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cardiovascular disease risk factors among
U.S. children and adolescents
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Abstract

Background: Although the estimation of body fatness by Slaughter skinfold thickness equations (PBFSlaughter) has
been widely used, the accuracy of this method is uncertain. We have previously examined the interrelationships
among the body mass index (BMI), PBFSlaughter, percent body fat from dual energy X-ray absorptiometry (PBFDXA)
and CVD risk factor levels among children who were examined in the Bogalusa Heart Study and in the Pediatric
Rosetta Body Composition Project. The current analyses examine these associations among 7599 8- to 19-year-olds
who participated in the (U.S.) National Health and Nutrition Examination Survey from 1999 to 2004.

Methods: We analyzed (1) the agreement between (1) estimates of percent body fat calculated from the Slaughter
skinfold thickness equations and from DXA, and (2) the relation of lipid, lipoprotein, and blood pressure levels to
BMI, PBFSlaughter and PBFDXA.

Results: PBFSlaughter was highly correlated (r ~ 0.85) with PBFDXA. However, among children with a relatively low
skinfold thicknesses sum (triceps + subscapular), PBFSlaughter underestimated PBFDXA by 8 to 9 percentage points. In
contrast, PBFSlaughter overestimated PBFDXA by 10 points among boys with a skinfold thickness sum ≥ 50 mm. After
adjustment for sex and age, lipid levels were related similarly to the body mass index, PBFDXA and PBFSlaughter. There
were, however, small differences in associations with blood pressure levels: systolic blood pressure was more
strongly associated with body mass index, but diastolic blood pressure was more strongly associated with percent
body fat.

Conclusions: The Slaughter equations yield biased estimates of body fatness. In general, lipid and blood pressure
levels are related similarly to levels of BMI (following adjustment for sex and age), PBFSlaughter, and PBFDXA.
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Background
The body mass index (BMI, kg/m2) is widely used as a
screening tool to identify obese children, and a high
BMI in early life is associated with adverse levels of car-
diovascular disease risk factors and the initial stages of
atherosclerosis [1]. Although children and adolescents
with a high BMI level also tend to have a high level of
body fatness [2], BMI is composed of both fat mass and

lean body mass, and it can be a poor indicator of fatness
among those who have normal or relatively low levels of
percent body fat [3, 4].
Despite the large measurement errors associated with

skinfold thicknesses [5, 6], skinfold thicknesses are
widely used among children and adolescents [7–9] to as-
sess body fatness. Although several investigators have
found the levels of percent body fat estimated from skin-
fold thickness equations [3, 10, 11] are more strongly
correlated with more accurate estimates of body fatness
than is BMI, this does not necessarily mean that skinfolds
are better predictors of adverse levels of cardiovascular
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disease (CVD) risk factors. Several studies of children and
adults have found that BMI is as strongly associated with
levels of lipids, blood pressure and insulin as are more ac-
curate estimates of body fatness [12–20]. This similarity
may result from the independent association of lean body
mass to adverse levels of several CVD risk factors [15] or
from the errors associated with either skinfold thickness
measurements [5] or the equations that are used estimate
body fatness [21].
We have previously reported that BMI and skinfold

thicknesses were related similarly to levels of CVD risk
factor levels among children and adolescents who in the
Bogalusa Heart Study [19]. The objectives of the current
study were to (1) assess the accuracy of the Slaughter
skinfold thickness equations in the estimation of percent
body fat (PBFSlaughter) for levels of percent body fat
calculated form dual energy X-ray absorptiometry
(PBFDXA), and (2) compare the magnitudes of the re-
lations of levels of CVD risk factors to levels of
PBFDXA, PBFSlaughter, and BMI levels among children
and adolescents. These associations are examined
among these 7599 8- to 19-year-olds who participated
in the U.S. National Health and Nutrition Examin-
ation Survey (NHANES), 1999–2004.

Methods
Ethics statement
The procedures for NHANES were in accord with the
ethical standards of CDC, and the protocols were ap-
proved by the National Center for Health Statistics
Research Ethics Review Board. No approval was re-
quired for the current analyses, and the data are
publicly available at http://www.cdc.gov/nchs/nhanes/
nhanes_questionnaires.htm.

Study population
The 1999–2004 NHANES is a representative, cross-
sectional sample of the U.S. civilian, non-institutionalized
population. Parental permission was obtained for minors
under the age of 18 years; 7- to 17-year-olds also provided
documented assent. Consent was obtained for all adults,
18 years and older. Race and ethnicity were self-reported,
and we classify subjects as non-Hispanic white, non-
Hispanic black, Mexican American and other. The overall
examination response rate for 6- to 19-year-olds in
NHANES 1999–2004 was 85 % [22]. The current analyses
included 7599 8- to 19-year-olds (see below).

DXA examinations
DXA scans were acquired in NHANES 1999–2004 for
boys and non-pregnant girls who were at least 8 years of
age using a Hologic QDR 4500A fan-beam densitometer
(Hologic Inc., Bedford MA) [23, 24]. Scans were ana-
lyzed using Hologic Discovery software (version 12.1).

Percentage body fat from DXA (PBFDXA) was calculated
as 100 × (DXA estimated total fat mass ÷ DXA estimated
total mass).
We used the NHANES DXA Multiple Imputation

Data Files [24] in the analyses. About 10 % of the chil-
dren and adolescents in the current study were missing
at least one DXA measurement, and because missing-
ness was related to BMI and other characteristics, an
analysis restricted to the non-missing values could be
biased. The 1999–2000 DXA data for 8- to 17-year-old
girls are available only in the Research Data Center, and
these data are not used in the current analyses. We do,
however, use the 1999–2000 data from 18- and 19-year-
old girls. There were 7599 children and adolescents who
had data for both PBFDXA (either calculated or imputed)
and BMI in the current study.

BMI and skinfold thicknesses
Body weight and height were measured using standard-
ized techniques, and BMI (kg/m2) was calculated as a
measure of relative weight. BMI-for-age z-scores (SDs)
and percentiles were calculated for each child based on
the CDC Growth Charts [25]; these values express the
BMIs of the examined 8- to 19-year-olds relative to their
sex-age peers in the U.S. between 1963 and 1980. A
child with a BMI-for-age ≥ 95th percentile of the CDC
reference population is considered to be obese, and
120 % of the 95th percentile [26] is used as the cutoff for
extreme obesity.
Because BMI z-scores based on the CDC growth

charts have several limitations, including an upper limit
of about 3.0 at most ages [27], several analyses are based
on the residuals of regression models in which BMI was
predicted by age (modeled using restricted cubic splines)
within each sex. These residuals represent a child’s BMI
relative to other children of the same sex and age in the
current study in kg/m2 units (rather than as SD scores),
and we refer to these values as ‘adjusted BMI’. It has
been shown [28] that BMI is preferable to BMI-for-age
z-scores when examining longitudinal changes.
The thickness of the triceps and subscapular skinfolds

were measured to the nearest 0.1 mm using Holtain
skinfold calipers. These data were missing for about 7 %
(subscapular) and 4 % (triceps) of children in the current
study because of measurement difficulties. We used the
Amelia II package in R [29, 30] to impute missing skin-
fold thicknesses from sex, race, age, BMI, PBFDXA, and
CVD risk factors. We used the logarithm of the skinfold
thickness in the imputations to improve normality.
We estimated PBFSlaughter from equations in Slaughter

et al. [31]. This set of equations incorporates linear and
squared terms for the sum of the thicknesses of the sub-
scapular and triceps skinfolds (SF sum), along with sex,
maturation, and race (white/black) to estimate percent
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body fat. The intercepts and slopes of these equations
differ by sex and SF sum; they also differ by maturation
stage and race among boys who have a SF sum < 35 mm.
As has been done in other investigations [7], we used
the age of the child as a surrogate for sexual maturation:
boys <12 y were considered pre-pubescent, those 12.0 to
13.9 y as pubescent, and those ≥ 14 y as post-pubescent.
The equations for white boys were used to estimate per-
cent body fat among all non-black boys.

Lipids and blood pressure
Serum levels of lipids and high-density lipoprotein
(HDL) cholesterol were measured for NHANES partici-
pants aged ≥ 3 y [32, 33]. Fasting levels of triglycerides
(TG) were available for participants aged ≥ 12 y who re-
ported that they had fasted for 8.5 – 23 h before the
morning examination [32]. For fasting TG levels
<400 mg/dL, low-density-lipoprotein (LDL) cholesterol
was calculated from the Friedewald equation [34]. Levels
of TG were skewed and were log-transformed in all
analyses.
Blood pressure measurements were taken in the mo-

bile examination center after the participants rested
quietly in a sitting position for 5 min. Three consecutive
blood pressure readings were attempted, and if a meas-
urement was interrupted or incomplete, a fourth attempt
was made. The mean of these determinations was used
to calculate blood pressure z-scores and percentiles rela-
tive to a child’s sex, age and height [35].
Of the 7599 subjects who had data on BMI and

PBFDXA, 735 did not have a lipid measurement and 245
did not have a SBP or DBP. These subjects, along with
an additional 153 children who reported being told that
they had diabetes or were taking drugs that affect lipid
or blood pressure levels, were excluded from the risk
factor analyses. These exclusions resulted in the samples
for the analyses of CVD risk factors consisting of 7311
(SBP and DBP), 6735 (TC), and 6733 (HDLC) subjects.
Sample sizes for the analyses of fasting levels of TG and
LDL-C were 2301 and 2291, respectively.

Statistical analyses
Analyses were performed using the survey and mitools
packages in R [30, 36], and all analyses account for the
sample weights, sample design and multiple imputations.
NCHS provided 5 complete DXA Multiple Imputation
Data Files [24], in which the missing DXA estimates
were imputed using multiple imputation [37]. For the
missing skinfold thickness data, we imputed 1 estimate
in each of these 5 DXA datasets using information on
sex, age, BMI, DXA measurements, non-missing skinfold
values, sample weights and other characteristics; this
yielded 5 datasets that had complete information for
both the DXA and skinfold thickness measurements. We

accounted for the uncertainty of the imputed values by
analyzing each of the 5 datasets separately and then
combining the results [38–41].
The agreement between levels of PBFDXA and PBFSlaugh-

ter was assessed in Bland-Altman plots [42], in which the
mean of the 2 estimates of percent body fat (x-axis) is
plotted vs. the difference (y-axis: PBFSlaughter - PBFDXA).
We also examined levels of PBFDXA and PBFSlaughter by
sex and levels of the SF sum; 4 categories the SF sum (ap-
proximately the sex-specific 33rd, 67th and 90th percen-
tiles) were used in these analyses. We used lowess which
accounted for the sample weights, to graphically examine
the relation of SF sum to levels of PBFDXA and PBFSlaughter.
The y-axis of the lowess curves represents the mean of
the estimated values over the 5 imputations.
We then examined the weighted correlations between

BMI, PBFSlaughter and PBFDXA with levels of the CVD
risk factors. To control for the influence of age, these
analyses used the residuals from sex-specific regression
models in which each characteristic was regressed on
age. The statistical significance of the observed differ-
ences (e.g., are levels of HDL cholesterol more strongly
correlated with PBFDXA than with adjusted BMI?) were
based on jackknife replicate weights which were calcu-
lated using the ‘withReplicates’ function of the survey
package [36]. Variances were then combined across the
imputations.

Results
Various characteristics of the sample are shown among
boys and girls in Table 1. About 18 % of the children
were obese, with 6 % considered to be extremely obese
(BMI ≥ 120 % of the CDC 95th percentile). Mean levels
of the SF sum, PBFDXA and PBFSlaughter were about 30 to
40 % higher among girls than boys (p < 0.001 for all
comparisons). As seen in the final 2 rows of Table 1, the
Slaughter estimate of percent body fat, however, sub-
stantially underestimated the mean PBFDXA among both
boys (by 4 percentage points) and girls (by 6 percentage
points); p < 0.001 for both comparisons). Additional sex-
specific analyses indicated that PBFDXA was more
strongly correlated with both PBFSlaughter and the SF
sum (r = 0.82 to 0.86) than with BMI-for-age (r = 0.75 to
0.80). Whereas mean levels of PBFDXA generally in-
creased with age among girls, mean levels decreased
among boys between the ages of 12 and 16 y (data not
shown).
As seen in the Bland-Altman mean-difference plot

(Fig. 1), the agreement between the Slaughter and DXA
estimates of percent body fat varied substantially by the
degree of body fatness. The largest underestimation of
PBFDXA occurred at low levels of body fatness. This
underestimation decreased at higher levels of percent
body fat, and at about 35 % (boys) and 45 % (girls) there
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was little difference between the 2 estimates. Among
children (particularly boys) who had higher levels of per-
cent body fat, PBFSlaughter substantially overestimated
PBFDXA. Additional analyses, stratified by sex and age
group (<12 y, 12 to 13.9 y, and ≥14 y) indicated that
within each sex-age group, the overestimation of PBFDXA

by PBFSlaughter was most pronounce at low levels of body
fatness, and the overestimation decreased as body fat-
ness increased (data not shown).
We then examined differences between PBFSlaughter

and PBFDXA within strata of the SF sum (Table 2). At
relatively low (below the 33rd percentile) levels of the SF
sum (<17 mm, boys; <25 mm, girls), PBFSlaughter under-
estimated PBFDXA by 8 to 9 percentage points. The mag-
nitude of this difference decreased at higher SF sum
levels, and for children in the highest SF sum category,
PBFSlaughter overestimated PBFDXA by about 10 percent-
age points among boys but only by 1.5 percentage points
among girls.
Figure 2 shows the relation of the SF sum to levels of

PBFDXA for each child (points), along with the relation
of the SF sum to both PBFSlaughter (dashed line) and
PBFDXA (solid line). As illustrated by the lowess curve
(solid line), the association between SF sum and PBFDXA
was curvilinear, with the slope decreasing as the SF sum
increased. In contrast, there were only small changes in
the relation of SF sum to PBFSlaughter (dashed line), with
the slope decreasing from 0.84 to 0.78 at a SF sum of
35 mm among white boys and from 0.78 to 0.55 among
girls. These differences in the slopes of the 2 lines re-
sulted in PBFSlaughter underestimating PBFDXA among
most children, but overestimating PBFDXA among boys
with a very high SF sum.
Table 3 shows mean levels of the CVD risk factors by

sex and PBFSlaughter category. As PBFSlaughter increased,
the prevalence of obesity varied from 0 to 58 % among
boys and from 0 to 68 % among girls. Children in the
highest PBFSlaughter group also had adverse levels of

Table 1 Descriptive Characteristics of the Sample a

Characteristic Boys (n = 4493) Girls (n = 3106)

Race/Ethnicity

Non-Hispanic White 61 % 62 %

Non-Hispanic Black 15 % 15 %

Mexican-American 11 % 11 %

Other 7 % 7 %

Age (y) 13.9 ± 0.1 13.9 ± 0.1

BMI (kg/m2) 21.8 ± 0.1 22.2 ± 0.2

BMI-for-age (z-score) b 0.46 ± 0.03 0.51 ± 0.04

Obese (%) c 18 ± 1 17 ± 1

Extreme Obesity (%) c 6 ± 1 6 ± 1

Subscapular skinfold thickness (mm) 9.1 ± 0.2 12.8 ± 0.3

Triceps skinfold thickness (mm) 11.2 ± 0.2 17.4 ± 0.3

Skinfold thickness sum (mm) 20.2 ± 0.5 30.8 ± 0.6

Slaughter estimated body fat (%) 21.1 ± 0.3 27.4 ± 0.3

DXA calculated body fat (%) 25.4 ± 0.2 33.3 ± 0.3
aValues represent prevalences or means (± SE). Because the skinfold thickness
measures were skewed, values for these 3 variables represent estimates of the
medians and their SEs
bZ-score (standard deviation score) of children relative to the 2000 CDC
growth charts
cObesity is defined as a BMI-for-age ≥ 95th percentile of the CDC reference
population or a BMI ≥ 30 kg/m2. Extreme obesity is defined as a BMI-for-age ≥
120 % of the 95th percentile [26]

Fig. 1 Bland-Altman plot for the agreement between the DXA and Slaughter estimates of percent body fat. Eachpoint represents an individual children
and the black line is the smoothed (lowess) curve. The overall medians are shown by the large diamonds, and the dashed lines represent the 95% CI for
the agreement between the 2 methods; if the estimates for the 2 methods were identical, all points would fall along the y=0 line. The PBF Slaughter

estimates appear to be biased, with PBF Slaughter underestimating PBF DXA among most children, but overestimating PBF DXA among the heaviest
children, particularly among boys
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PBFDXA and the various CVD risk factors as compared to
children in the lowest PBFSlaughter group. With the exception
of DBP, all risk factor differences between the lowest and
highest PBFSlaughter groups were statistically significant at the
0.01 level. Although the mean age of girls differed across the
PBFSlaughter categories, additional adjustment for age sub-
stantially influenced only levels of DBP, reducing the magni-
tude of the difference from 3 to 1 mm Hg among girls.
Table 4 shows correlations between the levels of the vari-

ous risk factors (columns) with levels of adjusted BMI,
PBFSlaughter, and PBFDXA. (Regression models were used to
adjust all characteristics for sex and age, and the values in
the table represent the correlations between the residuals of
these models.) With the exception of DBP, risk factor levels
were significantly associated with the 3 body size measures.
Furthermore, there was little difference in the relation of
the 3 body size measures to levels of lipids and lipoproteins.

For example, correlations with non-HDL cholesterol varied
from r = 0.31 to 0.32 across the body size measure among
boys and from r = 0.19 to 0.22 among girls.
There were, however, differences in the magnitudes of

the associations with blood pressure levels. SBP levels were
more strongly associated with adjusted BMI than with
levels of PBFSlaughter or PBFDXA; among boys, for example,
the 3 correlations were r = 0.32 (BMI), 0.25 (PBFSlaughter),
and 0.27 (PBFDXA); p < 0.01 for both comparisons with ad-
justed BMI. Although levels of DBP were only weakly (r <
0.10) associated with any of the anthropometric variables,
the associations were stronger for PBFSlaughter and PBFDXA
than for adjusted BMI. Among girls, for example, the 3
correlations were r = -0.01 (BMI), r = 0.08 (PBFSlaughter) and
r = 0.05 (PBFDXA).
There was also relatively little difference in the rela-

tion of the 3 body size measures to lipid and

Table 2 Levels of various characteristics within categories of the skinfold sum

Sex SF Sum
category (mm) a

N Ageb % Obese % Extreme
Obesity

SF sum (mm) PBFSlaughter
b PBFDXA

b PBF Difference:
Slaughter – DXA

Boys <17 1548 13.3 ± 0.1 0 0 13.8 ± 0.1 11.2 ± 0.1 19.2 ± 0.1 −8.0

17–27.4 1387 14.4 ± 0.1 2 ± 1 0 21.3 ± 0.2 17.8 ± 0.1 23.6 ± 0.2 −5.8

27.5–49 1125 14.1 ± 1.5 38 ± 2 7 ± 1 36.6 ± 0.3 30.2 ± 0.2 32.2 ± 0.4 −2.0

≥50 433 14.6 ± 0.2 92 ± 2 50 ± 4 60.1 ± 0.6 48.7 ± 0.6 38.9 ± 0.4 +9.7

Girls <25 991 13.0 ± 0.1 0 0 18.9 ± 0.1 17.8 ± 0.1 26.6 ± 0.2 −8.8

25–39 1090 14.6 ± 0.2 3 ± 1 0 31.9 ± 0.2 26.8 ± 0.1 33.3 ± 0.2 −6.4

40–56 652 14.9 ± 0.2 38 ± 3 7 ± 2 47.1 ± 0.3 35.4 ± 0.2 39.3 ± 0.3 −3.9

≥ 57 373 15.9 ± 0.3 87 ± 3 39 ± 4 67.1 ± 0.9 46.4 ± 0.5 44.8 ± 0.4 +1.5
aCut-points for the SF sum categories approximately the 33rd, 67th, and 90th weighted percentiles within each sex
bValues are mean or prevalence ± SE within each SF sum category

Fig. 2 The relation of the SF sum to levels of PBFDXA for each child (points), along with the predicted relationship of the SF sum to PBF

Slaughter(dashed line) and PBF DXA(solid line, lowess). For boys with a SF sum < 35 mm, the intercept of the SF sum vs. PBF Slaughter line varies by
race and sexual maturation in the Slaughter equations,[26] and the illustrated line is for white, pubescent boys. Among pubertal (ages 12 to 13.9
y) boys who have a SF sum ≤ 35 mm, the estimated percent body fat is: -3.4 + 1.21*(SF sum) -0.008*(SF sum)2. For boys with a SF sum >35 mm,
the equation is: 1.6 + 0.783*(SF sum) irrespective of pubertal stage
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lipoprotein levels in analyses stratified by race-
ethnicity. As seen in Table 5, as compared with
PBFSlaughter or PBFDXA, BMI was more strongly associ-
ated with levels of HDL cholesterol among white non-
Hispanics, and with levels of both total and non-HDL
cholesterol among Mexican-Americans. However, among
black non-Hispanic children, BMI showed a weaker asso-
ciation with levels of LDL cholesterol than did PBFSlaughter.

Discussion
It is sometimes asserted that body fatness is the true
outcome of interest in obesity research and that BMI is
an inaccurate surrogate. Although BMI is an inaccurate
index of body fatness among normal-weight children [3],
the results of several studies indicate that BMI is, in gen-
eral, as strongly associated with adverse levels of various
CVD risk factors as are more accurate assessments of
body fatness [13–18]. In the current, cross-sectional
study of 8- to 19-year-olds in the U.S., PBFSlaughter esti-
mates of body fatness were biased. PBFSlaughter underesti-
mated DXA-calculated percent body fat among relatively

thin children, but the extent of underestimation de-
creased at higher levels of body fatness. Among the
heaviest boys, PBFSlaughter overestimated PBFDXA by
about 10 percentage points. Despite being less strongly
associated with PBFDXA than was PBFSlaughter, we found
that adjusted levels of BMI were, in general, as strongly
associated with levels of lipids and lipoproteins as was
either PBFSlaughter or PBFDXA. SBP levels, however, were
more strongly associated with BMI, while the weaker as-
sociations (r < 0.10) with DBP levels were stronger for
PBFSlaughter and PBFDXA. These results are similar to our
previous findings concerning among children in the
Bogalusa Heart Study and the Pediatric Rosetta Body
Composition Project [19].
In general, skinfold thicknesses (and estimates derived

from them) are more strongly correlated with body fat-
ness than is BMI, but some of the observed differences
have been relatively small [3, 43]. Furthermore, the ac-
curacy of skinfold thickness estimates of body fatness
likely varies across skinfold sites and equations [21], in
part due to differences in the distribution of body fatness

Table 3 Mean levels of obesity, body fatness, and CVD risk factors by categories of sex and percent body fat estimated from the
Slaughter Equations

PBFSlaughter
Category

NTC
a Age

(years)
Obese (%) PBFDXA Total

Cholesterol
(mg/dL

Triglycerides
(mg/dL)b

Non-HDL
Cholesterol
(mg/L)

LDL
Cholesterol
(mg/dL)

HDL
Cholesterol
(mg/dL)

NSBP
a SBP

(mm Hg)
DBP
(mm Hg)

Boys

<15 % 1703 14 ± 0.1c 0 c 19 ± 0.1 156 ± 1 69 (66, 72) 103 ± 1 86 ± 1 53 ± 0.6 1825 107 ± 0.4 58 ± 0.5

15 - 24.9 % 1143 14 ± 0.2 4 ± 1 25 ± 0.2 161 ± 1 78 (73, 84) 112 ± 1 94 ± 2 49 ± 0.5 1208 108 ± 0.4 58 ± 0.7

≥ 25 % 1193 14 ± 0.2 58 ± 2* 35 ± 0.3* 172 ± 2* 110 (101,119)* 127 ± 1* 102 ± 2* 44 ± 0.6* 1287 113 ± 0.5* 59 ± 0.6

Girls

<25 % 1122 13 ± 0.1 0 28 ± 0.2 162 ± 1 72 (67, 77) 107 ± 1 89 ± 2 56 ± 0.5 1255 102 ± 0.4 59 ± 0.5

25 - 34.9 % 960 15 ± 0.2 11 ± 1 35 ± 0.2 165 ± 1 79 (73, 86) 113 ± 1 92 ± 2 52 ± 0.5 1056 106 ± 0.6 60 ± 0.5

≥ 35 % 614 15 ± 0.2 68 ± 4* 43 ± 0.4* 170 ± 2* 84 (76, 92)* 122 ± 2* 99 ± 3* 47 ± 0.6* 679 110 ± 0.5* 62 ± 0.6
a Ns in the column heading represent number of children with a non-missing value of that characteristic (total cholesterol or SBP). Ns for levels of TG and LDL-C,
which required the child (age, 12–19 y) to be fasting, were about one third of the Ns for total cholesterol. The sample sizes for all risk factors are given in the
Methods section
b Geometric means are shown for TG levels, which were log-transformed
c Values are mean or prevalence ± SE within each SF sum category
* P < 0.01 for difference in CVD risk factor level between lowest and highest PBFSlaughter categories based on linear or logistic regression models that controlled for
age and 2-year cycle

Table 4 Correlations between the CVD risk factors and measures of body size, by sex

Sex Characteristic Total cholesterol Triglycerides LDL cholesterol Non-HDL Cholesterol HDL cholesterol SBP DBP

Boys Adjusted BMI 0.20 0.39 0.24 0.31 −0.34 0.32 −0.01

PBFSlaughter 0.21 0.40 0.25 0.32 −0.34 0.25* 0.02*

PBFDXA 0.20 0.37 0.25 0.31 −0.33 0.27* 0.03*

Girls Adjusted BMI 0.07 0.14 0.11 0.19 −0.31 0.32 −0.01

PBFSlaughter 0.10 0.15 0.11 0.21 −0.29 0.21* 0.08*

PBFDXA 0.11 0.15 0.15 0.22 −0.29 0.21* 0.05*
a Levels of triglycerides were log transformed
* P-values assesses whether the correlation between the risk factor and adjusted BMI is equal to the correlation between the risk factor and either PBFSlaughter or
PBFDXA . Among boys, for example, levels of SBP were more strongly associated with adjusted BMI (r = 0.32) than with PBFDXA (r = 0.25). * p ≤ 0.01, H0: correlation
of risk factor with adjusted BMI is equal to its correlation with PBFSlaughter or PBFDXA
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[44]. For example, whereas various skinfold thicknesses and
equations were stronger predictors of body fatness (deter-
mined from a 4-compartment model) than was BMI (R2s
of ~0.85 vs. 0.67) [3], the multiple R2 for individual skin-
folds varied from 0.76 (thigh) to 0.85 (biceps) [45].
It is possible that much of the discrepancy between

PBFSlaughter and PBFDXA in the current study results from
the relatively thin children and adolescents in the sample
(n = 242) in which the Slaughter equations were developed
[31]. Although BMI levels were not reported in this 1988
paper, these participants weighed less and had much thin-
ner skinfolds than did those in the current analysis. For ex-
ample, the mean SF sum among the 58 post-pubescent
boys in the 1988 study was 18 mm (SD = 7) [31], whereas
the mean SF sum among the 2572 14- to 19-year-old boys
in the current study was 50 % larger (27 mm). It is unlikely
that equations developed among relatively thin children
can accurately estimate the body fatness of the much heav-
ier children and adolescents in the current U.S. population.
In agreement with our results among the heaviest chil-

dren, a previous analysis of data from the Pediatric Ro-
setta Body Composition Project obtained using Lunar
models DPX and DPX-L [19] also found that the Slaugh-
ter skinfold thickness equations overestimate DXA-
calculated percent body fat among heavy children. As
shown in Fig. 2, this overestimation likely results from
the functional form of the Slaughter equations. Although
the Slaughter equations include a squared term for the
SF sum [31], this term has very little influence on the es-
timated values. Furthermore, at SF sum values > 35 mm,
the Slaughter equations are linear, with each 1 mm in-
crease in the SF sum associated with a 0.783 (boys) or
0.546 (girls) increase in the estimate of percent body fat.
As shown in Fig. 2, there is a nearly linear relationship
between the SF sum and PBFSlaughter throughout the en-
tire range of SF sum values, while the relation of the SF
sum to PBFDXA is strongly curvilinear.

In general, the magnitudes of the associations with
CVD risk factor levels that we observed agree fairly well
with previous reports, including an analysis of NHANES
1999-2004 data that examined the relation of PBFDXA to
levels of lipids and lipoproteins [46]. Many investigators
have found levels of various risk factors to be related
similarly to levels of BMI and to estimates of body fat-
ness calculated from skinfold thicknesses [17, 19], air-
displacement plethysmography [13] and DXA [14–16].
This similarity may arise because the associations are
largely influenced by risk factor levels among obese chil-
dren, among whom BMI is a relatively good indicator of
fatness [3], or because of the errors in measurement as-
sociated with skinfold thicknesses [5]. We did, however,
observe some consistent differences in the associa-
tions with blood pressure, with BMI showing the
strongest (p < 0.01) association with SBP but the
weakest association with DBP.
There are additional limitations of the current, cross-

sectional analyses that should be considered. Although
the errors in the measurement of skinfold thicknesses
are well known [5]. DXA estimates of the body fatness
of an individual can also differ substantially from those
obtained with the 4-compartment model and neutron
activation [47]. It is also possible that DXA underesti-
mates the body fatness of leaner persons and overesti-
mates the fatness of obese persons [48], but if this
occurred in the current study, the PBFSlaughter overesti-
mation of the body fatness of obese children may be
even greater than what we observed. Although errors
may have also been introduced by our use of age as a
surrogate for pubertal maturation, we observed the lar-
gest discrepancies between PBFDXA and PBFSlaughter
among boys with thick skinfolds; among these boys,
PBFSlaughter is based on only the SF sum [31]. It should
also be realized that because BMI performs better as an
indicator of body fatness among children who have

Table 5 Correlations between the CVD risk factors and measures of body size, by race-ethnicity

Race-ethnicity Characteristic Total
cholesterol

Triglycerides a LDL
cholesterol

Non-HDL
Cholesterol

HDL
cholesterol

SBP DBP

White non-Hispanics (N = 2026) Adjusted BMI 0.14 0.31 0.17 0.26 −0.35 0.31 −0.03

PBFSlaughter 0.17 0.33 0.17 0.27 −0.30* 0.21* 0.05*

PBFDXA 0.17 0.25 0.16 0.26 −0.26* 0.22* 0.07*

Black non-Hispanics (N = 2433) Adjusted BMI 0.11 0.32 0.20 0.24 −0.32 0.32 0.03

PBFSlaughter 0.12 0.31 0.24* 0.26 −0.32 0.25* 0.07*

PBFDXA 0.10 0.24 0.21 0.23 −0.31 0.21* 0.08*

Mexican-Americans (N = 2547) Adjusted BMI 0.19 0.39 0.26 0.30 −0.32 0.35 0.00

PBFSlaughter 0.19 0.37 0.25 0.30 −0.31 0.25* 0.04*

PBFDXA 0.15* 0.32 0.19 0.25* −0.30 0.24* 0.06*
aLevels of triglycerides were log transformed
*P-values assesses whether the correlation between the risk factor and adjusted BMI is equal to the correlation between the risk factor and either PBFSlaughter or
PBFDXA. Among white non-Hispanics, for example, levels of SBP were more strongly associated with adjusted BMI (r = 0.31) than with PBFDXA (r = 0.22). * p ≤ 0.01,
H0: correlation of risk factor with adjusted BMI is equal to its correlation with PBFSlaughter or PBFDXA
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relatively high levels of percent body fat than among
thinner children [4, 20, 45], our results may not apply to
populations in which the prevalence of obesity is rela-
tively low.

Conclusion
Our results indicate that the Slaughter skinfold thickness
equations of percent body fat are biased, with PBFSlaugh-
ter overestimating the body fatness of obese children,
particularly obese boys. Furthermore, with the exception
of very weak associations with DBP levels, adjusted (for
sex and age) BMI values are as strongly associated with
levels of various CVD risk factors as is PBFSlaughter. Our
results do not support the possibility that the assessment
of CVD risk among children and adolescents could be
improved through the measurement of skinfold thick-
nesses or the use of DXA-calculated percent body fat ra-
ther than BMI.
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