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Abstract

Background: Hospital mortality data can inform planning for health interventions and may help optimize resource
allocation if they are reliable and appropriately interpreted. However such data are often not available in low

income countries including Kenya.

Methods: Data from the Clinical Information Network covering 12 county hospitals’ paediatric admissions
aged 2-59 months for the periods September 2013 to March 2015 were used to describe mortality across
differing contexts and to explore whether simple clinical characteristics used to classify severity of illness in
common treatment guidelines are consistently associated with inpatient mortality. Regression models
accounting for hospital identity and malaria prevalence (low or high) were used. Multiple imputation for
missing data was based on a missing at random assumption with sensitivity analyses based on pattern

mixture missing not at random assumptions.

Results: The overall cluster adjusted crude mortality rate across hospitals was 6 - 2% with an almost 5 fold variation
across sites (95% Cl4-9to 7-8;range 2 - 1% - 11 - 0%). Hospital identity was significantly associated with mortality.
Clinical features included in guidelines for common diseases to assess severity of illness were consistently associated
with mortality in multivariable analyses (AROC =0 - 86).

Conclusion: All-cause mortality is highly variable across hospitals and associated with clinical risk factors identified in
disease specific guidelines. A panel of these clinical features may provide a basic common data framework as part of

improved health information systems to support evaluations of quality and outcomes of care at scale and inform

health system strengthening efforts.
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Background

It is important for a health system to have an accsu-
rate picture of overall (crude) and cause-specific hos-
pital mortality. Although wusing mortality or risk
adjusted mortality as an indicator of quality of care is
contested because it is hard to adjust for case-mix or
the severity of illness on arrival (case-severity) [1-4]
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the presence of 3.variation in mortality may point to
possible inequalities in population health, access or
resource provision that can be addressed. Yet, little
attention has been paid to understanding and explor-
ing hospital mortality and its variability in African
settings, perhaps because routinely reported data are
often of poor quality [5].

In this report our aim is to contribute to efforts to
understand health system performance and describe
mortality and its variability. We also explore whether
simple clinical characteristics used to classify severity
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of common childhood illness are consistently associ-
ated with inpatient mortality. Demonstrating the latter
provides a rationale for reinforcing their widespread
clinical use and for considering them as components
of a common data framework for paediatric admis-
sions. A common data framework (potentially in-
cluded in emerging electronic record systems) could
improve our ability to characterise hospitals by their
case-mix and case severity and inform health system
strengthening efforts in support of universal access to
quality health care.

Methods

Study setting

In 2014, Kenya had a gross domestic product of 1246
US dollars per capita after rebasing [6] and the under-
five mortality was 58.3 per 1000 live births according to
2013 estimates [7, 8]. It has good immunization coverage
of 90% for the 3rd dose of the pentavalent vaccine (intro-
duced in 2002 and containing Diphtheria, Pertussis, Tet-
anus, Hepatitis B and Haemophilus influenzae type B
antigens) and 85% for the 10-valent pneumococcal
conjugate vaccine (PCV 10, introduced in 2011) [7].

The study takes advantage of a recently established
clinical information network (CIN) comprised of 13
county referral hospitals. However, one county hospital
was excluded from the analyses presented because of
persistent problems with data collection. In total 12 fa-
cilities (11 counties) are therefore included in this ana-
lysis. The selection and geographic location of hospitals
is presented in detail in panel 1, Table 1 and Fig. 1. In
brief, CIN is a partnership between researchers, the
Ministry of Health and paediatricians and is a pragmatic
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research database collecting patient level data from all
paediatric admissions with aims at improving use of in-
formation in policy and practice.

Panel 1: Selection of the Clinical Information
Network sites and Case Sampling

Kenya devolved health care provision to 47 county ad-
ministrations in 2013 with the national Ministry of Health
retaining responsibility for monitoring and evaluation
amongst other areas. The clinical information network
(CIN) was designed as a partnership between researchers,
the Ministry of Health and paediatricians and is a prag-
matic research database collecting patient level data from
all paediatric admissions with aims at improving use of
information in policy and practice. Twelve counties were
first identified purposefully with the Ministry of Health to
ensure the feasibility of the project while representing two
main groupings based on the prevalence of malaria as an
admission clinical diagnosis: high (>50%) and low (<20%).
Within counties tertiary level facilities were excluded
(found in 1 of the 12 counties) but public hospitals provi-
ding first referral level care (also called secondary level)
within these counties and estimated to have at least 1000
paediatric admissions per year were considered eligible.
One hospital was then purposefully selected from each
county except in the largest urban county serving a
population of over 3 million from which two hospitals
were included. This resulted in two geographic clusters of
hospitals (Fig. 1).

These hospitals were invited to join the proposed clinical
information network (CIN) after its nature and purpose
was explained to each hospitals’ management team and
paediatric departments and their agreement sought. Char-
acteristics of hospitals in the CIN are presented in Table 1.

Table 1 Characteristics of hospitals in the clinical information network

Hospital  Bed Duration of Cases available for ~ Cases available  Diarrhoea  Pneumonia  Malaria PMTCT HIV  Percentage
capacity  data collection analysis —-minimum  for analysis —full admissions admissions admissions prevalence living in poverty
in months dataset dataset in the county
A 67 18 4757 2081 1659 (34-9) 2351 (494) 108 (2-3) 6.7 26
B 35 18 1853 1685 446 (24-1) 1029 (55:5) 65 (3:5) 6.8 56
C 41 18 3517 1989 1063 (30-2) 1650 (469) 317 (90) 9.7 21
D 42 18 2445 2217 747 (30-6) 1420 (581) 210 (8:6) 9.7 21
E 29 13 1982 1774 436 (22:0) 1057 (53:3) 138 (7:0) 2.8 25
F 63 13 2440 2215 663 (27-2) 1379 (56-5) 252 (103) 28 41
G 32 13 1881 1726 391 (20-8) 886 (47-1) 10 (0-5) 55 31
H 29 13 2146 1767 531 (247) 548 (255) 1238 (57-7) 205 45
| 35 17 4175 3812 1106 (26:5) 1224 (293) 3640 (872) 45 51
J 21 17 2209 1729 267 (12:1) 504 (22:8) 6 (64 11.8 40
K 32 17 3066 2454 474 (15-5) 867 (283) 2020 (659) 139 65
L 38 17 3270 2875 967 (29:6) 1433 (43-8) 1993 (609) 93 49

Hospital workload, epidemiological diversity, catchment population poverty index and data available for the analysis



Gathara et al. BMC Pediatrics (2017) 17:99

Page 3 of 20

Population Density( 1000/l|m= )

3500

Kenyan population lives

Fig. 1 Geographic location of hospitals. Black dots represent hospitals in the clinical information network and included in the analysis while the
black lines represent county boundaries. Hospitals are clustered in the central and western regions consistent with where the majority of the

In brief, the CIN collects core data that should be part
of the routine health information system (RHIS) (the
RHIS dataset) on all children admitted to hospital after
their discharge (see below). In 10 of the 12 hospitals a
comprehensive set of additional data were also collected
on all admissions but due to high workloads in two hospi-
tals (A and C) such comprehensive data were collected
only on a random sample of 35% and 65% of the
admissions respectively.

Study population

The population of interest for this report is restricted to
children aged 2-59 months, the subjects of available,
evidence-based clinical guidelines [9]. Hospitals joined

the network in a staggered fashion from September 2013
over a period of 6 months, the period to March 2015
therefore provides at least one full calendar year for ana-
lysis from each hospital. In these hospitals, diagnoses at
the time of discharge or death are clinician defined and
informed by access to only very basic diagnostics (for ex-
ample malaria blood slide but not blood culture) and
post-mortems are done extremely rarely.

Data collection

Hospitals were encouraged to fully implement a struc-
tured pediatric admission record (PAR) that has been
shown to improve documentation of core clinical
characteristics at admission [10] and which was
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adopted by the Ministry of Health in 2010 as the ad-
mission encounter form for district hospitals [11].
Data were collected from the routine case record in an
approach described in full elsewhere [12]. In brief,
data were abstracted on the day following discharge
from each child’s case record and entered directly onto
a computer in a REDCap [13] database with in-built
range and validity checks. Data clerks were trained
centrally as a team prior to data collection in hospitals
according to detailed, written standard operating pro-
cedures provided as a manual. At the end of every day
before data were synchronized to a central database,
the clerk checked on-site for errors, completeness and
consistency with locally executed ‘cleaning’ pro-
grammes. Any inconsistencies or errors identified
were corrected after verification from the case record.
Throughout the study period clerks were coordinated
and supervised by a research team member who tele-
phoned approximately weekly and made visits ap-
proximately two-monthly when ongoing training to
improve data collection was conducted.

Analysis

The Routine Health Information System (RHIS) dataset
includes patient age, sex, weight, diagnoses and outcome.
Secondary variables described below were generated from
these. Age was categorised into 2-6, 7-11, and 12—
59 months groups based on differences in observed risks of
death in the dataset. The number of diagnoses made at
admission (comorbidities) was categorised into no comor-
bidity, one comorbidity, two comorbidities and three or
more comorbidities. Weight-for-age z-score (WAZ) meas-
urement was classified according to standard WHO refer-
ence tables for age, weight and gender as follows: children
with a Z score, > — 1 were classified as normal, children
with a Z score < = — 1 and > -2 were classified as mildly
malnourished, children with a Z score, <= -2 and > -3 as
moderately malnourished, and children with a Z score < = - 3
as severely malnourished. The RHIS dataset was used to ex-
plore those associations between patient characteristics and
mortality made possible if the routine health information
system were functioning well. A secondary variable was
generated to categorise hospital groups by malaria preva-
lence as an admission diagnosis (high >50%; low <20%).
This grouping has some association with HIV prevalence
and poverty levels (Table 1).

The comprehensive dataset included an additional
checklist of clinical symptoms and signs recorded by the
duty clinician on the paediatric admission record. These
include danger signs and other signs promoted by
Integrated Management of Childhood Illness guidelines
[14] and those previously associated with all-cause or
disease-specific mortality [15-19] that are used in na-
tional [20] and World Health Organisation [21]
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evidence-based guidelines to guide diagnosis, severity
classification and treatment for the commonest causes
of paediatric hospital admission (malaria, pneumonia,
diarrhoea/dehydration, malnutrition, meningitis, an-
aemia and asthma). They are listed in Table 2. As there
were few observations in each of the V (2%), P (4%) and
U (<1%) categories of the AVPU scale these observations
were re-categorised into Alert and Not alert.

Statistical analysis

All patients without outcome data or with an implausible
or missing date of admission, discharge or death were
dropped from the analysis (see Fig. 2). Using the RHIS
dataset we present hospital specific crude mortality rates
and accompanying confidence intervals. To explore
whether hospital mortality was associated with hospital
identity, we used the RHIS dataset and fitted a fixed ef-
fects model with hospital but no other covariates and
compared this to a null model using a likelihood ratio test
(LRT). Hospitals were retained as fixed effects in all multi-
variable models because of significant associations with
mortality and because we had only a small, non-random
sample of hospitals (considering hospitals identities as
random effects made no appreciable difference to results,
data not shown).

The data available on clinical signs, symptoms and
diagnoses are presented as hospital specific proportions
in Table 2 and illustrate the variability across sites. We
used logistic regression without adjustment to explore
associations with mortality for each variable but without
hospitals as fixed effects (Table 3). We then built multi-
variable models to explore associations of key clinical
factors with mortality. We included malaria prevalence
as a fixed effect in the multivariable models and
explored for interaction between the risk factors and
malaria prevalence. We used a multivariable model
(model 1) based on the RHIS dataset to explore the abil-
ity of these data to explain mortality (Table 2). Model 2
included all variables in the comprehensive dataset
(Table 2) in a complete case analysis including inter-
action terms for malaria prevalence. This included only
57% of all cases as a result of list-wise deletion of
records with any missing data (see Fig. 2). The degree of
missingness, represented as a proportion, varied by
hospital and variable (Table 2). To address the missing
data problem multiple imputation was used (panel 2)
with the validity of results explored in sensitivity ana-
lyses (panel 3).

Panel 2: Handling missing data

We explored and subsequently assumed a missing at
random (MAR) mechanism as a basis for multiple im-
putation using the chained equation methods proposed
by van Buuren [22] and Raghunathan [23]. Imputation
was based on 100 iterations and 10 datasets as has been
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Admissions aged 2 -59 months
33 988 observations

> Missing outcome (n=247)

All available cases for analysis
33 741 observations

Data with missing values for routine
health information variables (gender

n=328; weight or age and thus
WAZ score n=3112)

30 101 observations

Observations comprising the routine health information
(RHIS) dataset and used in model 1

Exclude observations randomly not

» selected for comprehensive data
collection in hospitals A and D

26 324 observations

Observations selected for comprehensive data
collection and used in model 3 after imputation.

Observations with missing data for
» any of the variables in the

comprehensive data set

analysis
14 960 observations

Observations used in model 2 as part of complete case

Fig. 2 Availability of data across the different models. Illustrates the number of observations used in each of the models listed

recommended for missing data rates of 10% -30% per
variable[24, 25]. All variables in the RHIS and compre-
hensive datasets and identified interaction terms were
included in the imputation procedures. To improve the
power of the imputation model, we included auxiliary
variables (history of cough and difficulty breathing)
which may be clinically useful in diagnosis and are rela-
tively well documented, and a variable denoting use of
the paediatric admission record as this improves docu-
mentation and may therefore influence missingness [10].
We replicated analyses of associations with mortality in-
cluding interaction terms after imputation in Model 3
(see Table 3).

In order to assess the plausibility of a MAR mechan-
ism, we performed analysis under a Missing Not At Ran-
dom (MNAR) assumption using pattern mixture models
that included interaction terms. This proceeded as fol-
lows; first, we derived three missingness patterns
amongst cases in the dataset: no missing data (57%

cases); minimum 1 to maximum 3 variables per case
with missing data (26% cases); >3 variables per case with
missing data (17% cases). We performed multiple impu-
tations and fitted the same multivariable models for each
pattern independently. Thereafter, we pooled the esti-
mates across the three patterns weighting by the propor-
tions of individuals in each pattern per variable and
compared these results with model 3 estimates estimated
under a MAR assumption. We present the results of the
MNAR analyses in Appendix.

Panel 3: Sensitivity analyses

We conducted various sensitivity analyses to explore
the consistency of our results under different scenar-
ios. First, we explored associations with mortality
using the comprehensive imputed dataset but re-
stricted the analysis to cases with only common child-
hood illnesses (malaria, pneumonia, diarrhoea/
dehydration, malnutrition, meningitis, anaemia and
asthma) to exclude possible effects of uncommon,
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Table 3 Univariable and Multivariable analysis for associations with mortality
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Univariable analysis - pooled

data

Model 2 - Mulitvariable model for
associations with mortality for complete
case analysis including interaction terms
for malaria endemicity

Model 3 - Mulitvariable model for
associations with mortality on
imputed data including interaction
terms for malaria endemicity

OR (95% Cl) P value OR (95% Cl) OR (95% Cl)
AUC 0-86 0-85
Pseudo R-squared 0-25 024
Age group®
2 _6 months ref
7 _11 months 0-72(0-64-0-82) <0001
12_59 months 0-40(0-36-0-45)
2_6 months in high malaria ref ref
prevalence
7 _11 months in high malaria 0-46(0-36-0-60) 0-43(0-29-0-63)
prevalence
12_59 months in high malaria 0-41(0-33-0-50) 0-37(0-27-0-50)
prevalence
7 _11 months in Low malaria 0-34(0-15-0-75) 0-33(0-19-0-57)
prevalence
12_59 months in Low malaria 0-29(0-14-0-62) 0-29(0-17-0-49)
prevalence
Child sex
Female ref ref ref
Male 0-79(0-72-0-86) <0001 0-71(0-64-0-80) 067(0-57-0-79)
WAZ score®
Oor>=1SD ref
Minus 1 SD 1-35(1-17-1-56) <0001
Minus 2 SD 2-26(1-95-2:61)
Minus 3 SD 4-35(3-86-4-92)
0 or > =1 SD in high malaria ref ref
prevalence
Minus 1 SD in high malaria 1-50(1-15-1-95) 1-19(0-85-1-67)
prevalence
Minus 2 SD in high malaria 1-25(0-95-1-65) 1-50(1-03-2:17)
prevalence
Minus 3 SD in high malaria 2:96(2:27-3-86) 3:01(2:09-4-35)
prevalence
Minus 1 SD in Low malaria 0-93(0-45-1-93) 1-:06(0-61-1-82)
prevalence
Minus 2 SD in Low malaria 117 (0-56-2-44) 0-88(0:52-1-51)
prevalence
Minus 3 SD in Low malaria 2:36(1-13-4-94) 2:09(1-22-3:56)
prevalence
Number of comorbidities
0 ref ref ref
1 1-44(1-28-162) <0001 0-99(0-85-1-16) 1-08(0-86-1:37)
2 2-21(1-94-2-50) 1-03(0-86-1-23) 1-27(0-98-1-64)
>=3 3-67(3-18-4-23) 1-25(1-02-1-55) 1-68(1-25-2-25)

History of fever
No

ref

ref

ref
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Table 3 Univariable and Multivariable analysis for associations with mortality (Continued)

Yes 0:96(0-84-1-10) 0-555 0-77(0-66-0-90) 076(0:62-0-92)
History of diarrhoea

No ref ref ref

Yes 2:02(1-82-2:25) <0-001 1-34(1-16-1-56) 1-45(1-20-1-76)
Convulsions

No ref ref ref

Yes 1-13(1-00-1-28) 0-045 1-54(1:32-1-81) 1-35(1-09-1-67)
Vomitting everything

No ref ref ref

Yes 1-41(1-25-1-58) <0-001 1-04(0:91-1-20) 1-03(0-86-1-24)
Indrawing

No ref ref ref

Yes 2-84(2:55-3-18) <0-001 2:61(2:28-298) 2:48(2:08-2-96)
Pallor

None ref ref ref

Some/severe 3-39(3:03-379) <0-001 2:21(1:93-2:53) 2:32(1:92-2-81)
Central cyanosis

No ref ref ref

Yes 6:36(4-54-890) <0-001 2:64(1:70-4-12) 3:25(1:91-5:53)
AVPU

Alert ref ref ref

Not alert (VPU) 8:95(7-88-10-17) <0-001 3.98(3:31-4-77) 3.95(3:16-4-95)
Ability to drink®

No ref

Yes 0-23(0-20-0-26) <0-001

Ability to drink no in high ref ref

malaria prevalence

Ability to drink yes in high 0-63(0-49-0-80) 0-65(0-48-0-87)

malaria prevalence

Ability to drink yes in Low 0-51(0-24-1-08) 0-44(0-25-0-78)

malaria prevalence
Stiff neck®

No/soft ref

Yes 2:71(2:13-3-44) <0-001

Stiff neck no in high malaria ref ref

prevalence

Stiff neck yes in high malaria 2:17(1:38-3-42) 3:92(2:15-7-16)

prevalence

Stiff neck yes in low malaria 3.07(1-28-7-36) 1-53(0-81-2:90)

prevalence
Skin pinch

Immediate ref ref ref

1-2s 2-25(1-96-2:59) <0-001 1-29(1:09-1-52) 1-17(0:94-1-44)

>25 6:18(5-28-7-24) 1-80(1-43-2-26) 1-47(1-09-1-98)

Capillary refill time
<=2 sCs ref ref ref

>3 3-28(2-80-3-84) <0001 1-46(1-15-1-86) 1-68(1-32-2:13)
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Table 3 Univariable and Multivariable analysis for associations with mortality (Continued)

Indeterminate 0-70(0:-51-0:97) 1-17(0-79-1-73) 1-83(1-12-2:99)
Sunken eyes
No ref ref ref
Yes 2:76(2-44-312) <0-001 1-12(0:96-1-31) 1-24(1-00-1-55)
Jaundice
None ref ref ref
Moderate/severe 2:03(1-55-2:66) <0-001 1-78(1:30-2:42) 1-64(1-01-2:65)
Severe wasting®
No ref
Yes 501(4-32-581) <0-001
Severe wasting no in high ref ref
malaria prevalence
Severe wasting yes in high 2:35(1-68-3-27) 2:54(1.70-3-82)
malaria prevalence
Severe wasting yes in low 1:99(0-97-4-09) 1-66(0-95-2-87)
malaria prevalence
Oedema of malnutrition®
None ref
Moderate/severe 3:02(2:39-3-80) <0001
Oedema none in high malaria ref ref
prevalence
Oedema mild/moderate in 2:66(1-82-3-89) 3-13(1:95-5-02)
high malaria prevalence
Oedema mild/moderate in 2:45(1:17-5-13) 1-88(1-08-3-25)
Low malaria prevalence
Malaria endemicity
High ref <0001 ref ref
Low 0-90(0-83-0-99) 0-71(0-46-1-08) 0-78(0-43-1-42)
Hospital
A ref ref ref
B 23(1:01-1-61) <0-001 1-26(091-1-73) 1-69(1-04-2-74)
C 83(1-53-2-20) 1-74(1:30-2-32) 1-90(1-26-2-85)
D 2-46(2-04-2-96) 1:53(1:16-2:01) 1:99(1-33-2:98)
E 0:53(0:39-072) 0-60(0-40-0-90) 0:53(0-28-1-00)
F 00(0-79-1-26) 091(0-66-1-26) 0-88(0:56-1-39)
G 048(0:34-0-67) 0-75(0-49-1-1 81(0-43-1-50)
H 410141 76) 0-83(0:62-1-11) 090(0:52-1-57)
I 43(120-1-72) 1-23(0:98-1-55) 15(0-82-1-60)
J 08(0-86-1-37) 0:68(0-50-0-92) 1:05(0-68-1-63)
K 52(1-25-1-84) 0-82(0-64-1-07) 0:95(0-68-1-32)
L 40(1-15-1-70) na na

Model 2 results are based on complete case analysis while model 3 results are based on the imputed dataset; both models include interaction terms for malaria prevalence.

Variables with significant interactions with malaria endemicity

high mortality conditions that might vary across
place. Second, we conducted analyses restricted to the
‘best months’ of data collection by excluding the first
9 months (November 2013 to July 2014) for hospitals
I and J and 7 months (February to August 2014) for

hospital H to limit the scale of imputation. Third, we
undertook analyses for data stratified according to
whether cases were in high or low admission seasons.
The estimates for associations between risk factors
and mortality from these sensitivity analyses were
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clinically not appreciably different from those re-
ported for Model 3 (data available on request).

Calibration and discrimination of the models was
assessed using pseudo R-squared and area under the re-
ceiver operating curve (AUC) measures. Results from
the univariable and multivariable analyses are reported
as crude and adjusted odds ratios respectively with cor-
responding 95% confidence intervals (CIs) adjusted for
clustering within hospitals. All analyses were undertaken
using Stata v13 (StataCorp, Texas, USA).

Results

A total of 44,314 children were admitted into the CIN
hospitals from September 2013 to March 2015, of these
33,741 (76%) were aged 2—59 months, had outcome data
and a plausible date of admission or death. Characteristics
of children by hospital and overall are presented in Table
2. The overall cluster adjusted crude mortality across hos-
pitals was 6.2% (95% CI 4.9 to 7.8; range 2.1% - 11.0%)
with five-fold variation across hospitals while the risk-

Page 13 of 20

adjusted mortality rate derived from Model 3 was 6.2%
(95% CI 4.7 to 7.6; range 3.0% - 9.4%) (Fig. 3a). Hospital
identity was significantly associated with mortality (likeli-
hood ration test, LRT <0.001 when compared to the null
model). The distribution of risk factors per admission var-
ied by hospital and outcome with 85% of children who
survived having 3 or fewer risk factors while of those who
died 53% had more than 3 risk factors (see Fig. 3b).

The amount of missing data varied by variable and hos-
pital (see Table 2 and panel 2). Pooled estimates of associ-
ation weighted by proportion across missingness patterns
were similar to those from model 3 (imputed data assuming
MAR) and are presented in Appendix. These findings pro-
vide support for assuming that data were missing at random.

Clinical risk factors for mortality

All characteristics included in the RHIS dataset, derived
covariables and all primary symptoms and signs included
in the comprehensive data were significantly associated
with mortality in univariable analyses except history of

8
|

T

Mortality rate
6
|

4
)

Crude and risk-adjusted mortality and patient risk profiles by hospital

Crude and risk-adjusted mortality rate by hospital

{1
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il I
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Fig. 3 Crude and risk-adjusted mortality and patient risk profiles by hospital. The top panel Fig. 3a represent crude (light grey) and risk-adjusted
mortality rate (dark grey) across hospitals with accompanying 95% confidence intervals. The bottom panel Fig. 3b represent the median and the
25th and 75th interquartile ranges for number of risk factors per patient stratified by mortality. Hospitals are ordered by malaria endemicity (low
A B, C, D EF G highH, I J KL
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fever with anticipated (Table 3) direction of effect. Al-
though we utilised alert vs not alert in risk adjustment
exploratory univariable analysis illustrated an increasing
risk of mortality with a decreasing conscious level; with
alert as the reference category risks were V. OR 4.61;
95% CI 3.54—6.00, P OR 9.31; 95% CI 7.84-11.05 and U
OR 17.59; 95% 13.42-23.04.

Multivariable model 1, using RHIS data had an AUC
of 0.73 and pseudo-R* of 0.09 suggesting poor to modest
model fit (assuming a cut off for good model fit for
pseudo-R? of 0.20 and above [26]) and that they are not
likely to be suitable for understanding hospital popula-
tions’ risk of mortality. The complete case analysis
model (model 2) and analyses after imputation (model
3), including malaria prevalence interactions, had better
model fit (pseudo-R* of 0.25; AUC of 0.86 and pseudo-
R? of 0.24; AUC of 0.85 respectively).

Estimates of association from complete case analysis
and data sets using all admissions after imputation were
similar in magnitude and direction of effect across all
the clinical risk factors and we therefore present results
from model 3 using imputed data as this makes max-
imum use of available data. These analyses (Table 3)
show in all cases where interactions were not found that
risk factors remained significantly associated with mor-
tality except vomiting everything and number of comor-
bidities. Male gender (OR 0.67; 95% CI 0.57-0.79) and
history of fever (OR 0.76; 95% CI 0.62—0.92) were asso-
ciated with protection while reduced conscious level was
strongly associated with mortality (OR 3.95; 95% CI
3.16-4.95). Tests for interactions between risk factors
and malaria prevalence were significant for ability to
drink, stiff neck, severe wasting, oedema, age group and
weight-for-age z-score.

For covariables with significant interactions, estimates
of association for having a stiff neck and severe wasting in
low malaria prevalence hospitals had consistent but lower
magnitude directions of effect than in high malaria preva-
lence areas (OR 1.53; 95% CI 0.81 to 2.90 vs 3.92; 95% CI
2.15 to 7.16 and OR 1.66; 95% CI 0.95 to 2.87 vs OR 2.54;
95% CI 1.70-3.82 respectively) and were not significant
(Table 3) perhaps reflecting a loss of power (see Table 2).
The estimates of association for being able to drink,
oedema of malnutrition and age group remained signifi-
cant in both malaria prevalence settings with consistently
lower magnitudes of association in low malaria prevalence
settings (OR, 0.65 vs 0.44, 3.13 vs 1.88, and 0.43 vs 0.33
(7-11 months) and 0.37 vs 0.29 (12—-59 months) respect-
ively). For weight-for-age z-score the estimate of effect
was also attenuated in the low malaria prevalence hospi-
tals (OR 2.09; 95% CI 1.22-3.56 vs OR 3.01; 95% CI 2.09-
4.35). Signs associated with dehydration were consistently
associated with mortality. For three hospitals (B, C and D)
a persistent association with mortality was observed
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within these multivariable models (ORs 1.69, 1.90 and
1.99 respectively, Table 3).

Discussion

All-cause mortality is highly variable across only 12 hospi-
tals even within a common age group. Variation in mortal-
ity was associated with the proportion of children with
multiple risk factors, something that cannot be determined
using data from existing routine health information sys-
tems. This variation in risk factors at presentation might be
linked to the varying number of comorbidities at presenta-
tion resulting from overlapping syndromic diagnoses. This
finding of major variation in the risk profile of children ad-
mitted to hospitals is important but rarely highlighted in
existing research literature from low-income settings. The
variation of mortality with hospital identity is probably ex-
plained by associated variability in underlying risk factors
(such as malaria and HIV prevalence, socio-economic sta-
tus, nutrition and access) that influence case-mix and case-
severity. Although, these data exist at a population level,
adjusting for these parameters would require a large num-
ber of hospitals in more defined, smaller regions. As such
we have refrained from adjusting for these parameters in
our models due to the risk of ecological fallacy where
population estimates do not necessarily apply to the popu-
lation seeking care. In addition, care seeking patterns in
Kenya vary across populations and individuals with some
of the patients accessing care directly from hospital while
others are through referral from primary health care ser-
vices but these data are rarely documented and hence diffi-
cult to disentangle within this population. Thus, although
there is a standard policy guiding the provision of PHC in
Kenya and how patients might progress through the sys-
tem anecdotal evidence suggests procedures are rarely
followed in practice and there are limited data from pri-
mary care on access and care seeking behaviors.

Mortality may also potentially be influenced by differing
availability of resources across hospitals and variation in
care practices shown to exist in other studies [27, 28].
More comprehensive datasets from a larger number of
hospitals, as are being used in high income settings [29,
30], would however be required to try and determine the
degree to which quality of care and local context are asso-
ciated with inpatient mortality in low-income settings.
Even then the use of mortality to infer anything about
quality of care specifically is contested [1, 31]. What is
more pertinent to low-income contexts is that such vari-
ation in mortality should prompt thinking on where sys-
tem strengthening efforts may be most needed.

In the multivariable analyses, we demonstrate that ma-
jority of clinical risk factors included in best-practice
guidelines were associated with mortality irrespective of
diagnosis. This approach is important due to the inabil-
ity to confirm diagnoses in these settings. For example,
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we have previously reported that basic investigations like
blood culture, CSF analysis and urine culture are not
routinely available [28] and there is no access to tests of
inflammatory markers, for biochemical derangements or
for detection of other pathogens except for malaria and
HIV. Thus, an approach that is agnostic of diagnosis
may be the more useful approach at scale. Prior demon-
strations of association are typically from single sites or
focus on specific diseases [15, 16, 19, 32]. We believe
this is the first report of the value of these clinical risk
factors from multiple settings, across all cause admis-
sions, with routine observations made by large numbers
of clinicians. As malaria prevalence and other attributes
of the hospitals’ setting may be correlated, including for
example proportion living in poverty and hospital size,
we cannot attribute the influence of malaria prevalence
on the behaviour of risk factors to malaria as a disease.
However, findings suggest that future efforts to explore
variability in mortality or develop risk prediction ap-
proaches should take the prevalence of malaria into
account.

Our data support the practical, day to day use of these
clinical factors in identifying children who may be
prioritised for attention, specific treatments and review.
Integrating such clinical factors into a low-income set-
ting, patient-level prognostic score might be possible
[16] replicating approaches in high-income settings [33].
However, the implementation of such scores in routine
settings with limited human resources, high staff turn-
over and without computer assisted decision support
would likely be very challenging as even basic job aides
are somewhat slowly adopted [28]. These clinical fea-
tures might however be used to characterise risk profiles
of hospital populations aged 2 to 59 months. This might
enable improved understanding of changes in mortality
over time within sites using methods such as cumulative
sum control charts (CUSUM) [34-37] where risk-
adjustment may facilitate exploration of variation in a
single institution’s performance [1, 3, 31]. More prag-
matically such risk profiles may help point to different
health system challenges. High prevalence of cases with
high risk factor density may suggest problems of access,
late detection or delayed referral. They may also point to
particularly vulnerable populations within catchment
areas, where malnutrition and poverty are prevalent for
example, or demonstrate the impact of varying disease
ecology that should be taken into account in resource al-
location. Our findings suggest that existing routine
health information systems data (such as DHIS2) [38]
would be inadequate for this purpose, suggesting value
in developing and implementing suitable common data
frameworks.

The data we report need to be interpreted in the light
of their limitations. First, is the missing data problem
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commonly associated with collecting data in routine set-
tings. The Clinical Information Network worked with
hospitals to promote data quality that improved over
time but missingness varied across variables and hospi-
tals. Thus, just less than 60% of cases were included in
our complete case multivariable models. We used mul-
tiple imputation to allow use of all available data and
undertook sensitivity analyses that suggest our findings
are generally robust. An alternative approach would be
using Expectation-Maximization (EM) algorithms to get
maximum likelihood estimates [39]. Second, our sample
of hospitals is small and non-random, with selection
based on feasibility and efforts to represent diverse but
not all epidemiological and socio-cultural contexts. One
hospital that failed to provide reasonable quality data
was excluded from these analyses. As such, due to the
limited number of hospitals, our models did not suffi-
cient power to explore potentially important factors at
the hospital level. Thirdly, diagnoses are clinical and
rarely informed by diagnostics while risk factors such as
hypoglycaemia, hypoxemia or an individual’s HIV status
could not be examined as these are rarely routinely eval-
uated. Fourth, we did not include more robust nutri-
tional indicators like mid-upper arm circumference or
weight-for-height z scores or account for vaccination
status which may influence mortality because such data
are largely missing. However, there is evidence that vac-
cination coverage is high in Kenya and we were able to
use weight-for-age z scores for nutritional assessment.

Conclusion

In summary, all-cause crude and cluster adjusted mortal-
ity rate was highly variable across hospitals. Such variation
is largely explained by variation in severity of illness at the
time of clinical presentation, findings that point to under-
lying differences in population health and health system
performance that will need to be explored. Our data sup-
ports the use of clinical risk factors drawn from guidelines
in day-to-day use in prioritizing care and identifying chil-
dren at the highest risk of death but also to develop risk
adjusted mortality estimates across hospitals. We also
demonstrate how having a large patient level dataset from
multiple geographically diverse sites may improve our un-
derstanding of health system challenges and performance.
Such work provides a learning platform for the design of
common data frameworks that are relevant to clinical
practice and might be incorporated into future electronic
medical records (EMRs) that go beyond a focus on cost-
accounting needs [40]. To maximise the future value of
EMRs there is a clear imperative for researchers, clini-
cians, policy makers and health care managers to engage
in their design so they enable health system performance
monitoring at scale as is occurring in specific fields such
as HIV care [41, 42].
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Table 4 Sensitivity analysis for imputation based on the MAR versus MNAR assumption high malaria prevalence strata

Variables with
no missing data

OR (95% Cl)

1-3 variables
with missing
data

OR (95% CI)

4 or more
variables with
missing data

OR (95% Cl)

Mantel Haenszel
estimates weighted
across missing patterns
(MNAR)

OR (95% Cl)

Model 3 - Mulitvariable
model for associations
with mortality on
imputed data including
interaction terms for
malaria endemicity
(MAR)

OR (95% Cl)

Age group®

Child sex

WAZ score®

Number of
comorbidities

History of
fever

History of
diarrhoea

2_6 months and high
malaria prevalence

7 _11 months in high
malaria prevalence

12_59 months in high
malaria prevalence

7 _11 months in Low
malaria prevalence

12_59 months in Low
malaria prevalence

Female

Male

0or>=1SDin high
malaria prevalence

Minus 1 SD in high
malaria prevalence

Minus 2 SD in high
malaria prevalence

Minus 3 SD in high
malaria prevalence

Minus 1 SD in Low
malaria prevalence

Minus 2 SD in Low
malaria prevalence

Minus 3 SD in Low
malaria prevalence

No

Yes

No

Yes

ref

043(0-29-063)

0-37(0-27-0'5)

0-34(0-15-075)

0-29(-14-62)

ref
0-67(0-57-079)

ref

1:19(0-85-1-67)

1:50(1-03-2-17)

301(2:09-4-35)

0:93(-45-194)

1-17(:56-244)

2:36(1:13-4-94)

ref

1-08(0-86-1-37)
1-27(0-98-1-64)
1-68(1-25-2:25)

ref
0-76(0-62-092)

ref
1-45(1-2-1-76)

ref

0-48(0-27-0-86)

0-53(0-34-0-84)

0-54(0-17-1-68)

0-59(0-21-1-72)

ref
0-7(0-56-0-88)

ref

1:96(1-25-3-09)

1-43(0-81-2-54)

523(3-21-8:54)

2:20(0-8-6-01)

1-61(0-55-4-69)

5:85(2:07-16:53)

ref

1-21(0-89-1-65)
1-26(0-89-1-79)
1-22(0-78-1-89)

ref
0-79(0-6-1-05)

ref
1-05(0-8-1-39)

ref

0-47(0-29-077)

0-35(0-23-0-54)

0-09(0-02-0-35)

0-07(0-02-0-25)

ref
0-82(0-63-1-05)

ref

1:54(0:91-2:58)

0-89(047-1-7)

1:76(0-95-3-25)

0-29(0-07-1-18)

0-17(04-067)

0-33(0-08-1-33)

ref

0-78(0-57-1-08)
0:67(0-45-0-99)
0-92(0-56-1-53)

ref
0-76(0-5-1-17)

ref
1-36(0:92-2)

ref

0-48(0-28-0-81)

0:37(0-26-051)

0-41(0-14-1-21)

0-39(0-15-1-07)

ref
0-71(0-58-0-87)

ref

1-46(0-96-2-23)

1:29(0-79-2-12)

320(2:10-4-91)

1:20(0-50-2-95)

1:18(0-50-2-83)

3.06(1-26-7-65)

ref

0-98(0-75-1-28)
1:19(0-88-1-62)
1-20(0-80-1-82)

ref
0-77(0-59-1-00)

ref
1-32(1:02-1-71)

ref

0-43(0-29-0-63)

0:37(0-27-0-50)

0:33(0-19-057)

0-29(0-17-049)

ref
0:67(0-57-079)

ref

1-19(0-85-1-67)

1:50(1-03-2-17)

3-01(2:09-4-35)

1:06(0-61-1-82)

0-88(0-52-1-51)

2:09(1-22-3-56)

ref

1-08(0-86-1-37)
1-27(0-98-1-64)
1-68(1-25-2:25)

ref
0-76(0-62-0-92)

ref
1-45(1-20-1-76)
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Table 4 Sensitivity analysis for imputation based on the MAR versus MNAR assumption high malaria prevalence strata (Continued)

convulsions

No ref ref ref ref ref

Yes 1-35(1-09-1-67) 1-73(1-29-2:33) 1-67(1-13-2:47) 1-53(1-15-2:06) 1-35(1-09-1-67)
Vomitting
everything

No ref ref ref ref ref

Yes 1-03(0-86-1-24) 1-07(0-81-141) 1-11(0:79-157) 1-06(0-83-1-36) 1-03(0-86-1-24)
Indrawing

No ref ref ref ref ref

Yes 2-48(2:08-2-96) 291(227-373) 2:58(1-82-3-64) 2:61(207-3-31) 2:48(2:08-2-96)
Pallor

None ref ref ref ref ref

Some/severe 2:32(1:92-2:81) 2:22(1-71-2-87) 1-98(1-45-2:69) 2:19(1-73-2-79) 2:32(1:92-2:81)
Central
cyanosis

No ref ref ref ref ref

Yes 3-25(1:91-5-53) 2:37(1-1-5-11) 2:3(0:52-10-21) 2:77(136-633) 3-25(1:91-5:53)
AVPU

Alert ref ref ref ref ref

Not alert (VPU) 3-95(3-16-4-95) 3-94(2:87-541) 4-42(2:53-7-73) 4-06(2:93-573) 3-95(3-16-4-95)
Ability to
drink®

Ability to drink no in ref ref ref ref ref

high malaria prevalence

Ability to drink yes in 0:65(0-48-0-87) 0-76(0-5-1-15) 0:58(0:33-1-01) 0:66(0-45-0-98) 0:65(0-48-0-87)

high malaria prevalence

Ability to drink yes in 0:51(0-24-1-08) 0-85(0:31-2:34) 0-11(0:02-0-48) 0:57(0-23-1-43) 0-44(0-25-0-78)

Low malaria prevalence
Stiff neck®

Stiff neck no in high ref ref ref ref ref

malaria prevalence

Stiff neck yes in high 3.92(2:15-7-16) 2:24(0:94-531) 0-81(0-28-2:31) 2:70(1-36-5-49) 3-92(2:15-7-16)

malaria prevalence

Stiff neck yes in low 3.07(1-31-7-17) 2:51(0-72-878) 0-15(0:03-0-76) 2:52(097-6:81) 1:53(0-81-2-90)

malaria prevalence
Skin pinch

Immediate ref ref ref ref ref

1-2s 1-17(0-94-1-44) 1-5(1-12-2:02) 1-26(0-83-1-93) 1-29(0-99-1-69) 1:17(0-94-1-44)

>2s 1-47(1-09-1-98) 2:54(1-67-3-86) 2:28(1-16-4-46) 1:96(125-3-15) 1-47(1-09-1-98)
Capillary refill
time

<=2 sCs ref ref ref ref ref

>3 1-68(1:32-2:13) 1:08(0-67-1-76) 1-41(0-85-2:32) 1:39(0-95-2:07) 1:68(1:32-2-13)

Indeterminate 1-83(1:12-2:99) 1-01(0-43-2-35) na 1-27(0:51-1-75) 1-83(1-12-2:99)
Sunken eyes

No ref ref ref ref ref

Yes 1-24(1-1-55) 0-96(0-69-1-34) 1-04(0-74-1-46) 1-11(0-84-1-47) 1-24(1-00-1-55)
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Table 4 Sensitivity analysis for imputation based on the MAR versus MNAR assumption high malaria prevalence strata (Continued)

Jaundice
None ref ref
Moderate/severe 1-64(1-01-2:65) 1-72(0-96-3-1)
Severe
wasting®
Severe wasting no in ref ref
high malaria prevalence
Severe wasting yes in 2:54(1:7-3-82) 2:41(1-27-4-58)
high malaria prevalence
Severe wasting yes in 2:45(1-17-513) 3.27(1-09-9-79)
low malaria prevalence
Oedema of

malnutrition?

Oedema none in high  ref ref
malaria prevalence

Oedema mild/moderate
in high malaria
prevalence

3-13(1-95-5:02)

Oedema mild/moderate
in Low malaria

1:94(0-96-3-90)

prevalence
Malaria
endemicity
High ref ref
Low 0-78(0-43-1-42) 1-12(0-49-2:53)

2:92(1-44-5:92)

2:70(0:98-7-47)

ref ref ref

1:78(0-97-3-27) 1:71(0-98-2-98) 1-64(1-01-2:65)

ref ref ref

2:39(1-23-462) 2:46(1-44-4-26) 2:54(1-70-3-82)

0:32(0-08-1-27) 2:29(0-94-5-79) 1-66(0-95-2-87)

ref ref ref

1-66(067-4-13) 2:78(1-55-5-10) 313(1-95-5-02)

0-45(0-11-1-91) 2:02(0-88-4-81) 1-88(1-08-3-25)

ref ref ref
0-19(0-06-0-63) 0-76(0-38-1-58) 0-78(0-43-1-42)

Model 3 stratified by number of missing variables and weighted estimates across the missing patterns (assumes MNAR) compared to pooled model 3 data

(assumes MAR)
Variables with significant interactions with malaria endemicity
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