.72 (0.21, 1.23) 0.0100

Asian_Cannabis 1 (0.24, 1.76) 0.0160

NHAfrc.Amn_Cannabis −4.55 (−7.53, −1.57) 0.0060

Alcohol −34.96 (−49.93, − 19.99) 0.0001

NHPI_Cannabis − 0.3 (− 0.42, − 0.18) 9.0E-05

Cauc.Amn − 2.89 (− 3.91, − 1.87) 8.9E-06

Hispanic_Cannabis − 1.18 (− 1.59, − 0.77) 5.6E-06

Afrc.Amn − 0.82 (− 1.09, − 0.55) 4.4E-06

Interactive Models

Four-Way Interaction Amongst Drugs: Tobacco * Alcohol * Cannabis * Analgesics

Cannabis 913.3 (597.54, 1229.06) 5.8E-05

Analgesics 842 (549.57, 1134.43) 6.1E-05

Cannabis: Analgesics 294.1 (188.73, 399.47) 8.3E-05

Cigarettes: Alcohol 114,400 (68,496.8, 160,303.2) 0.0002

NHCauc.Amn_Cannabis 5.68 (3.37, 7.99) 0.0003

Cigarettes: Alcohol: Cannabis 40,180 (23,672.88, 56,687.12) 0.0003

Cigarettes: Alcohol: Analgesics 36,720 (21,412.4, 52,027.6) 0.0003

Cigarettes: Alcohol: Cannabis: Analgesics 12,870 (7331.04, 18,408.96) 0.0005

Afrc.Amn −0.47 (−0.88, −0.06) 0.0440

Cauc.Amn −3.03 (−4.95, −1.11) 0.0080

NHPI_Cannabis −0.28 (− 0.44, − 0.12) 0.0027

Hispanic_Cannabis − 1.99 (− 3.01, − 0.97) 0.0020

Alcohol: Cannabis: Analgesics − 3184 (− 4540.71, − 1827.29) 0.0004

Alcohol: Analgesics − 9055 (− 12,759.4, − 5350.6) 0.0003

NHAfrc.Amn_Cannabis −2.38 (− 3.36, − 1.4) 0.0003

Alcohol: Cannabis − 9987 (− 14,012.84, − 5961.16) 0.0003

Alcohol − 28,390 (− 39,456.16, − 17,323.84) 0.0002

Cigarettes: Cannabis: Analgesics − 1191 (− 1619.85, − 762.15) 8.6E-05

Cigarettes: Analgesics − 3418 (− 4618.11, − 2217.89) 6.8E-05

Cigarettes: Cannabis − 3686 (− 4975.29, − 2396.71) 6.5E-05

Cigarettes −10,550 (− 14,176, − 6924) 5.5E-05

Four-Way Interaction Amongst Ethnic_Cannabis: Cauc.Amn * Afrc.Amn * Asian.Amn * AIAN.Amn

Asian_Cannabis 78.88 (64.38, 93.38) 1.1E-08

NHCauc.Amn_Cannabis: Asian_Cannabis 294.32 (235.62, 353.02) 3.5E-08

NHCauc.Amn_Cannabis 549.56 (436.25, 662.87) 5.5E-08

NHCauc.Amn_Cannabis: Asian_Cannabis: AIAN.Amn_Cannabis 51.74 (40.9, 62.58) 6.9E-08

NHAfrc.Amn_Cannabis: AIAN.Amn_Cannabis 51.34 (34.03, 68.65) 2.6E-05

Cigarettes 9.15 (5.41, 12.89) 0.0002

NHCauc.Amn_Cannabis: NHAfrc.Amn_Cannabis: Asian_Cannabis 6.72 (2.33, 11.11) 0.0084

Cocaine −1.23 (−1.99, −0.47) 0.0060

Afrc.Amn −0.59 (− 0.84, − 0.34) 0.0004
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and secondary heart fields, the proepicardium and mi-
gration of cells from the neural crest [33]. Many molecu-
lar cascades are involved including retinoic acid, the
core regulatory network of MEF2, NKX2, GATA, Tbx,
and Hand and various micro-RNA’s, and later TGFβ,
BMP’s and notch become key molecular organizers.
Genetic defects of Nkx 2–5, GATA4, Tbx5 and Downs
syndrome are known to be linked with ASD pathogen-
esis [33].
Cannabinoid type 1 receptors (CB1R) are found in the

embryo from the twelfth week of foetal life and exist in
high density on the endocardial cushion material [34–
37]. It has been noted that cannabinoids can act on the
cardiovasculature via at least seven different receptors in-
cluding the type 1 and 2 cannabinoid receptors, vanilloid
receptors, GPR55, PPAR, abnormal cannabidiol receptors
and others [38]. On occasion cannabinoids are known to
induce proinflammatory states including arteritis and
angiopathies [36, 37, 39–42]. Moreover in all seven studies
to have examined the issue cannabis has been linked with
gastroschisis which is believed to have a largely vasculo-
pathic origin due to the implication of several vasoactive
drugs, with a secondary defect in the right side of the ab-
dominal wall arising due interference with the vascular
supply. Hence there would appear to be a number of

biological pathways potentially linking prenatal cannabis
exposure with downstream adverse embryological cardio-
vascular outcomes.
This notable convergence of evidence linking cannabis

exposure in USA, Colorado, Hawaii, Canada and Australia
with biologically plausible pathways implies that our usual
list of cannabis-related birth defects is as yet incomplete
[2–4, 7]. Such an acknowledgement also raises the ques-
tion of how many other birth defects are attributable to
currently unidentified environmental causes.
The dramatic and recent rises in ASDI in some

states is of particular concern. We feel that one pos-
sible explanation for the apparently bimodal re-
sponse to THC exposure in the high ASD states may
be an increase in the intensity of use or rising local
cannabinoid potency, which is apparently not being
well detected in NSDUH, which does not reveal pub-
licly near daily cannabis consumption on a state
basis. It is possible that changed agricultural ar-
rangements in states previously majoring in tobacco
cultivation with crop diversification into hemp prod-
ucts may explain some of the effects in Midwestern
states. That this metric is apparently not being
picked up in NSUDH is a matter for further
investigation.

Table 2 Robust General Linear Model with Inverse Probability Weights (Continued)

Parameter β-Coefficient (95%C.I.) P-value

Alcohol −31.75 (−45.31, − 18.19) 0.0003

Cauc.Amn −2.69 (−3.65, − 1.73) 4.5E-05

AIAN.Amn_Cannabis −122.94 (− 162.47, − 83.41) 1.6E-05

NHCauc.Amn_Cannabis: NHAfrc.Amn_Cannabis −67.25 (−88.59, − 45.91) 1.3E-05

Asian_Cannabis: AIAN.Amn_Cannabis −66.75 (− 85.02, − 48.48) 2.3E-06

NHAfrc.Amn_Cannabis: Asian_Cannabis: AIAN.Amn_Cannabis −50.24 (−63.74, − 36.74) 1.8E-06

Hispanic_Cannabis − 11.55 (− 14.35, − 8.75) 4.8E-07

NHAfrc.Amn_Cannabis: Asian_Cannabis − 195.38 (− 233.99, − 156.77) 3.1E-08

NHAfrc.Amn_Cannabis − 426.55 (− 505.56, − 347.54) 1.3E-08

NHCauc.Amn_Cannabis: NHAfrc.Amn_Cannabis: AIAN.Amn_Cannabis −9.25 (− 10.96, −7.54) 1.2E-08

3 + 3 Way Interactions: Tobacco * Alcohol * Cannabis + Cauc.Amn * AIAN.Amn * Asian.Amn

Cigarettes: Alcohol 3696.88 (2707.37, 4686.39) 1.5E-07

Analgesics 1.53 (1.1, 1.96) 4.3E-07

Cigarettes: Alcohol: Cannabis 1467.06 (997.23, 1936.89) 2.5E-06

Cannabis 28.63 (18.07, 39.19) 1.9E-05

AIAN.Amn 0.71 (0.44, 0.98) 5.0E-05

Cauc.Amn −2.52 (−4.24, −0.8) 0.0083

Afrc.Amn − 0.78 (−1.09, − 0.47) 4.0E-05

Alcohol: Cannabis −368.51 (− 503.71, − 233.31) 1.8E-05

Cigarettes: Cannabis −113.89 (− 151.25, −76.53) 3.6E-06

Cigarettes − 288.27 (− 376.25, − 200.29) 1.2E-06

Alcohol − 950.06 (− 1226.77, − 673.35) 5.8E-07
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Study strengths include the use of US national census
and American Community Survey, and nationally repre-
sentative drug use surveys. One of the great advantages
of conducting the present analysis on USA data is that it
represents the most comprehensive data set globally.
Secondly, this study represents the first use of formal
geotemporospatial and causal inferential analytical

techniques to assess the cannabis-ASD relationship.
Thirdly, results are consistent with other reports and re-
search from a range of jurisdictions which have used dif-
ferent methodologies and likely have had a range of
different and likely potential confounders. Study limita-
tions are firstly, data employed ecological aggregate-level
data, which do not related to any specific individual; that

Table 3 Doubly Robust Targeted Minimum Loss-Based Estimation Using Generalized Linear Models and SuperLearner Adaptive
Machine Learning

Covariates Model Lower
Exposure

Higher
Exposure

R.R. Difference w
Higher Exposure

Wald
Test, Z

P-Value

Cannabis_Monthly Initial drtmle mrjmon
SuperLearner Model

0.68 (0.61, 0.69) 0.76 (0.72, 0.80) 1.11 (1.05, 1.18) 0.08 (0.04, 0.13) 3.53 0.0004

Cigarettes Binomial glm 0.68 (0.66, 0.69) 0.86 (0.84, 0.87) 1.26 (1.23, 1.29) 0.18 (0.16, 0.20) 17.16 5.02E-66

Alcohol_Abuse

Cannabis_Monthly SuperLearner 0.71 (0.69, 0.73) 0.98 (0.97, 0.98) 1.37 (1.34, 1.40) 0.27 (0.24, 0.29) 20.08 1.15E-89

Analgesic_Abuse

Cocaine_Annual Mixed SuperLearner -
Glm Model Series

% White

% African-American No Interactions

% Asian - Additive 0.68 (0.66, 0.70) 0.86 (0.84, 0.87) 1.26 (1.22, 1.30) 0.17 (0.16, 0.20) 17.16 5.03E-66

% American Indian / Alaskan Natives

NHWhite_Daily_Cannabis_
Use x THC_Concentration

One Interaction

NHBlack_Daily_Cannabis_
Use x THC_Concentration

- Tobacco x Cannabis 0.68 (0.66, 0.70) 0.82 (0.81, 0.84) 1.21 (1.18, 1.25) 0.14 (0.12, 0.16) 13.16 1.57E-39

NHAsian_Daily_Cannabis_
Use x THC_Concentration

NHAIAN_Daily_Cannabis_
Use x THC_Concentration

Three Interactions

NHHispanic_Daily_Cannabis_
Use x THC_Concentration

- Tobacco * Cannabis *
Alcohol

0.68 (0.66, 0.70) 0.78 (0.75, 0.82) 1.15 (0.10, 1.20) 0.10 (0.7, 0.14) 5.95 2.62E-09

Median_Household_Income

Four Substance Interactions

- Tobacco * Cannabis *
Alcohol * Analgesics

0.68 (0.67, 0.70) 0.75 (0.71, 0.78) 1.08 (1.06, 1.11) 0.06 (0.02, 0.10) 2.85 0.0043

Three Ethnic Interactions

NHWhite_Daily_Cannabis_
Use x THC_Concentration *

0.68 (0.66, 0.70) 0.79 (0.75, 0.83) 1.16 (1.9, 1.24) 0.11 (0.06, 0.16) 4.72 7.74E-06

NHAsian_Daily_Cannabis_
Use x THC_Concentration *

NHAIAN_Daily_Cannabis_
Use x THC_Concentration

Three Substance x Three
Ethnic Interactions

- Tobacco * Cannabis *
Alcohol *

0.70 (0.68, 0.72) 0.93 (0.92, 0.94) 1.32 (1.28, 1.36) 0.23 (0.21, 0.25) 18.52 1.32E-76

NHWhite_Daily_Cannabis_
Use x THC_Concentration *

NHAsian_Daily_Cannabis_
Use x THC_Concentration *

NHAIAN_Daily_Cannabis_
Use x THC_Concentration
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is although we can say that State increased level of can-
nabis use correlated with same State increased rates of
congenital anomalies we cannot specifically attribute a
case of ASD to prenatal cannabis exposure from parents
shown to be using high level cannabis. High intensity
use of cannabis at state level is also not captured in the
publicly available NSDUH data. Moreover congenital
anomaly data from certain high cannabis use states in-
cluding Washington, Oregon, Vermont and Maine are
incomplete in many years which would weaken our esti-
mates downwards. Secondly, utilised drug use data relied
on self-report, the accuracy of which is difficult to valid-
ate. Thirdly, although we attempted to adjust for socio-
economic variables including tobacco, alcohol, and
cocaine that may be routinely used by consumers of can-
nabis, it is not possible to completely remove confound-
ing from observational data.
The replication of major findings in several geograph-

ically independent locations globally [2–4, 7, 9, 43, 44]
suggest that the findings are widely generalizable. There
are now well established biological mechanisms by
which cannabis might increase the likelihood of ASD.
Collectively therefore these diverse and converging sets
of information support the results of the geotemporal
and causal inferential analyses.
It is appears that the medical, political and broader

community are yet to fully comprehend or appreciate
the higher rate of birth defects associated with cannabis
legalization. The present report indicates this remains an
open question which warrants further vigorous research
and careful investigation, for example at higher geospa-
tial resolution and using patient-matched data and vali-
dated biomarker approaches [45] and at the molecular,
cellular and epigenetic levels.
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