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Abstract

Background: Being born preterm with very low birthweight (VLBW ≤ 1500 g) poses a risk for cortical and
subcortical gray matter (GM) abnormalities, as well as for having more psychiatric problems during childhood and
adolescence than term-born individuals. The aim of this study was to investigate the relationship between cortical
and subcortical GM volumes and the course of psychiatric disorders during adolescence in VLBW individuals.

Methods: We followed VLBW individuals and term-born controls (birth weight ≥10th percentile) from 15 (VLBW;
controls n = 40;56) to 19 (n = 44;60) years of age. Of these, 30;37 individuals were examined longitudinally. Cortical and
subcortical GM volumes were extracted from MRPRAGE images obtained with the same 1.5 T MRI scanner at both time
points and analyzed at each time point with the longitudinal stream of the FreeSurfer software package 5.3.0. All
participants underwent clinical interviews and were assessed for psychiatric symptoms and diagnosis (Schedule for
Affective Disorders and Schizophrenia for School-age Children, Children’s Global Assessment Scale, Attention-Deficit/
Hyperactivity Disorder Rating Scale-IV). VLBW adolescents were divided into two groups according to diagnostic status
from 15 to 19 years of age: persisting/developing psychiatric diagnosis or healthy/becoming healthy.

Results: Reduction in subcortical GM volume at 15 and 19 years, not including the thalamus, was limited to VLBW
adolescents with persisting/developing diagnosis during adolescence, whereas VLBW adolescents in the healthy/
becoming healthy group had similar subcortical GM volumes to controls. Moreover, across the entire VLBW group,
poorer psychosocial functioning was predicted by smaller subcortical GM volumes at both time points and with
reduced GM volume in the thalamus and the parietal and occipital cortex at 15 years. Inattention problems were
predicted by smaller GM volumes in the parietal and occipital cortex.

Conclusions: GM volume reductions in the parietal and occipital cortex as well as smaller thalamic and subcortical GM
volumes were associated with the higher rates of psychiatric symptoms found across the entire VLBW group.
Significantly smaller subcortical GM volumes in VLBW individuals compared with term-born peers might pose a risk for
developing and maintaining psychiatric diagnoses during adolescence. Future research should explore the possible
role of reduced cortical and subcortical GM volumes in the pathogenesis of psychiatric illness in VLBW adolescents.
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Background
In the past years, an increasing number of studies have
reported a significant relationship between being born
preterm with very low birth weight (VLBW ≤ 1500 g)
and an increased risk of developing psychiatric problems
and diagnosis which frequently persist into young adult-
hood [1–4]. These problems comprise anxiety disorders,
attention problems, including attention deficit hyper-
activity disorder (ADHD), social difficulties and autism
spectrum traits and disorders (ASD) [1–4]. However, the
neural basis for this increased risk is not yet fully
understood.
Growing evidence from cross-sectional studies suggests

that cortical and subcortical gray matter (GM) is especially
affected by preterm birth [5–7]. Many studies have related
these GM deviations to neurodevelopmental [8–11] and
psychiatric problems [12–15] during childhood. However,
in a recent MRI meta-analysis, no brain growth rate differ-
ences have been found for GM and white matter (WM)
volumes between preterm-born children and term-born
peers from childhood to adolescence [16]. Even though
psychiatric problems may arise any time in life, they com-
monly appear during adolescence and young adulthood
[17–19]. Being born preterm increases the chances of ex-
periencing mental health problems in these risk periods
[20, 21]. However, little is known about how these struc-
tural changes evolve and their consequences on the devel-
opment of psychiatric problems that preterm-born
individuals experience later in life.
The thalamo-cortical system, which comprises the

thalamus, the cerebral cortex and the connecting WM
tracts, has been proposed as a major component of the
encephalopathy of prematurity [22–24]. Smaller thal-
amic volume at term-equivalent age has been related to
reduced total cerebral cortical volume, suggesting that
impaired thalamic growth affects the development of
connecting brain structures [24, 25]. Abnormalities in
the thalamo-cortical system have been found as a pre-
dictor for poor cognitive outcome [26] and impaired
social cognition [27]. Volumetric anomalies in thalamo-
cortical regions have also been reported in term-born
children [28, 29] and adults with ADHD [29, 30].
Moreover, abnormalities in the thalamus shown by

surface-based shape analysis have been associated with
alterations in the putamen in preterm children, possibly
due to disturbed development of shared pre-frontal
connectivity [31]. Furthermore, smaller volume of left
caudate nucleus has been linked to attention problems
in preterm-born male adolescents [32], suggesting that
deep GM structures may play a role in attention pro-
cesses in this population. The thalamus is a key brain
structure that connects the brain cortex with the
cerebellum, constituting the cerebello-thalamo-cortical
pathway, the main efferent cerebellar projection [33].

Disruption in this pathway have been proposed as a
major neurobiological mechanism of emotional dysregu-
lation [34]. Increasing evidence points to cerebellar
abnormalities in preterm children as a risk factor for
developing psychiatric disorders [35, 36]. We have previ-
ously reported an association between smaller cerebellar
GM volume and persisting/increasing psychiatric symp-
toms and diagnosis in the same cohort of VLWB adoles-
cents presented in this study [37]. Now, we hypothesize
that smaller GM volume of cerebral cortex, thalamus
and subcortical structures might be also present in
preterm-born adolescents that experience or develop
psychiatric problems. Surprisingly, no study so far has
examined the impact of cerebral GM deviations in the
preterm brain and mental health during adolescence. It
is important to study the influence of GM changes on
the risk of mental problems on preterm born individuals
in order to detect important structure-function relation-
ships and identify possible biomarkers that might help
us to spot those at risk and take preventive measures.
The purpose of this study was to investigate the rela-

tionship between cerebral GM volumes (cortical GM,
subcortical GM and thalamus) and psychiatric disorders
and symptoms during adolescence in VLBW individuals,
studying both cross-sectional and longitudinal differ-
ences. We hypothesized that VLBW adolescents with
smaller GM volumes than term-born peers would
present higher rates of psychiatric diagnoses and symp-
toms during adolescence, while having GM volumes
similar to controls would be associated with good men-
tal health and/or remission of psychiatric problems. We
further hypothesized that there would not be associa-
tions between GM volume change from 15 to 19 years
and psychiatric symptoms and disorders based on the
results from a MRI meta-analysis of de Kiev et al. (2012)
[16] and previous findings in our group pointing in the
same direction [38]. In order to explore the influence of
general cognitive abilities on mental health, we also con-
ducted supplementary analyses including IQ as a covari-
ate and hypothesized that reduced GM volumes would
still be an explanatory factor of higher rates of psychi-
atric symptoms.

Methods
Participants
We studied a cohort of preterm born VLBW (BW ≤
1500 g; mean birth weight = 1204 g, mean gestational
age = 29 weeks) children born in 1986-88 admitted to
the neonatal intensive care unit (NICU) at the Trond-
heim University Hospital (Norway). At the same time,
an age-matched group of controls were recruited among
term-born children from the same geographical area
with birth weight ≥10th percentile for gestational age
[38–42] (Fig. 1). For this study, MRI assessments were
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performed at 15 (Range: VLBW 14y 2mo to 15y 2mo;
Controls 14y 1mo to 16y 7mo) and 19 years (Range:
VLBW 18y 8mo to 19y 6mo; Controls 18y 8mo to 19y
to 8mo). Twelve of the VLBW individuals were born
small for gestational age. We obtained structural
MPRAGE volumes and psychiatric data of VLBW children
and controls at 15 (VLBW;controls n = 40;56) and 19 years
of age (n = 44;60). Of these, 30;37 individuals had longitu-
dinal data. Individuals who had MRIs passing the quality
assessment at least at one of the time points were included
in the study. MRI images of some participants were dis-
carded due to dental brace artifacts and poor MRI quality
due to movement. Two VLBW participants were excluded
at both 15 and 19 years due to poor longitudinal surface
alignment in the FreeSurfer analyses. At both time points,
there were a higher number of participants with psychi-
atric assessment than MRI scans due to fewer participants
giving consent for MRI examination. As a result, some of
the participants had longitudinal psychiatric data, but just
one MRI assessment. This allowed us to establish diagnos-
tic change also in some participants with only one MRI
scan (See Fig. 1 for details).
There were no significant differences between partici-

pants (individuals with at least one valid MRI) and non-
participants (individuals without MRI) with regard to
maternal age at time of birth, birth weight, and gesta-
tional age in both groups.

This investigation is the continuation of a previously
published study [37]. The clinical data presented here
has been earlier reported and some of the tables pre-
sented in this article are partial reproductions of our
previous work.
The Regional Committee for Medical Research Ethics

approved the study protocol (project number: 78-00, May
2000 and 4.2005.2605) and the Data Inspectorate assigned
the license for keeping a data register with personal infor-
mation. Written informed consent was obtained from
both adolescents and parents at the 15 years’ assessment,
and from the participants at 19 years.

Psychiatric, cognitive assessment and socio-economic
status
The semi-structured diagnostic interview Schedule for
Affective Disorders and Schizophrenia for School-age
Children (KSADS) [43] was used to obtain psychiatric
status of the all participants in the VLBW and the con-
trol group. At the first assessment, the interviews were
done by two senior clinicians blinded to group status,
separately with parents and children. At 19 years, one
senior clinician interviewed all participants. Diagnoses
were set according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV)
[44] and categorized in three levels according to the
KSADS scoring: (I) diagnoses, (II) subclinical diagnoses

Fig. 1 Chart illustrating the composition of the VLBW and control groups at the two measurement points
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(≥75% of diagnostic criteria met, but not criteria for full
diagnosis), and (III) neither (healthy) [39]. We wanted to
study the course of psychiatric disorders. For that,
VLBW adolescents were divided into two groups accord-
ing to diagnostic change from 15 to 19 years of age: (A)
persisting/developing diagnosis, (B) healthy/becoming
healthy. In the first group, we included those VLBW ad-
olescents who had a psychiatric/subclinical diagnosis at
both ages or developed one from 15 to 19 years. In the
second group, we included VLBW adolescents who were
healthy at both ages or became healthy from 15 to
19 years. This grouping was made post hoc. In our first
analyses, we had three VLBW groups (healthy, subclin-
ical diagnosis, diagnosis). Graphs for these previous ana-
lyses can be consulted in the Additional file 1.
At the interview, the Children’s Global Assessment

Scale (CGAS; scored from 1 to 100) [45] was used to es-
timate general psychosocial functioning in all partici-
pants in the VLBW and the control group. Attention
deficit hyperactivity disorder (ADHD) symptoms were
evaluated by asking the mothers’ of participants to
complete the ADHD Rating Scale-IV (ADHD-RS-IV)
Home version [46] for children at the 15-year assess-
ment and the parent-report version for young adults at
the 19-year assessment [40, 41].
At 19 years, full IQ was obtained by a senior neuro-

psychologist [38] with Wechsler Adult Intelligence Scale,
3rd edition (WAIS-III) [47].
Socio-economic status (SES) of the parents was calcu-

lated according to the Hollingshead’s Two Factor Index
of Social Position, ranging from 1 (low) to 5 (high),
based on parents’ education and occupation adapted to
today’s categories [48].

MRI data acquisition and analysis
MRI was performed on the same 1.5 Tesla Siemens
Symphony Sonata (Siemens AG, Erlangen, Germany) at
St Olav’s University Hospital (Trondheim, Norway) with
Quantum gradients (30 mT/m) and a quadrature head
coil at 15 and 19 years of age. A structural T1-weighted
magnetization prepared rapid acquisition gradient echo
(MPRAGE) sequence was acquired with the following
specifications: TR = 7.1 ms, TE = 3.45 ms, TI = 1000 ms,
flip angle 7o, FOV 256 x 256, slab thickness 170 mm,
slice thickness 1.33 mm, acquisition matrix 256 x 192 x
128, reconstructed to 256 x 256 x 128, giving a recon-
structed voxel resolution of 1 x 1 x 1.33 mm, and acqui-
sition duration of 8.5 min.
The FreeSurfer software package 5.3.0 (http://sur-

fer.nmr.mgh.harvard.edu/) was used for the volumetric
parcellation and segmentation. This is an automated
method of labeling human structures to extract GM and
WM volumes for each participant’s entire brain [49, 50],
and parcellating of the cortex of each participant as well as

extracting segmentations of subcortical structures [51, 52].
Parcellations of the cortex are automatically corrected for
total brain volume differences [51, 52]. In order to avoid
segmentation errors, all images were inspected manually
and structures with obvious segmentation errors were
rejected. No manual adjustments were made to avoid
introducing bias and increasing variances into the data set
of MRI images.
All images were processed with the longitudinal

stream in FreeSurfer 5.3.0 [53–55] to enable longitudinal
analyses and to account for unbalanced time points [56].
For each participant, we extracted mean volumes of sub-
cortical GM (caudate nucleus, amygdala, nucleus accum-
bens, ventral diencephalon, hippocampus and substantia
nigra), thalamus, cortical GM volumes for cingulum,
frontal lobe, insula, occipital, parietal and temporal
lobes, and estimated intracranial volume (eICV).

Statistical analyses
Data were analyzed using IBM SPSS Statistics version 22
(SPSS, Chicago, IL) and STATA/IC 13.1 (Stata Corpor-
ation, College Station, TX, USA). Two-sided p-values
<0.05 were taken to indicate statistical significance, and
95% confidence intervals (CI) are reported where rele-
vant. All p-values were corrected for multiple compari-
sons following the Benjamini-Hochberg procedure (128
comparisons) [57].

Background information
Differences in cross-sectional GM volumes between the
entire VLBW group and controls were analyzed using a
general linear model (GLM), adjusting for age and sex in
the analyses of cortical volumes, and age, sex and eICV
in the analyses of subcortical structures. Cross-sectional
differences between the entire VLBW group and control
group on continuous psychiatric variables were analyzed
using the Mann-Whitney U test and categorical variables
and proportions were analyzed by the unconditional z-
pooled test (http://www4.stat.ncsu.edu/~boos/exact/)
[58]. Perinatal and background information between the
two VLBW subgroups on continuous variables were ana-
lyzed using the Mann-Whitney U test and categorical
variables and proportions were analyzed by the uncondi-
tional z-pooled test.

GM volumes and psychiatric data
Group differences in GM volumes at 15 and 19 years of
age between the two VLBW subgroups and the control
group were calculated with a GLM, including age and
sex as covariates in cortical GM analyses, and age, sex
and eICV in subcortical GM analyses. Age was included
as a covariate in the analyses to account for difference in
brain volumes due to age.
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In the entire VLBW group, linear regression was used
to explore the relationship between GM volumes (inde-
pendent factor) and psychiatric symptoms assessed with
questionnaires (dependent factor) at 15 and 19 years
separately. Sex and age were included as covariates in
cortical GM analyses. Subcortical GM analyses were also
corrected for eICV. Normality of residuals was assessed
by visual inspection of Q-Q plots. Missing cases were
excluded pairwise.
Longitudinal analyses were done by means of mixed

model linear regression, which accounts for missing
data, irregular intervals between measures and within
person dependence, allowing the combination of cross-
sectional and longitudinal data in the same analysis [59].
We calculated the differences in growth trajectories
(dependent factor) between the two VLBW subgroups
and controls (independent factors), including sex as a
covariate in cortical GM analyses, and sex and eICV in
subcortical GM analyses. Across the entire VLBW
group, we further studied the effect of longitudinal GM
volume changes (independent factor) on psychiatric
symptoms assessed with questionnaires (dependent fac-
tor) including sex as a covariate in cortical GM analyses,
and sex and eICV in subcortical GM analyses.

IQ corrections
In order to explore the influence of general cognitive
abilities on the relationship between GM volumes and
psychiatric symptoms, the analyses were further adjusted
for full IQ obtained at 19 years. As IQ can be both a risk

factor for psychiatric problems and affected by them, the
results are presented before corrections to avoid sha-
dowing any direct relationship between brain abnormal-
ities and psychiatric symptoms [60].

Results
Psychiatric and MRI findings
Neonatal and socio-demographic variables are displayed
in Table 1. These data have been previously published
[37]. There were no differences in any of the variables
between the cross-sectional and longitudinal data within
the study groups. Birth weight and gestational age dif-
fered by design between the VLBW and the control
group. The VLBW group also had lower IQ scores.
There were no differences in socio-economic status be-
tween the groups, except for SES class 1, where we
found a higher percentage of SES class 1 in VLBW indi-
viduals than in controls.
Brain volumes and clinical findings are given in

Table 2. Brain volumes of cingulum, frontal, occipital,
parietal, and temporal cortices, insula, thalamus and
subcortical GM were, at both ages, smaller in the VLBW
than in the control group. Estimated psychosocial func-
tioning was lower (lower CGAS scores) and ADHD
symptoms were more pronounced (higher scores on the
Inattention subscale) at both ages in the VLBW group
than in the control group. There were also, at both ages,
higher frequencies of any psychiatric disorder in the
VLBW group, in particular, ADHD diagnoses at both
ages and anxiety disorders at 19 years. Fewer VLBW

Table 1 Participants’ neonatal and socio-demographic details

Assessed at 15 years Assessed 19 at years Assessed at both time points

VLBW Control VLBW Control VLBW Control

Number of participants 40 56 44 60 30 37

Males (%) 18 (45) 21 (37) 18 (41) 25 (42) 11 (37) 14 (38)

Background information

Birthweight (grams) M (SD) 1204 (236)*** 3713 (500) 1212 (234)*** 3698 (501) 1223 (250)*** 3766 (544)

Gestational age (weeks) M (SD) 29.18 (2.65)*** 39.61 (1.15) 29.25 (2.54)*** 39.72 (1.27) 29.43 (2.60)*** 39.51 (1.17)

Age (years-months) M (SD) 15-2 (0-6) 15-5 (0-5) 19-7 (0-7) 19-8 (0-6) Time 1 15-2 (0-6) 15-5 (0-5)

Time 2 19-9 (0-8) 19-7 (0-6)

IQ M (SD) 89.00 (12.54)*** 99.85 (10.62) 86.33 (13.52)*** 100.14 (11.03)

SES (1 – 5) M (SD) 3.15 (1.25) 3.59 (1.04) 3.39 (1.38) 3.70 (0.95) 3.27 (1.33) 3.65 (0.92)

SES class 1 n (%) 5 (12) ** 0 (0) 6 (15) * 1 (2) 4 (13) * 0 (0)

SES class 2 n (%) 7 (17) 10 (18) 5 (12) 4 (7) 5 (17) 4 (11)

SES class 3 n (%) 11 (28) 16 (29) 7 (17) 17 (32) 6 (20) 12 (32)

SES class 4 n (%) 11 (28) 17 (30) 13 (32) 21 (39) 9 (30) 14 (38)

SES class 5 n (%) 6 (15) 13 (23) 10 (24) 11 (20) 6 (20) 7 (19)

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (VLBW versus controls). Significant results marked bold. Linear regression adjusted for age and sex for normal distributed data,
else the Mann–Whitney U-test
The unconditional z-pooled test was used to analyze differences in proportions between groups
Abbreviations: IQ Intelligence quotient, M Mean, SD standard deviation, SES socio-economic status, VLBW very low birth weight (birth weight ≤ 1500)
A version of this table has been previously published by our group [37]. In this new version we have included detailed data regarding SES class results
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adolescents than controls were or became healthy during
the study period, and more VLBW adolescents than
controls had or developed psychiatric problems. At the
15-year assessment, Intra Class Correlation between the
two interviewers was 0.91 for any diagnosis/subclinical
diagnosis. At 19 years, all the interviews were conducted
by the same clinician, therefore, inter-rater reliability
tests were not performed.
VLBW adolescents who had or developed psychiatric

problems had significantly lower birth weight, lower 1-
min Apgar score and lower IQ at 19 years than VLBW
adolescents who were or became healthy. However, they
did not differ in z-score birth weight (individual standard

deviation scores for birth weight, representing the devi-
ation from the mean weight for sex, gestational age, and
singleton [61] or multiple births [62], a measure of intra-
uterine growth failure) gestational age, head circumfer-
ence at birth, days before regaining birth weight, days on
ventilator, days in the NICU, 5-min Apgar score, socio-
economic status or mother’s age (Table 3).

Relationship between GM volumes and psychiatric data
GM volume and diagnostic status during adolescence
GM volumes in the two VLBW subgroups and controls
are displayed in Fig. 2. The two VLBW subgroups
tended to have smaller volumes than controls in all

Table 2 Brain volumes and psychiatric outcome in VLBW participants and controls

15 years 19 years

VLBW (n = 40) Control (n = 56) VLBW (n = 44) Control (n = 60)

Brain volumes (ml)

Cortical gray matter

Cingulum M (SD) 21.85 (3.21)*** 24.14 (2.93) 20.64 (3.16)*** 23.07 (2.79)

Frontal cortex M (SD) 188.21 (28.71)** 201.80 (16.71) 117.39 (28.83)*** 190.93 (16.94)

Insula M (SD) 13.01 (2.10)*** 14.37 (1.40) 12.79 (2.25)*** 13.83 (1.39)

Occipital cortex M (SD) 48.65 (6.65)* 50.94 (4.48) 46.79 (6.66)* 49.08 (4.52)

Parietal cortex M (SD) 117.86 (16.57)*** 133.58 (11.74) 110.68 (14.41)*** 124.54 (11.04)

Temporal cortex M (SD) 110.80 (16.92)*** 125.72 (12.40) 107.64 (16.65)*** 120.15 (11.65)

Thalamus M (SD) 13.15 (1.83)*** 15.35 (1.27) 13.24 (1.81)*** 15.30 (1.32)

Subcortical gray matter M (SD) 43.79 (4.93)*** 49.72 (3.55) 44.12 (5.03)* 48.22 (3.96)

Psychiatric results

CGAS M (SD) 71.73 (14.48)*** 86.96 (6.75) 79.05 (12.75)** 85.78 (7.69)

ADHD-RS-IV - mother

Hyperactivity M (SD) 2.78 (3.71) 1.43 (1.78) 2.90 (4.29) 1.34 (1.67)

Inattention M (SD) 6.39 (5.11)*** 2.51 (2.81) 5.45 (5.58)** 1.76 (1.98)

Any psychiatric diagnosis n (%) 12 (30)** 3 (5) 11 (25)** 4 (7)

Anxiety disordersa n (%) 5 (13) 2 (4) 7(16)** 1 (2)

ADHD n (%) 3 (8)* 0 (0) 4 (9)* 0 (0)

Otherb n (%) 4 (10) 1 (2) 0 (0) 3 (5)

Any Subclinical diagnosis n (%) 11 (28)*** 1 (2) 5 (11) 6 (10)

Anxiety disordersa n (%) 3 (8) 1 (2) 4 (9) 2 (3)

ADHD n (%) 8 (20)*** 0 (0) 1 (2) 3 (5)

Otherb n (%) 0 (0) 0 (0) 0 (0) 1 (2)

Diagnostic status

Healthy/Becoming healthy n (%) 22 (55)** 46 (82) 25 (61)** 50 (85)

Persisting/Developing diagnosis n (%) 18 (45)** 10 (18) 16 (39)* 9 (15)

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (VLBW versus controls). Significant results marked bold. Linear regression adjusted for age and sex for normal distributed data,
else the Mann–Whitney U-test. The unconditional z-pooled test was used to analyze differences in proportions between groups. Subcortical brain volumes were
further adjusted for estimated intracranial volume
Abbreviations: ADHD-RS-IV Attention-Deficit/Hyperactivity Disorder Rating Scale, CGAS children’s global assessment scale, SD standard deviation, VLBW very low
birth weight (birth weight ≤ 1500)
aAnxiety disorders: separation anxiety disorder, generalized anxiety disorder, social phobia, or specific phobia
bOther: Asperger’s disorder, depressive disorder, adjustment disorder, elimination disorder, post-traumatic stress disorder, stuttering, tic disorder. None had manic
or bipolar, psychotic, or eating disorder
A version of this table has been previously published by our group [37]. In this new version we have included new data regarding gray matter volume results
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cortical areas at both ages, but not all differences
reached statistical significance. The volume of cingulate
cortex was smaller in both VLBW subgroups at 15 years,
whereas at 19 years of age, this was found only in the
healthy/becoming healthy VLBW subgroup compared
with the control group. The healthy/becoming healthy
VLBW subgroup had smaller volume of frontal cortex
than the control group at both ages. Insula volume was
smaller in the VLBW subgroup with persisting/developing
diagnosis than in the control group at 15 years of age, and
smaller than controls in the healthy/becoming VLBW
subgroup at 19 years. Both VLBW subgroups had, at both
ages, smaller parietal and temporal cortical volumes than
controls. There were no differences in cortical volumes
between the two VLBW subgroups (Fig. 2a-g).
Both VLBW subgroups had, at both ages smaller thal-

amic volume than controls at both ages (15 years: Per-
sisting/Developing diagnosis vs controls: MD = -2.068,
SE = 0.330, (-2.723 to -1.413), p ≤ 0.001; Healthy/Becom-
ing healthy vs controls: MD -0.829, SE = 0.317, (-1.459
to -0.200), p = 0.010. 19 years: Persisting/Developing
diagnosis vs controls: MD = -1.516, SE = 0.300, (-2.112 to
-0.920), p ≤ 0.001; Healthy/Becoming healthy vs controls:
MD = -0.826, SE = 0.266, (-1.355 to -0.297), p = 0.003).
Thalamic volume was smaller in the persisting/develop-
ing diagnosis VLBW subgroup compared with the
healthy/becoming healthy VLBW subgroup at 15 years

(MD = -1.239, SE = 0.363, (-1.961 to -0.517), p = 0.001)
(Fig. 2h).
Subcortical volumes were smaller only in the persisting/

developing diagnosis VLBW subgroup compared with the
control group at both ages (15 years: MD= -4.719, SE =
0.948, (-6.602 to -2.837), p ≤ 0.001. 19 years: MD= -3.213,
SE = 0.856, (-4.913 to -1.513), p ≤ 0.001), whereas no dif-
ferences were found between the healthy/becoming
healthy VLBW subgroup and the control group. Smaller
subcortical GM volumes were found in the persisting/de-
veloping diagnosis VLBW subgroup compared with the
healthy/becoming healthy VLBW subgroup at both ages
(15 years: MD= -3.820, SE = 1.045, (-5.895 to -1.744), p ≤
0.001; 19 years: MD= -2.731, SE = 0.926, (-4.569 to
-0.893), p = 0.004) (Fig. 2i).
After correcting for IQ, both VLBW subgroups had

persistent smaller volume of parietal cortex than con-
trols at both time points. The healthy/becoming healthy
VLBW subgroup had smaller cingulate and temporal
volumes at both ages and smaller frontal cortical volume
at 19 years than the control group. Thalamic volumes
were smaller in the VLBW subgroup with persisting/de-
veloping diagnosis than in controls at both ages. Detailed
results of differences in brain volumes between the two
VLBW subgroups and controls before and after correc-
tions for IQ are provided in Additional files 2 and 3:
Appendix 1 A-B respectively.

Table 3 Perinatal and background information in VLBW participants according to diagnostic status during adolescence

Persisting/Developing diagnosis (n = 24) Healthy/Becoming healthy (n = 30)

Male n (%) 10 (41.7) 14 (46.7)

Birth weight (grams) M (SD) 1096.25 (264.41)** 1269.30 (159.40)**

z-score weight M (SD) -0.82 (1.50) -0.52 (1.40)

Gestational age (weeks) M (SD) 28.80 (2.93) 29.67 (2.59)

Head circumference (cm) M (SD) 26.52 (2.51) 26.64 (1.64)

Days before regained weight M (SD) 16.11 (9.38) 16.62 (7.82)

Days on ventilator M (SD) 9.45 (17.52) 2.22 (3.80)

Days in NICU M (SD) 92.15 (84.59) 58.89 (21.92)

Apgar 1 min M (SD) 5.71 (2.70)** 7.65 (1.38)**

Apgar 5 min M (SD) 7.89 (2.36) 9.04 (0.87)

IQ 19 years M (SD) 80.00 (71.59)** 93.04 (9.40)**

Socio-economic status M (SD) 3.09 (1.37) 3.37 (1.27)

SES class 1 n (%) 4 (19) 3 (10)

SES class 2 n (%) 3 (14) 4 (14)

SES class 3 n (%) 6 (29) 6 (21)

SES class 4 n (%) 4 (19) 10 (34)

SES class 5 n (%) 4 (19) 6 (21)

Mother’s age (years) M (SD) 42.95 (4.59) 43.37 (4.96)

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (Persisting/increasing VLBW versus Healthy/decreasing VLBW). Significant results marked bold. Mann–Whitney U-test. Z-score
weight: Standard deviation score of weight in relation to gestational age and gender. Abbreviations: IQ Intelligence quotient, NICU Neonatal Intensive Care Unit,
SD Standard deviation, VLBW Very low birth weight (birth weight ≤ 1500)
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Mixed linear model analyses revealed that there were
no differences in GM volume growth rate in the brain
cortex, thalamus and subcortical GM between the two
VLBW subgroups and controls (Fig. 3). Detailed results
are provided in Additional files 4 and 5: Appendix 2A-B.

GM volume and psychosocial functioning
At 15 years of age, smaller volumes of occipital and par-
ietal cortex and of thalamus predicted lower scores in gen-
eral psychosocial functioning across the entire VLBW
group (Occipital cortex: B = 1.107 (0.465 to 1.750), p ≤
0.001; Parietal cortex: B = 0.366 (0.109 to 0.622), p = 0.007;
Thalamus: B = 3.990 (1.457 to 6.523), p = 0.003). Smaller
subcortical GM volumes predicted lower psychosocial
functioning (CGAS scores) at both 15 and 19 years in the
VLBW group (15 years: B = 1.441 (0.505 to 2.377), p =
0.004; 19 years: B = 1.454 (0.391 to 2.517), p = 0.009)
(Fig. 4). After correcting for IQ, occipital and parietal cor-
tex volumes still predicted lower scores in general psycho-
social functioning at 15 years, but the volumes exerting
the effect were smaller. Detailed results before and after
corrections for IQ are provided in Additional files 6 and 7:
Appendix 3 A-B.
We did not find any associations between GM volume

growth rate in the brain cortex, thalamus and subcortical
GM and CGAS scores in the VLBW group (Additional
files 8 and 9: Appendix 4 A-B).

GM volume and ADHD
Smaller volumes of occipital and parietal cortex predicted
higher inattention scores in the VLBW group at both ages,
although not all differences survived corrections for mul-
tiple comparisons (15 years, occipital cortex: B = -0.356
(-0.593 to -0.119), p = 0.004; 19 years, occipital cortex:
B = -0.408 (-0.689 to -0.127), p = 0.006; 19 years, parietal
cortex: B = -0.202 (-0.331 to -0.072), p = 0.003) (Fig. 5).
After correcting for IQ, smaller volumes of occipital and
parietal cortex predicted higher hyperactivity scores at
15 years. Detailed results before and after corrections for IQ
are provided in Additional files 6 and 7: Appendix 3 A-B.
We did not find any associations between GM volume

growth rate in the brain cortex, thalamus and subcortical
GM and ADHD-RS mother-report scores in the VLBW
group (Additional files 8 and 9: Appendix 4 A-B).

Discussion
We have followed a cohort of VLBW adolescents and
controls from 15 to 19 years of age in order to study the

associations between cortical, thalamic and subcortical
GM volume development and mental health status and
course. Our main result was a finding of sustained
smaller subcortical GM volume, not restricted to the
thalamus, during adolescence in the VLBW subgroup
with persisting/developing psychiatric diagnosis com-
pared with both the control group and the VLBW
healthy/becoming healthy subgroup. However, no differ-
ence in subcortical GM volume was found between the
VLBW healthy/becoming healthy subgroup and controls
at 15 or 19 years of age (Fig. 2i). Across the entire
VLBW group, lower psychosocial functioning was pre-
dicted by smaller thalamus, parietal and occipital corti-
ces at 15 years, and by smaller subcortical GM volume
at both time points. Inattention symptoms were pre-
dicted by smaller GM volumes in the occipital and par-
ietal cortex (Fig. 5). We did not find any differences in
volume growth between the two VLBW subgroups and
controls (Fig. 3).
Subcortical GM, and especially the thalamus, appears

particularly vulnerable to preterm birth, even in the ab-
sence of acute focal WM injury [63, 64]. There is consid-
erable evidence that smaller volumes of thalamus and
deep GM nuclei in children born preterm are associated
with poorer cognitive performance in childhood and
adolescence [9, 10, 26, 65–67]. However, little is known
about its impact on mental health. There is one study
suggesting that alterations in the cortico-basal ganglia-
thalamo-cortical loop connections and the short cortico-
cortical connections following preterm birth might con-
tribute to poorer prosocial behavior, recognition of social
context, and simultaneous information processing in
childhood [27]. Volumetric abnormalities in the hippo-
campus, amygdala, and putamen from early to mid-
adolescence have been also linked to onset of depression
during this important period of life [68]. In line with
these investigations, our results suggest that structural
alterations in subcortical structures, not restricted to the
thalamus, following preterm birth might be a risk factor
for developing and maintaining psychiatric problems
during adolescence.
Our results also suggest that smaller GM volumes in

subcortical nuclei, thalamus and occipital and parietal
cortex during adolescence are important explanatory
factors for higher inattention scores and lower psycho-
social functioning in VLBW adolescents. It has been
suggested that attention problems in very preterm born
children might be related to abnormalities in the fronto-

(See figure on previous page.)
Fig. 2 Brain volumetric differences between the two VLBW subgroups and controls at 15 and 19 years. The two VLBW diagnostic subgroups
presented volume reductions in several cortices a-g and thalamus h compared with the control group. Subcortical GM reductions i were limited
to the persisting/developing diagnosis VLBW subgroup. Results adjusted for age and sex. Subcortical structures adjusted for estimated intracranial
volume. Abbreviations: GM: Gray matter. * Significant results after adjusting for multiple testing
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parietal network, which is implicated in orienting, alerting
and executive attention [69]. Traditionally, the occipital
lobe has not been associated with attention problems.
However, Ahrendts et al. reported volume reduction in the
visual cortex in term-born adults diagnosed with ADHD

[70], suggesting that this region may be of interest in
ADHD due to its involvement in visual information
processing [71]. Our results support Ahrendts et al. [70]
results, suggesting that different mechanisms might be in-
volved in the development of ADHD in preterm-born

(See figure on previous page.)
Fig. 4 Relationships between brain volumes and psychosocial functioning in the VLBW group. Occipital a-b and parietal volume c-d reductions
at 15 years predicted poorer psychosocial functioning in the VLBW group. Smaller volumes of thalamus f-g and subcortical GM h-i were
associated with poorer psychosocial functioning in the VLBW group at both ages. Results adjusted for age and sex. Subcortical structures
adjusted for estimated intracranial volume. Abbreviations: CGAS: Children’s Global Assessment Scale; GM: Gray matter; VLBW: Very low birth
weight. * Significant results after adjusting for multiple testing
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Fig. 5 Relationships between brain volumes and inattention in the VLBW group. Smaller volumes in occipital a-b and parietal c-d cortices
predicted higher inattention scores in the VLBW group at 19 years. Results adjusted for age and sex. Subcortical structures adjusted for estimated
intracranial volume. Abbreviations: GM: Gray matter; VLBW: Very low birth weight. * Significant results after adjusting for multiple testing
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children, distinct from full-term children. Interestingly, re-
duced GM volumes of subcortical structures and cortical
areas, including the parietal and occipital cortex, measured
at term equivalent age in preterm-born children have been
linked to ADHD [12, 13], social problems [14] and ASD
[15] during childhood, suggesting that brain growth devia-
tions in these areas occurring in the neonatal period may
persist into adolescence and adulthood [16, 72, 73] and
have an impact on mental health.
We did not find any differences in volume growth be-

tween the two VLBW diagnostic subgroups and con-
trols. We have previously reported similar results
between the entire VLBW group and controls without
differentiating according to psychiatric status [38]. Our
findings of similar brain growth rate during this period
are supported by a meta-analysis of de Kiev et al. (2012)
who found that brain growth trajectories did not differ
between preterm and term-born children from 8 to 18
years [16]. However, in those born preterm, smaller GM
volumes seem to be present from birth to young adult-
hood [16, 38, 42, 72–74], especially of deep GM nuclei
[38, 63–66, 73–78]. Our results suggest that brain vol-
umes might be even smaller in those VLBW individuals
who develop or maintain psychiatric problems during
adolescence compared with those VLBW adolescents
who are or become healthy in this period.
Interestingly, several structural MRI studies have re-

ported deviant brain growth in cortical GM [11, 79, 80],
subcortical GM [24, 63, 64, 79, 81, 82], WM microstruc-
ture [10, 79, 83–87] and regional brain growth [10, 24,
79, 88] around term-equivalent age. These growth devia-
tions occurring after birth have been related to deficits
in cognition [8–11, 87], motor performance [8, 87], vis-
ual motor integration [9], language [9] and mental health
[12–15] during childhood. We found differences in SES
class 1 between the VBLW group and controls. These
results are in line with previous studies that indicate that
lower SES has an impact in birth weight [89]. However,
we did not find differences in any of the SES classes be-
tween the two VLBW subgroups, suggesting that SES
might not be an explanatory factor for the higher rates
of psychiatric symptoms in VLBW individuals. We
found that the VLBW subgroup with persisting/develop-
ing psychiatric diagnosis had significant lower birth
weight and 1-min Apgar scores than the subjects in the
VLBW subgroup who were/became healthy during ado-
lescence. Thus, we speculate that the most fragile new-
borns might have had deviant brain development in the
neonatal period, which already at that time could have
been a predictor for mental health development.
There is evidence that reduced connectivity in the

thalamo-cortical system is associated with poorer social
reasoning skills, more peer problems and worse prosocial
behavior in preterm-born children at the age of six [27].

However, others point to the cerebellum as a critical struc-
ture involved in the higher prevalence of psychiatric disor-
ders in these children [35, 36]. We have previously
reported an association between persistent smaller cere-
bellar GM and WM volumes during adolescence and psy-
chiatric symptoms and disorders and psychosocial
functioning in this VLBW group. Our aim was to study
the relationship between cerebellar volumes and psychi-
atric diagnoses and symptoms in VLBW adolescents. We
found that VLBW adolescents with persisting/developing
diagnosis had smaller cerebellar GM and WM volumes
than controls and healthy/becoming healthy VLBW ado-
lescents [37]. The cerebello-thalamo-cortical system along
with deep GM nuclei may be especially vulnerable to
damage during the third trimester of gestation, during
which several developmental events take place, involving
axons, pre-myelinatingolig odendrocytes (pre-OLs), sub-
plate neurons, microglia, and cell migration from subven-
tricular zone [6, 90]. It has also been suggested that deep
GM and cerebellar abnormalities might be caused by
problems with the microstructural organization of large
WM pathways, such as thalamo-cortical, fronto-striatal,
and fronto-cerebellar tracts, connecting these structures
with the cortex [10, 91, 92]. Future research should focus
on this system to elucidate its implication in mental health
disorders in VLBW individuals.
It is also of interest to evaluate the influence of general

cognitive abilities on the relationship between GM vol-
umes and psychiatric symptoms, psychosocial functioning
and ADHD symptoms. Recent research suggests that im-
paired executive function (i.e., inhibition, working mem-
ory, and cognitive flexibility) is a core feature in many
mental illnesses [93]. VLBW children commonly experi-
ence higher rates of both cognitive and psychiatric prob-
lems than their term-born peers [94]. Autistic and ADHD
symptoms have been found to correlate with cognitive
function in VLBW children [95, 96]. Still, the background
for this correlation is not fully understood yet [97, 98].
One possibility is that cognitive outcomes might be af-
fected by attention problems that interfere during cogni-
tive evaluation [99]. Another possibility is that cognitive
skills might be affected by the same brain mechanisms
which affect mental health problems in these children.
Poor cognitive performance in VLBW individuals has
been associated with abnormalities in extensive areas of
the cerebral cortex and subcortical structures [9, 38, 72,
76, 100]. Interestingly, Ball et al. found thalamo-cortical
structural connectivity at term to be a strong predictor of
cognitive scores at 2 years in children born preterm [26].
These brain areas have also been related to psychiatric
symptoms in the preterm-born population [12, 13, 27, 32,
101]. After correcting for IQ, we found that smaller vol-
umes in the parietal cortex and thalamus at both 15 and
19 years in the persisting/developing diagnosis VLBW
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subgroup were still significant, suggesting that psychiatric
problems in VLBW individuals are not only explained by
deficits in cognition, although they might be related and
share similar brain correlates. More research is necessary
to explain how cognitive and psychiatric problems relate
to each other and what the neural basis for the two is.
In this study, cortical and subcortical segmentations

were calculated using FreeSurfer 5.3.0, a well-known and
reliable automated MR segmentation method to meas-
ure GM volumes (http://surfer.nmr.mgh.harvard.edu/).
FreeSurfer has proved test-retest reproducibility across
different MRI scanners and field strengths [55, 102].
However, subcortical segmentations have been shown
to have high reliability for thalamic measurements,
low reliability for amygdala and intermediate reliability
for hippocampus [103], especially when hippocampal
abnormalities were present [104]. As described earlier in
the method section, all brain images were manually
inspected and structures with obvious segmentation er-
rors were rejected. In order to avoid introducing bias
and increasing variances into the data set of MRI im-
ages, no manual corrections were made. We used both
questionnaires and a semi-structured diagnostic inter-
view conducted by senior clinicians blinded to group
adherence in order to identify psychiatric symptoms and
disorders, allowing a thorough psychiatric evaluation.
An experienced neuropsychologist performed all the IQ
assessments at 19-years. US norms of the WAIS-III in-
stead of Norwegian norms were used. Studies have
shown that US norms are valid for Norwegian (and
other Western Europe) samples with minor differences
in mean subtask scores [105]. These possible differences
would influence both study groups in the same way.
The participation rate was comparable to other follow-up

studies with similar study groups [106] and participants
and non-participants did not differ in socio-economic sta-
tus or in perinatal variables (gestational age, birth weight,
maternal age at birth), making selection bias less likely. Due
to the relatively small sample of this study, only large differ-
ences and strong associations could reach significant levels.
We had longitudinal data for a smaller sample than the
cross-sectional study groups, which reduced the statistical
power and thus, the generalization of the longitudinal re-
sults. In order to confirm our findings, studies with larger
samples are definitely needed. However, the absolute vol-
ume differences between the VLBW subgroups and the
control group, as well as the associations between symp-
toms and GM volumes in the VLBW subgroups were
generally large as indicated by the low p-values, and hence
unlikely to be due to chance.

Conclusions
Our results indicate that significantly smaller subcortical
GM volumes in VLBW adolescents compared with

term-born peers might pose a risk for developing and
maintaining psychiatric diagnoses during adolescence,
and that extensive volume reductions affecting the thal-
amus, subcortical GM and occipital and parietal cortex
might help to explain the higher rates of psychiatric
symptoms found in VLBW adolescents. Future research
should explore the possible role of reduced cortical and
subcortical GM volumes in the pathogenesis of psychi-
atric illness in VLBW adolescents.

Additional files

Additional file 1: Supplementary figure. Brain volumes in VLBW
adolescents according to diagnostic status and controls at 15 and
19 years of age. In general, VLBW adolescents had smaller gray matter
volumes than controls in cortical and subcortical areas at both 15 and
19 years (A-I). VLBW adolescents with psychiatric diagnosis had smaller
cortical gray matter volumes than healthy VLBW adolescents at 15 years,
but these differences disappeared at 19 years (A-G). There were not
differences in thalamic volume and subcortical gray matter volume
between the VLBW subgroups at 15 years. At 19 years, the healthy VLBW
group had larger thalamic volumes than the VLBW group with subclinical
diagnosis, and larger subcortical gray matter volume than the VLBW
group with diagnosis. (TIF 773 kb)

Additional file 2: Appendix 1A. Brain volume (ml) differences between
the two VLBW diagnostic groups and controls at 15 and 19 years of age.
The two VLBW groups tended to have smaller brain volumes than the
controls in all studied areas. Subcortical gray matter, was in the
persisting/developing diagnosis VLBW group smaller than in both
controls and the healthy/becoming healthy VLBW group. (DOCX 23 kb)

Additional file 3: Appendix 1B. Brain volume (ml) differences between
the two VLBW diagnostic groups and controls at 15 and 19 years of age
corrected for IQ. Both VLBW subgroups had persistent smaller volume of
parietal cortex than controls at both time points. The healthy/becoming
healthy VLBW subgroup had smaller cingulate and temporal volumes at
both ages and smaller frontal cortical volume at 19 years than the
control group. Thalamic volumes were smaller in the VLBW subgroup
with persisting/developing diagnosis than in controls at both ages.
(DOCX 22 kb)

Additional file 4: Appendix 2A. Brain growth differences between the
two VLBW subgroups and the control group from 15 to 19 years of age.
There were no differences in GM volume growth rate in the brain cortex,
thalamus and subcortical GM between the two VLBW subgroups and
controls. (DOCX 13 kb)

Additional file 5: Appendix 2B. Brain growth differences between the
two VLBW diagnostic groups and the control group from 15 to 19 years
of age corrected for IQ. There were no differences in GM volume growth
rate in the brain cortex, thalamus and subcortical GM between the two
VLBW subgroups and controls. (DOCX 13 kb)

Additional file 6: Appendix 3A. Relationship between brain volumes
and psychiatric symptoms assessed with questionnaires in the VLBW
group at 15 and 19 years of age. At 15 years of age, smaller volumes of
occipital and parietal cortex and of thalamus predicted lower scores in
general psychosocial functioning (CGAS scores). Smaller subcortical GM
volumes predicted lower psychosocial functioning at both 15 and
19 years. Smaller volumes of occipital and parietal cortex predicted
higher inattention scores in at both ages, although not all differences
survived corrections for multiple comparisons. (DOCX 16 kb)

Additional file 7: Appendix 3B. Relationship between brain volumes
and psychiatric symptoms assessed with questionnaires in the VLBW
group at 15 and 19 years of age corrected for IQ. Occipital and parietal
cortex volumes predicted lower scores in general psychosocial
functioning at 15 years. Smaller volumes of occipital and parietal cortex
predicted higher hyperactivity scores at 15 years. (DOCX 23 kb)
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Additional file 8: Appendix 4A. Mixed linear regressions with psychiatric
data as dependent variable and brain volumes (ml) and time as
independent variables in the VLBW group. Adjusted for sex and total
intracranial volume, but not for IQ. There were no associations between
GM volume growth rate in the brain cortex, thalamus or in subcortical
GM and CGAS scores in the VLBW group. (DOCX 19 kb)

Additional file 9: Appendix 4B. Mixed linear regressions with psychiatric
data as dependent variable and brain volumes (ml) and time as
independent variables in the VLBW group. Adjusted for sex, total
intracranial volume and IQ. There were no associations between GM
volume growth rate in the brain cortex, thalamus or in subcortical GM
and CGAS scores in the VLBW group. (DOCX 18 kb)
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