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Abstract

Background: Waardenburg syndrome type 1 (WS1) can be distinguished from Waardenburg syndrome type 2
(WS2) by the presence of dystopia canthorum. About 96% of WS1 are due to PAX3 mutations, and SOX70 mutations
have been reported in 15% of WS2.

Case presentation: This report describes a patient with WS1 who harbored a novel SOX70 nonsense mutation
(652G >T, p.G218%) in exon 3 which is the penultimate exon. The patient had mild prodromal neurological
symptoms that were followed by severe attacks of generalized seizures associated with delayed myelination of the
brain. The immature myelination recovered later and the neurological symptoms could be improved. This is the first
truncating mutation in exon 3 of SOX70 that is associated with neurological symptoms in Waardenburg syndrome.
Previous studies reported that the neurological symptoms that associate with WS are congenital and irreversible.
These findings suggest that the reversible neurological phenotype may be associated with the nonsense mutation
in exon 3 of SOXT0.

Conclusions: When patients of WS show mild prodromal neurological symptoms, the clinician should be aware of
the possibility that severe attacks of generalized seizures may follow, which may be associated with the truncating
mutation in exon 3 of SOXT0.
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Background EDNRB, SOX10, and SNAI2) have been reported as the
Waardenburg syndrome (WS) is a hereditary disease char-  cause of WS [1].
acterized by sensorineural hearing loss and pigmentation Mutations in SOX10 were first reported to associate

abnormalities. WS has been classified into four subtypes  with WS4 and then later with WS2. WS4 can be accom-
on the basis of the clinical symptoms, namely, WS1 to  panied by neurological symptoms, in which case it is
WS4 [1]. Mutations in six genes (PAX3, MITF, EDN3, called PCWH (Peripheral demyelinating neuropathy,
Central dysmyelinating leukodystrophy, Waardenburg
syndrome, Hirschsprung disease, OMIM: #609136) [2].
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In this report, we describe the case of a patient with
WS1 who harbored a de novo SOX10 heterozygous non-
sense mutation. The patient had mild prodromal neuro-
logical symptoms that were followed by an attack of
generalized seizures that associated with delayed myelin-
ation of the brain which recovered later.

Case presentation

A 5-month-old boy was referred to our hospital with
the chief complaint of congenital deafness. No abnor-
malities were observed during his perinatal course.
However, at presentation, his motor development was
delayed: he was still unable to hold up his head. He also
showed bilateral congenital horizontally narrow eyes
with drooping eyelids (blepharoptosis), heterochromia iri-
dis, and dystopia canthorum (W-index: 2.24) (Fig. 1la).
Interview and visual inspection did not find musculoskel-
etal abnormalities or limits of mobility in the limbs. His
defecation was normal and no intestinal signs indicating
constipation, disorder of peristalsis, or obstruction were
apparent by interview and auscultation. Oto-acoustic
emission, conditioned orientation response audiometry,
and auditory brainstem response revealed severe hearing
loss (Additional file 1). Computed tomography of the tem-
poral bone revealed hypoplasia of the semicircular canals
and cochlea in the bilateral ears (Additional file 2). None
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of the members of his family had any of the symptoms
found in the proband (Additional file 3).

At 5 months of age, the proband developed an attack of
generalized seizures. Initially, the seizures lasted for a few
seconds and occurred once a day. In the following 2 weeks,
both the frequency and duration of the seizures increased.
2 weeks after the seizures started, the proband had a
systemic clonic seizure that lasted for about 4 min and the
next day he had a longer clonic seizure with eye deviation
to the right for about 12 min. Although obvious abnormal
findings were not observed in the electroencephalogram,
epilepsy was suspected. Sodium valproate was started
3 days after the 4-min-long seizure. Since then, the sei-
zures have stopped for 3 years even after sodium valproate
was stopped 2 years after the start of prescription. At the
age of 12 months, he started holding up his head on his
own, and, at 16 and 20 months, he started pulling up on
things and walking along against a wall, respectively.
Magnetic resonance imaging (MRI) performed at 8 months
of age revealed delayed myelination of the frontal lobe on
both T1- and T2-weighted imaging (Fig. 1b and «c).
However, follow-up MRI performed at 18 months of age
demonstrated almost normal myelination (Fig. 1d and e).

Genomic DNA was extracted from whole blood and
subjected to whole exome sequencing analysis using
SureSelect Human All Exon V5 (Agilent Technolo-
gies, CA, USA). The captured DNA was subjected to

Fig. 1 Clinical features of the patient. a The face at 5 months of age. The patient had blue irides, blepharoptosis, and dystopia canthorum
(W-index: 2.24). b-e Brain MRI findings at 8 and 18 months of age. At 8 months of age, namely, 3 months after the proband had a 4-min-long systemic
clonic seizure, T1- b and T2-weighted images ¢ demonstrated delayed myelination of the frontal lobe. In normal development, myelination of frontal
lobe is observed at 3-4 months of age on T1-weighted imaging, and at 7-8 months of age on T2-weighted imaging. Follow-up MRI performed at

18 months of age demonstrated almost normal myelination on T1-weighted imaging d and T2-weighted imaging e
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the massively parallel sequencing system (HiSeq2000,
[lumina, CA, USA). Paired-end read sequences were
mapped and quality-checked with StrandNGS (Strand
Genomics, CA, USA) using the reference sequence
hg19/GRCh37. Among 88,273 variants detected in the
patient and parents, 263 variants predicted to affect
amino acid residues and detected in the patient with
minor allele frequency (MAF) < 0.5% in public databases
[6-9] were extracted and proceeded for segregation
analysis within the family. Finally, eight variants of
seven genes were selected as possible pathogenic muta-
tions (Additional file 4). Of these, the SOX10 mutation
(c.652G > T, p.G218*) was absent from public databases,
i.e. novel. SOXI0 has been previously reported as a
responsible gene for PCWH, WS 2E (OMIM: #611584),
and 4C (#613266). Since multiple nonsense mutations
of SOX10 have already been reported to cause PCWH
or WS2/4 [2], the mutation detected in this case was also
considered a pathogenic mutation. The heterozygous
nonsense mutation in SOX10 was in exon 3 (Additional
file 5). Sanger sequencing validated the presence of the
mutation in the proband, and the mutation was not
present in his parents (Additional file 6).

Discussion

WS1 can be distinguished from WS2 by the presence
of dystopia canthorum [1]. About 96% of cases of
WS1 are due to PAX3 mutations [2, 3]. It has been
suggested that about 3% of cases who were not asso-
ciated with mutations in PAX3 had W-index scores
that were diagnostic of WS1 [10]. Indeed, although
our proband was clinically classified as having WSI,
whole exome sequencing did not reveal any mutation
in PAX3; instead, a novel SOX10 mutation was found.
These findings suggest that SOX10 mutations are one
of the causes of WSI.

Truncating mutations often inactivate gene function,
either because they produce truncated protein products or
because there is a significant decrease in cytoplasmic
mRNA abundance by nonsense-mediated mRNA decay
(NMD). When a truncating mutation occurs at a nucleo-
tide located in the last coding exon or less than 50-55
nucleotides upstream of the last coding exon, the trun-
cated mRNA is not recognized and the NMD is escaped
[11]. Then, the mutant protein is synthesized and acts as a
dominant negative protein that impairs the function of the
wild-type SOX10, resulting in the neurological phenotypes
[12, 13]. To date, the neurological symptoms associated
with SOX10 have been reported only in the patients with
truncating mutations in the last exon (exon 4 in NM_
006941) of SOX10 [9]. The present patient had a novel
nonsense mutation in exon 3, 45 nucleotides upstream
from the 5" end of exon 4. Thus, this is the first case to
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show the neurological phenotypes due to the nonsense
mutation in exon 3 of SOX10 (Additional file 5).

Previous reports stated that the neurological symptoms
of WS due to delayed myelination are congenital and
irreversible [3—-5]. However, the present report suggests
that, while patients with a nonsense mutation in SOX10
that is proximal to the 3" end of exon 3 can also exhibit
delayed myelination, they may develop severe attacks of
generalized seizures that can be improved because the
immature myelination can recover later. Long-term
follow-up is required for these patients because recur-
rence of seizure attacks may occur in the future. These
findings suggest that they may be clinical characteristics
of WS that arise from a nonsense mutation in exon 3 of
SOX10. 1t is also possible to speculate that modifier
genes that complement or repair immature myelination
played a role. In conclusion, when patients of WS show
mild prodromal neurological symptoms, such as delayed
motor development and/or blepharoptosis, the clinician
should be aware of the possibility that severe attacks of
generalized seizures may follow, which may be associated
with the truncating mutation in exon 3 of SOXI0.

Additional files

Additional file 1: Hearing test results of the proband. OAE (a) and COR
(b) audiometry revealed severe hearing loss. On the ABR test, neither the
right (c) nor the left (d) ear responded to click sound stimulation at 105
dBnHL. Lt, left; Rt, right. (DOCX 295 kb)

Additional file 2: Axial CT of the temporal bone. These axial CT images
are the series of slices taken from the cranial side toward the caudal side
(a—h: left ear; i-p: right ear). The CT imaging revealed hypoplasia of the
semicircular canals and cochlea. (DOCX 1699 kb)

Additional file 3: Pedigree of the family in this study. Round and square
symbols indicate females and males, respectively. The individuals who
were examined and whose blood samples were collected for DNA
analysis are indicated by a horizontal bar above the symbol. None of the
family members other than the proband had any Waardenburg
syndrome-related symptoms. P: proband. (DOCX 43 kb)

Additional file 4: Summary of the eight candidate variants in the
proband that were detected by whole exome sequencing. The SOX70
mutation was indicated in red. (DOCX 20 kb)

Additional file 5: Schematic depiction indicating the position of the
detected mutation in SOX70. The translated regions are indicated by
black filled rectangles in the upper line. (DOCX 176 kb)

Additional file 6: Electropherograms showing partial sequences of
SOX10. Subject 113 (a) has a homozygous G (indicated by an arrow) in the
first nucleotide of codon 218, which encodes glycine (G). The proband
(b) has a heterozygous G to T transition (arrow) at the same position that
causes the glycine (G) at codon 218 to be replaced with a stop codon (¥).
This causes premature termination of protein synthesis. (DOCX 179 kb)
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