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of the SMARCAL1 gene leading to mild
Schimke immune-osseous dysplasia: a case

report
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Abstract

Background: Schimke immune-osseous dysplasia (SIOD, OMIM 242900) is characterized by spondyloepiphyseal
dysplasia, T-cell deficiency, renal dysfunction and special facial features. SMARCALT gene mutations are determined

in approximately 50% of patients diagnosed with SIOD.

Case presentation: The case presented here is that of a 6-year-old boy who was born at 33 weeks to healthy,
non-consanguineous Chinese parents. He presented with short stature (95 cm; <3rd percentile) and proteinuria.
Initially suspected of having IgM nephropathy, the patient was finally diagnosed with mild Schimke immune-osseous
dysplasia. One novel mutation (p.R817H) and one well-known mutation (p.R645C) was identified in the SMARCALT gene.

Conclusion: This report describes a clinical and genetic diagnostic model of mild SIOD. It also highlights the importance
of molecular testing or clinical diagnosis and the guidance it provides in disease prognosis.
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Background
Schimke immune-osseous dysplasia (SIOD, MIM
242900) is characterized by spondyloepiphyseal

dysplasia (SED), T-cell deficiency, renal dysfunction
and special facial features [1-3]. SIOD is a rare,
multi-system, autosomal recessive disease with an
incidence of 1:1x10°~3 x10° SIOD manifests in
approximately 50% of patients due to mutations in
the SMARCALI gene. Maintaining DNA stability,
DNA replication, and recombination or DNA repair,
SMARCAL1 (SWI/SNF-related, matrix associated,
actin-dependent regulator of chromatin, subfamily
a-like 1) is a member of the SNF2 family [4, 5]. SIOD
disease severity is determined by different types of
SMARCALI mutations. SMARCALI nonsense, frame
shift and splicing mutations can lead to severe clinical
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manifestations. Contrarily, most missense mutations
cause mild symptoms.

SIOD was first reported in 1971 [6], and its pheno-
type varies from mild to severe [7, 8]. Nonsense,
frame shift and splicing mutations in the SMARCALI
gene destroy the normal structure of SNF2 proteins,
consequently producing truncated protein products.
Several homozygous/heterozygous missense mutations
lead to a severe phenotype [2]. Contrary to this, a
large number of bi-allelic missense mutations are
associated with mild clinical symptoms. No significant
differences have been described between the two
types of clinical manifestations. Patients with mild
SIOD can survive into adulthood with reasonable
treatment [9]. Severe phenotypes result in death in
juvenile patients, ultimately after the development of
end stage renal disease.

Here, the case of a 6-year-old boy with mild SIOD
is presented. Next-generation sequencing technology
was applied to samples collected from this patient in
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order to investigate the SMARCALI gene and poten-
tially identify pathogenic mutations.

Case presentation

The patient, a 6-year-old boy, is the first child born
to healthy, non-consanguineous, Chinese parents.
Initially admitted to the People’s Hospital of Human
Province due to short stature (95 c¢m; < 3rd percent-
ile), he was later referred to Nanjing Jinling Hospital
at 5.7 years of age as the patient had experienced
proteinuria over the course of 3 months. Born
prematurely at 33 weeks, his birth weight was 1.96 kg
(< Brdpercentile).

Laboratory investigations revealed routine urine pro-
tein concentration of 3+, a white blood cell count of
10.1/L (3.5-9.5 x 10°/L), and a lymphocyte percentage
of 10.52% (20%—50%). Serum biochemical measure-
ments showed the following concentrations: total
protein59g/L (65.0-85.0 g/L), albumin 31.8 g/L (40.0—
55.0 g/L), urea 2.6 mmol/L (2.9-8.2 mmol/L), creatin-
ine 23 pmol/L (53-123 umol/L), total cholesterol
7.63 mmol/L (<5.18 mmol/L), and triglycerides
2.61 mmol/L (<1.70 mmol/L). T and B lymphocyte sub-
set analysis revealed the following: B cells constituting
36.7% (6.4%—22.6%), NK cells comprising 11.3% (5.6%—
30.9%), a CD3+ T-lymphocyterate of 35.6% (61.1%—
77%), a CD3+ CD4+ T-lymphocyte frequency of 10.2%
(15.8%—41.6%), and a CD3+ CD8+ T-lymphocyte pres-
ence 0f22.5% (18.1%—29.6%) within the sample. Show-
ing a congenital immune deficiency, decreased blood
IgG values were observed. Renal biopsy analysis
revealed the presence of 37 glomeruli, while immuno-
histochemical studies indicated positive capillary wall
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IgA, IgM, IgG values and mild, partial glomerular seg-
mental mesangial matrix hyperplasia. Pathologically,
this led to the diagnosis of IgM nephropathy. After
having been prescribed immunosuppressive treatment
of 10 mg prednisone TID, urine protein concentrations
dropped to 2+. Non-negative urine protein effects were
observed with the administration of methylpredniso-
lone and cyclophosphamide pulse therapy (specific dose
is unknown). Proteinuria was significantly positive, and
showed the presence of glomerulus albuminuria. In
order to further establish a diagnosis and treatment
regimen, the patient was transferred to the nephritic
department at the Nanjing Jinling Hospital. Physical
examination found that the patient exhibited normal
facial expression, had normal skull structure and
thyroid function, was of normal intelligence. However,
it's worth mentioning that spine of the litter patient has
scoliosis (Fig. 1). A deficiency of growth hormones was
not identified. However, the patient did experience
puffy eyelids and edema of the lower extremities.
Retinitis pigmentosa was not detected. Both parents
were found to be phenotypically normal. Therefore,
under the consent of the patient and his family, next
generation sequencing was used to perform genetic
testing. On the basis of clinical and laboratory findings,
the diagnosis of SIOD is doubtful.

Discussion and conclusions

SIOD is an autosomal-recessive, multisystem disorder
with a low incidence. So far, only one pathogenic
gene, SMARCALI, has been associated with SIOD.
The SMARCALI gene is located on chromosome
2q34-q36, and contains 18 exons. Exonl and 2 do

Fig. 1 The spine radiograph showing the litter patient has scoliosis
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not participate in protein coding, while the remaining
exons encode the 954aa protein. Due to the conveni-
ently short sequence that is generated, many
researchers choose different methods to detect poten-
tial SMARCALI gene mutations. Zivicnjak [10] used
direct sequencing in search of novel compound
mutations of SMARCALI in two female siblings,
while Simon [11] reported novel SMARCALIbi-allelic
mutations by employing whole-exome sequencing
methods. Carroll [12] discovered a novel splice site
mutation in SMARCALI through next generation
sequencing (NGS). In this study, NGS was used to
screen for, and Sanger sequencing to verify, the
presence of SIOD mutations. Several mutations
associated with the manifestation of SIOD have been
found. However, current methods failed to detect
variants causative of SIOD in approximately 50% of
diagnosed patients. It is suspected that this may be
associated with the following factors: 1) deep intronic
region mutations, 2) some pathogenic genes have not
been discovered and/or described, 3) environmental
factors can modify the gene expression [13], and 4)
endophenotypes may potentially exist [3].

SIOD shows phenotypic heterogeneity [11], and
disease severity varies from mild to severe. SIOD
patients with a severe phenotype typically die before
the age of five and are characterized by osseous dys-
plasia, hypermicrosoma, special facial dysmorphism,
and T cell deficiency caused by repeated infection and
chromosomal fragility [14]. There are truncating
SMARCALImutations (nonsense, frame shift and
splicing mutations) that result in a severe disease
phenotype. On the other hand, when compared to se-
vere SIOD patients, mild SIOD patients manifest
symptoms that are slower to progress in severity.
Some may present without infections, and are some-
times clinically asymptomatic, with no proteinuria
detected in the early-childhood onset cases. Mild
SIOD patients generally survive up to the age of
15 years, while some patients may survive beyond
36 years of age [15]. This case describes that of a
6-year-old boy with clinically mild manifestations.
After a 1 year follow-up examination, the clinical
situation of the patient had improved. It is worth
mentioning that the patient’s proteinuria had disap-
peared. Taking advantage of next-generation sequen-
cing, two SMARCALImissense mutations were
discovered in this patient. Boerkoel [1] reported the
genotypes present in three families with the milder
form of SIOD. One family had compound heterozy-
gous mutations (I548N, R645C), while the R586W,
and K647 T mutations were respectively identified in
homozygotic states in the remaining two families. The
mild clinical phenotype found in this patient
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corresponds exactly with that described by Boerkoel
[1]. All of the affected individuals were short in stat-
ure, and had renal disease and lymphocytopenia,
while lacking recurrent infections. It is noteworthy
that affected individuals described in previous studies
were all more than 15 years of age after undergoing
renal transplantation. The patient presented in this
study had a mild clinical phenotype but had not yet
undergone renal transplantation. This milder pheno-
type caused by missense mutations may be due to re-
sidual SMARCALI function [1]. However, Yue [16]
and Jimena [17] have reported compound heterozy-
gous affected individuals presenting with a severe
phenotype due to missense mutations. These differ-
ences may be attributed to environmental or genetic
influences. The presence of missense mutations is
therefore unlikely to accurately predict disease
phenotype.

The patient described in this study harbored a
paternally-derived missense mutation (c.2450G > A) in
exon 16 of SMARCALI leading to an arginine-to-
histidine substitution (Fig. 2). Resulting in an
arginine-to-cysteine substitution, the patient also pre-
sented with a well-known maternally inherited mis-
sense mutation (c.1933C>T) [9] in exon 12 of
theSMARCALI gene. Several explanations exist to
describe the arginine-to-histidine amino acid change
at position 817. Regardless, the two mutated sites are
highly conserved in the house mouse, Norway rat,
zebra fish, cattle, frog, monkey, and chimpanzee ani-
mal models. Described for the first time in our re-
port, the missense mutation (p.R817H) is located in
the DNA/RNA helicase C-terminal domain of the
protein. It is forecasted to be detrimental to the pa-
tient with a score of 0.0 by employing the Sorting
Intolerant from Tolerant (SIFT, http://sift.jcvi.org/)
technique. Similarly, the potential effect of substitu-
tion has a detrimental score of 1.000 as calculated by
PolyPhen-2  (http://genetics.bwh.harvard.edu/pph2/)
(Fig. 3).

SMARCALI is a replication stress response and single
strand DNA binding protein [9]. As an ATP-dependent
annealing helicase, this protein contains two DNA/RNA
HARP?2 helicases at the C-terminal, and has a SNF2 N-
terminal domain. SMARCALI catalyzes the rewinding of
the stably unwound DNA. SNF2-related proteins are dis-
tinguished by the presence of SWI/SNF helicase motifs
(I, T, 11, IIL, IV, V and VI). DNA/RNA helicases partake
in nucleotide triphosphate hydrolysis and in the coupling
of DNA binding [18-20]. Correlated toSMARCALIgene
mutations, multiple mechanisms could bring about the
loss of functional proteins in SIOD patients [21]. Mis-
sense mutations in the SMARCALI SNF2 domain de-
creases DNA-dependent ATPase activity [21]. To date,
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Fig. 2 Genetic analysis of the family. Mutations analysis: the patient carries two mutations (a and b) of SMARCALT gene. The mother
carries the ¢.1933C >T mutation (c and d) and the father carries the ¢.2450G > A mutation (e and f). Arrows indicate the position of
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the common missense mutations R586W, R645C and
R820H have all been detected in the conserved arginine
residues of the SMARCALI1 protein. Mutations R586W
andR820H belong to a region associated with DNA
binding and ATPase activity. Since the novel R817H mu-
tation detected in this study is located adjacent to the
R820H mutation found within the DNA/RNA helicase
domain, the R817H variant may similarly affect ATPase
function through altering the SMARCALI structure or
protein interaction capacity. The known missense muta-
tion R645C is located in the SNF2 domain and is associ-
ated with putative nuclear localization. It is predicted to
interfere with the mobility of the hinge region and
prevent competent clamping of SMARCALI on the
DNA [22].This is similar to the effects observed with
the R644W, K647Q, and K647 T mutations. SMAR-
CALI mutations result in cell proliferation defects

and a promotion of apoptosis. SMARCALI-deficient
zebrafish were associated with growth retardation and
defects in hematopoiesis [23]. Growth failure caused
by skeletal dysplasia in SIOD patients is not as a
result of renal disease. The functional loss of
SMARCAL1 in SIOD patients contribute to multiple
phenotypes resulting from the instability of DNA
replication throughout the genome [24]. In an vitro
study, Marie [25] reported that a deficiency of
SMARCALI altered the chromatin structure, thereby
affecting gene expression. Recently, SIOD patients
with a deficiency in SMARCAL1 had increased
hypermethylation of the IL7R promoter, but reduced
expression in T cells [26].This is consistent with the
results obtained by Marie (Fig. 4).

Globally, approximately 70 mutations associated
with the SMARCALI gene are currently described.
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R817H
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human ITAANMGLTFSTADLYVFAELFWNPGVLI YHRIGOTNSYSIHYLYAKGTADDYLY
mouse ITAANMGLTFSSADLVVFAELFWNPGVLI FHRIGOTNSVGIHYLVAKGTADDYLV
rat ITAANMGLTFSSADLVVFAELFUNPGVLI HRIGOTSSYGIHYLVAKGTADDYLY
zebrafish ITAANMGLTFSSADLYVFAELFWNPGVLI FHRIGOTSSYGIHYLVAKGTADDYLY
cattle ITAANMGLTFSSADLVVFAELFUNPGVLI FHRIGOTSSYGIHYLVAKGTADDYLY
frog ITAANNGLTFSSADLVVFGELFWNPGVLM! YHRIGQLSSVSIHYLVARGTADDYLV
monbey ITAANMGLTLHSAALVVFAELFWNPGVLI YHRIGOTSNVDIHYLVAKGTADDYLY
tmpanzee  ITAANMGLTLSSADLVVFAELFWNPGVLIQAEDRYHRIGQTSSYNIHYLVAKGTADDYLY
Fig. 3 Multi-sequence alignments of SMARCALT protein shows invariance of R645C and R817H from human to chimpanzee. In silico analysis of
the likely pathogenicity of the two mutations shows variant scores (SIFT = 0.00, PolyPhen-2 = 1.00) characteristic of a highly likely pathogenic
mutations. The red box indicated the positions of SMARCALT mutatnt proteins

The exact gene mutations can only be detected in
half of SIOD patients. Among them, patients have
different genetic backgrounds, but European and
American patients comprise the majority of cases. Ac-
cording to an analysis of available data, approximately
90% of mutations associated with theSMARCALI gene
have been identified in the Occident and are either
truncating or non-truncating mutations. This suggests
that the incidence of SIOD may be connected to
environmental and genetic factors. Due to limited
domestic research on SIOD, and where sufficient
knowledge is lacking, this condition can be easily
misdiagnosed. In order to lay a foundation for future

clinical SIOD diagnosis, further studies on larger
populations are required.

In summary, the case of a Chinese patient with
mild SIOD associated with a well-known missense
mutation and a novel SMARCALImissense mutation
is presented. The patient was characterized by a short
stature, proteinuria and immune deficiency. This
report once more underlines the significance of
molecular detection and identification of disease-
associated genetic agents. Our findings provide some
targeted guidance for the prognosis of this patient.
These findings also contribute towards the informa-
tion available in gene mutation databases.
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Fig. 4 Schematic diagram of SMARCALT gene. Functional structure domains of SMARCALTgene from exon 12 to exon 16 which contains mutant
sites (R654C and R817H) of our report, respectively. Orange represents HARP2 domains, yellow is symbolic of SNF2 N-terminal domain, green
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