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The risks of advancing parental age on
neonatal morbidity and mortality are U- or
J-shaped for both maternal and paternal
ages
James A. Thompson

Abstract

Background: The biologic implications of delayed parenthood have been blamed for a major public health crisis in
the United States, that includes high rates of neonatal morbidity and mortality (NMM). The objective of this study
was to evaluate the risk of parent age on NMM and to provide results that can serve as a starting point for more
specific mediation modeling.

Methods: Data containing approximately 15,000,000 birth records were obtained from the United States Natality
database for the years 2014 to 2018. A Bayesian modeling approach was used to estimate the both the total effect
and the risk adjusted for confounding between parent ages and for mediation by chromosomal disorders including
Down syndrome. Outcomes included intra-hospital death and nine measures of neonatal morbidity.

Results: For paternal age, seven NMM (preterm birth, very preterm birth, low Apgar score, treatment with antibiotics,
treatment with surfactant, prolonged ventilation, intra-hospital death) had U-shaped risk patterns, two NMM (small for
gestational age, admission to neonatal intensive care) had J-shaped risk patterns, one NMM (seizures) was not significantly
related to paternal age. For maternal age, three NMM (low Apgar score, treatment with antibiotics and intra-hospital death)
had U-shaped risk patterns, four NMM (preterm delivery, very preterm delivery, admission to neonatal intensive care,
treatment with surfactant) had J-shaped risk patterns, one NMM (small for gestational age) had a risk declining with age, one
NMM (prolonged ventilation) had a risk increasing with age and one NMM (seizures) was not significantly related to
maternal age.

Conclusions: Both advancing maternal and paternal ages had U- or J-shaped risk patterns for neonatal morbidity and
mortality.
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Background
For 50 years there has been a continuous increase in the
age at which men and women, living in developed coun-
tries, are having children [1]. Many are exercising a
choice to delay parenthood, largely in order to complete
higher levels of education but also to establish employ-
ment and family stability [1, 2]. Educational attainment,
job and financial security and father involvement all
have positive health effects on the fetus and newborn
[3–6]. However, the biologic implications of delayed par-
enthood have been blamed for a major public health cri-
sis in the United States [7, 8]. Biologic risks have been
largely attributed to gamete aging with meiotic non-
disjunction among maturing oocytes [9] and accumu-
lated mitotic errors among spermatogonia [10]. The dis-
ease burden attributable to chromosomal nondisjunction
including Down syndrome is quite large [9]. However,
the role of maternal age in causing neonatal morbidity
and mortality (NMM) in the absence of maternal aneu-
ploidy is controversial [11]. Similarly, for men, the em-
pirical evidence that age-associated de novo mutations
cause NMM has been controversial [8]. The genetic risks
of advancing age on NMM are likely to be counteracted
by risk reduction mediated by socioeconomic factors
[12]. The net risk for each NMM is very likely non-
linear and modeling age using broad age-categories will
be inadequate for describing and interpreting this result-
ant risk function [13, 14]. More complex causal model-
ing is needed but will be challenged by cofounding
between parent ages [15]. When modeling the joint ef-
fects of maternal and paternal ages, two approaches have
predominated [16]. The linear or curvilinear (linear and
quadratic) approach is usually inadequate because the
functions will often fit well over specific age ranges and
fit poorly over other age ranges. Dividing ages into
categories has been preferred by many with 10-year age
groups the most common approach but because of the
very high correlation this approach is certain to leave
residual confounding within categories [16]. Recently, it
was shown that Bayesian modelling of joint maternal
and paternal age effects with conditional autoregressive
(CAR) priors provided a much superior fit for the risks
of Down syndrome and other chromosomal disorders
[15]. The objective of this study was to estimate the ef-
fects of parent age on NMM controlling for confounding
between maternal and paternal age and to separate the
mediating effect of chromosomal disorders, including
Down syndrome.

Methods
Data containing approximately 15,000,000 birth records
were obtained from the United States Natality database
for the years 2014 to 2018. In the United States, state
laws require birth certificates to be completed for all

births, and federal law mandates national collection and
publication of births and other vital statistics data. The
National Vital Statistics System, the federal compilation
of these data, is the result of the cooperation between
the National Center for Health Statistics and the states
to provide access to statistical information from birth
certificates. The fields retained for analysis included both
parents’ ages, the presence of Down syndrome (DS) and
chromosomal disorders other than Down syndrome
(CD). Nine indicators of neonatal morbidity were re-
trieved from the birth records, including small for gesta-
tional age (SGA) defined as the lowest ten percentile of
birth weights for each day of gestational length [17], pre-
term birth (PTB; birth at < 37 weeks gestation), very pre-
term birth (VPTB; birth at < 32 weeks gestation), low
Apgar score (< 4), admission to a neonatal intensive care
unit (NICU), three different treatments (Yes/no; antibi-
otics; surfactant; prolonged (> 6rs) ventilation) and the
incidence of seizures. Intra-hospital death was defined as
neonatal death that occurred before discharge from the
hospital. The study was evaluated by the Texas A&M
Institutional Review Board (IRB) and determined to be
exempt from IRB review.
Odds ratios for neonatal morbidity and mortality by DS

and CD were estimated as follows: Data were cross tabu-
lated for each of i = 2 levels (present/not present) for k =
10 NMM. For each row in the table Yik was the count of
cases, at birth, and ni, the count of births. The counts, Yik

were modeled as independent Binomial distributions
conditional on an unknown rate parameter (μik)

Yik � Binomial μik; ni
� �

The rate parameter was given a Uniform(0,1) prior.
The odds ratios were estimated by converting the rate
parameter to an odds and calculating the ratio of the
odds:

ORk ¼ μ2;k= 1 - μ2;k
� �

=μ1;k= 1 - μ1;k
� �h i

In order to estimate the total effect for maternal age,
case counts for each of k = 10 NMM were cross tabu-
lated by i = 35 maternal ages (15 to 49 years) for each
NMM. For each row in the table Yik was the count of
cases, at birth, and ni, the count of births. The counts
were modeled as independent Binomial distributions
conditional on an unknown rate parameter (μik)

Yik � Binomial μik; ni
� �

The logit of the rate parameter was then modeled as a
linear function of the overall intercept and a random
effect for each maternal age.
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Table 1 Odds ratios for neonatal morbidity and mortality for neonates born with Down syndrome or chromosomal disorders other
than Down syndrome

Odds ratio for Down syndrome Odds ratio for chromosomal disorders1

Preterm Delivery 4.2 (4.0, 4.4) 6.0 (5.6, 6.4)

Very preterm delivery 2.8 (2.4, 3,2) 8.1 (7.3, 9.0)

Small for gestational age 2.3 (2.2, 2.4) 5.2 (4.9, 5.5)

Low Apgar score 4.7 (4.0, 5.6) 31.4 (28.7, 34.1)

Admission to NICU 15.7 (15.0, 16.5) 15.9 (15.0, 16.8)

Antibiotics 7.8 (7.3, 8.3) 11.4 (10.6, 12.3)

Surfactant 6.0 (5.0, 7.1) 16.4 (14.4, 18.6)

Prolonged ventilation 12.7 (11.7, 13.7) 22.9 (21.3, 24.6)

Seizure(s) 11.7 (7.7, 17.0) 49.7 (39.0, 62.5)

Death 12.6 (11.1, 14.3) 70.2 (65.0, 75.7)
1 Chromosomal disorders other than Down syndrome

Fig. 1 Odds ratios for total and adjusted effects for preterm birth by parent age relative to age 15 years
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Logit μik
� � ¼ αk þmaternalik

The intercept was given a flat, improper prior. The
maternal prior was a minimally informative CAR or
random walk prior of length 35 (ages (i) = 15 to 49). The
precision of the CAR prior was specified as Uniform
(0,10) on the standard deviation scale.
In order to estimate the total effect for paternal age,

case counts for each of k = 10 outcomes were cross tabu-
lated by j = 51 paternal ages (15 to 65 years). For each
row in the table, Yjk was the count of cases, at birth, and
nj, the count of births. The counts were modeled as
independent Binomial distributions conditional on an
unknown rate parameter (μjk).

Yjk � Binomial μjk; nj

� �

The logit of the rate parameter was then modeled as a
linear function of the overall intercept and a random ef-
fect for paternal age.

Logit μjk
� �

¼ αk þ paternaljk

The intercept was given a flat, improper prior. The pa-
ternal prior was a minimally informative CAR or ran-
dom walk prior of length 51 (ages (j) = 15 to 65). The
precision of the CAR prior was specified as Uniform (0,
10) on the standard deviation scale.
In order to estimate the adjusted effect for maternal

age, data were restricted to neonates who were negative
for DS and CD. The modeling of maternal age risk was
adjusted for paternal age, as follows. Case counts for
each of k = 10 outcomes were cross tabulated by i = 35
maternal ages (15 to 49 years) and j = 51 paternal ages
(15 to 65 years). For each row in the table Yijk was the
count of cases, at birth, and nij, the count of births. The

Fig. 2 Odds ratios for total and adjusted effects for very preterm birth by parent age relative to age 15 years
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counts were modeled as independent Binomial distribu-
tions conditional on an unknown rate parameter (μijk).

Yijk � Binomial μijk; nij
� �

The logit of the rate parameter was then modeled as a
linear function of the overall intercept and a random
effect for each maternal and paternal age.

Logit μijk
� �

¼ αk þmaternalik þ paternaljk

The intercept was given a flat, improper prior. The
maternal age prior was a minimally informative CAR or
random walk prior of length 35 (ages (i) = 15 to 49) and
the paternal age prior was a minimally informative CAR
or random walk prior of length 51 (ages (j) = 15 to 65).
The precision for the CAR priors was specified as
Uniform (0,10) on the standard deviation scale.

In order to estimate the adjusted effect for paternal
age, all data including data for neonates identified
with DS and CD were used. The model was the same
as used to estimate the maternal adjusted effect. All
age-related odds ratios were standardized to age 15.
The implementation used Markov Chain Monte Carlo
(MCMC) and the software MultiBUGS 1.0.0 [18, 19].
All parameters were estimated with each iteration of
the Markov Chain. Five thousand iterations were
allowed for burn-in and each hundredth of the next
200,000 iterations were collected for the posterior
distribution. Convergence was determined by observ-
ing multiple chains with disparate starting values.
Bayesian credible intervals were taken directly from
the full posterior distributions. Throughout this re-
port, “adjusted” risk means that the risk of the par-
ent’s age was adjusted for the risk of the other
parent’s age.

Fig. 3 Odds ratios for total and adjusted effects for small for gestational age by parent age relative to age 15 years
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A significant age effect was defined as at least one age
having a Bayesian posterior predictive p-value of < 0.05
[20]. For the purpose of describing study results, a U-
shaped distribution was defined as a distribution of age
risks in which the risk for mid-range ages were signifi-
cantly lower than both younger and older ages. A J-
shaped distribution was defined as distribution of age
risks in which mid-range age risks were significantly
lower than younger ages and older ages were signifi-
cantly higher than the youngest ages.

Results
The accessed data identified 15,077,411 singleton births
during the study period. Of these, 8323 mothers were
less than 15y of age and 2492 were older than 49y.
Among fathers, 67,096 were younger than 15 y and 3516
were older than 65 years. Father’s age was missing for 1,
780,585 births which included births for which the

father was not identified. There were 7913 births for
which both the mother’s age was out of the study’s age
range and the father’s age was missing or out of the
study’s age range. It was very common for mothers aged
less than 15y for the father’s age to be missing (72%;
6008/8323). In total, 1,862,012 births were deleted for
missing or out of range parent ages. Outcome variables
were missing for 14,701 births and these births were
deleted. In total, 13,207,486 births were used in the
analyses.
Both Down syndrome and chromosomal disorder (other

than Down syndrome) were strongly related to intra-
hospital death and all nine monitored morbidities (Table 1).
Odds ratios by parent age for both total effect and adjusted
effect are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The
figures show that age 15y was not the lowest risk age for ei-
ther maternal or paternal age. For maternal age, the lowest
risk was more commonly age 30y and for paternal age 35y.

Fig. 4 Odds ratios for total and adjusted effects for low Apgar score by parent age relative to age 15 years
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The adjusted risks for outcomes among NMM from chil-
dren born to the observed extreme ages relative to maternal
age 30 y and paternal age 35y are presented in Table 2. For
paternal age, seven NMM (preterm birth, very preterm
birth, low Apgar score, treatment with antibiotics, treat-
ment with surfactant, prolonged ventilation, intra-hospital
death) had U-shaped risk patterns, two NMM (small for
gestational age, admission to neonatal intensive care) had J-
shaped risk patterns, one NMM (seizures) was not signifi-
cantly related to paternal age. For maternal age, three
NMM (low Apgar score, treatment with antibiotics and
intra-hospital death) had U-shaped risk patterns, four
NMM (preterm delivery, very preterm delivery, admission
to neonatal intensive care, treatment with surfactant) had J-
shaped risk patterns, one NMM (small for gestational age)
had a risk declining with age, one NMM (prolonged venti-
lation) had a risk increasing with age and one NMM
(seizures) was not significantly related to maternal age.

Discussion
The current study evaluated the risk of both parents’
ages on individual NMM that were observed in the very
early neonatal period and recorded in the national col-
lection of birth records. Multiple NMM often occur to-
gether and there has been considerable interest in using
composite scores derived from multiple NMM. How-
ever, there has been no consistency in the implementa-
tion of composite outcomes and the general approach
has, thus far, proven to be too heterogenous [21]. As an
alternative, the current study could be followed up with
a Bayesian approach in which NMM are modeled as a
multivariate distribution and the correlations among the
NMM are objectively estimated. This approach could be
used to evaluate specific programs (elements of prenatal
care, for example) as preventive for multiple correlated
outcomes. The treatments administered would be im-
portant components of these sets of correlated events.

Fig. 5 Odds ratios for total and adjusted effects for admission to neonatal intensive care unit by parent age relative to age 15 years
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Treatments are administered more subjectively and are
influenced by both subjective evaluation by clinicians
and institutional guidelines. Despite this subjectivity,
treatments were significantly related to both parents’
ages from both statistical and clinical perspectives.
The current study adds considerable precision and de-

tail to what is known about the risks of both parents’
ages on NMM. The precision results from autoregressive
smoothing [22]. When the data are highly correlated, at
1-year age intervals, the gain in precision is large and
when there is no evidence of correlation at 1-year inter-
vals, the risk estimates are the same as in the model that
assumes independence among age groups. Modeling of
1-year age groups, as independent, has been published
and showed similar trends but considerably less preci-
sion [13].
There is existing evidence of a U-shaped risk distribu-

tion for maternal age [13]. In the Weng study, age 27y

was used as the baseline low risk definition. At maternal
age 16y odds ratios for preterm birth, small for gesta-
tional age and neonatal death were 2.03 (1.88, 2.20), 1.83
(1.68, 1.99) and 2.33 (1.76, 3.08), respectively and for
age > 43y were 2.62 (2.31, 2.97), 0.95 (0.92, 0.97) and
2.65 (1.46, 4.61), respectively. The current study showed
that the maternal age risk for eight NMM declined from
age 15y to age 30y. For four outcomes, the maternal age
risk at advanced ages was significantly higher than at
very young ages. It may be more correct to call these
five risk functions J-shaped rather than U-shaped. A
recent meta-analysis showed that the most common
analysis of maternal age effects used 10-year age cat-
egories which has limitations in describing long-term
trends that are non-linear. However, the meta-analysis
confirmed that advanced maternal age was related to
preterm delivery, higher rates of NICU and worse
Apgar scores [14].

Fig. 6 Odds ratios for total and adjusted effects for treatment with antibiotics by parent age relative to age 15 years
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The existing support for U-shaped risk function for
paternal age is limited. One study used 10-year age
ranges and age 25-34y as standard. The odds ratios for
preterm delivery, low Apgar scores and admission to
NICU were 1.15 (1.15, 1.16), 1.23 (1.23, 1.16) and 1.03
(1.03, 1.04), respectively for age < 25y and were 1.65
(1.62, 1.69), 134 (1.29, 1.39) and 1.64 (1.59, 1.68), re-
spectively for age > 55y. Literature review showed that
comparison of broad age categories is the most common
comparison and that these comparisons provided little
or no support for any difference among paternal ages for
preterm birth, small for gestational age and neonatal
death [8]. The current study showed that paternal age
risks declined from age 15y to age 35y for nine of ten
outcomes. For all nine of these NNM, the paternal age
risk increased from age 35y. For two NMM, the risk of
advanced age was significantly higher than young pater-
nal ages and the risk function could be called J-shaped.

The odds ratios for the extreme paternal ages were small
compared to the oldest and youngest maternal age odds
ratios.
The current study took a novel approach to the man-

agement of covariates for the purpose of very specific
objectives aimed at facilitating mediation modeling. The
first step was to evaluate the unadjusted effects of both
maternal and paternal age allowing for the effect to be
non-linear. Graphical evaluation of the Total Effect, as
defined in mediation modeling [23–25], confirmed the
existence of parental age risks that were non-linear. The
adjusted effects were estimated accounting for potential
confounding between maternal and paternal age which
are known to be highly correlated [16]. The current
study confirmed that the ages of both parents have inde-
pendent effects on NMM. Further mediation analysis
will need to control for the confounding between parent
ages and must account for effects that are not linear. We

Fig. 7 Odds ratios for total and adjusted effects for treatment with surfactant by parent age relative to age 15 years
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believe that the joint CAR method for age modeling will
be the best possible option to control this confounding
in further mediation modeling. Maternal age effects were
estimated including the effect of chromosomal disorders,
including Down syndrome (CD/DS) as a potential medi-
ator. The results show that there exists a significant dis-
ease burden that is not mediated by CD/DS. A directed
acyclic graph (DAG; Fig. 11) was used to guide this ana-
lysis [26]. The graph shows that one or more variables
cause maternal and paternal ages to be similar. To block
confounding between paternal and maternal ages, it
would be theoretically possible to block the backdoor
path by blocking this variable, if it were known. As an al-
ternative, blocking by maternal age for paternal age and
by paternal age for maternal age provides the same con-
trol of confounding. Blocking paternal age by maternal
age also prevents confounding of the paternal age risk
by chromosomal disorders including Down syndrome
(CD/DS). A previous study on the same population

showed that there was no direct effect between paternal
age and CD/DS so CD/DS could confound the relation-
ship but does not mediate paternal age effects [15].
These explicit conditions provide a structural approach
for investigators to estimate alternative estimates that
would be considered “causal” by improving upon the
current DAG [26, 27]. A better understanding of the
biology that constitutes the observed non-linear net
aging effect should be pursued by developing more
specific causal models. The current study adds to the
existing literature by providing a specific causal model
that can, and will be, criticized for its omission of
important causes including both confounders and
mediators.

Conclusions
Both advancing maternal and paternal ages had U- or
J-shaped risk patterns for neonatal morbidity and
mortality.

Fig. 8 Odds ratios for total and adjusted effects for treatment with prolonged ventilation by parent age relative to age 15 years
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Fig. 9 Odds ratios for total and adjusted effects for occurrence of seizures by parent age relative to age 15 years
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Fig. 10 Odds ratios for total and adjusted effects for neonatal death by parent age relative to age 15 years
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Fig. 11 The Directed Acyclic Graph (DAG) used in the study

Table 2 Odds ratios for youngest and oldest parents relative to age 30y for mothers and age 35y for fathers

Odds ratio for paternal age Odds ratio for maternal age

Age 15y Age 30y Age 65y Age 15y Age 35y Age 49y

Preterm delivery 1.31 (1.25, 1.39) 1 (baseline) 1.30 (1.20, 1.40) 1.22 (1.16, 1.30) 1 (baseline) 2.20 (2.00, 2.44)

Very preterm delivery 1.45 (1.31, 1.62) 1 1.39 (1.19, 1.62) 1.47 (1.32, 1.65) 1 2.00 (1.70, 2.35)

Small for gestational age 1.13 (1.07, 1.19) 1 1.46(1.35, 1.57) 1.60 (1.53, 1.67) 1 0.96 (0.88, 1.06)

Low Apgar score 1.42 (1.26, 1.62) 1 1.38 (1.16, 1.66) 1.41 (1.25, 1.61) 1 1.32 (1.09, 1.57)

Admission to NICU 1.19 (1.13, 1.25) 1 1.34 (1.24, 1.44) 1.12 (1.06, 1.18) 1 1.80 (1.64, 1.96)

Antibiotics 1.12 (1.05, 1.20) 1 1.17 (1.05, 1.30) 1.25 (1.18, 1.34) 1 1.22 (1.10, 1.38)

Surfactant 1.17 (1.05, 1.31) 1 1.14 (0.95, 1.36) 1.23 (1.08, 1.45) 1 1.67 (1.38, 2.12)

Prolonged ventilation 1.20 (1.10, 1.30) 1 1.13 (1.00, 1.29) 1.06 (0.97, 1.17) 1 1.76 (1.53, 2.06)

Seizure(s) 1.09 (0.82, 1.44) 1 1.32 (0.93, 2.27) 1.11 (0.94, 1.45) 1 1.13 (0.91, 1.62)

Death 1.17 (1.06, 1.31) 1 1.16 (1.00, 1.38) 1.48 (1.27, 1.77) 1 1.79 (1.42, 2.30)
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