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Abstract

Background: Previous studies have reported the lower reference limit (LRL) of quantitative cord glucose-6-
phosphate dehydrogenase (G6PD), but they have not used approved international statistical methodology. Using
common standards is expecting to yield more true findings. Therefore, we aimed to estimate LRL of quantitative
G6PD detection in healthy term neonates by using statistical analyses endorsed by the International Federation of
Clinical Chemistry (IFCC) and the Clinical and Laboratory Standards Institute (CLSI) for reference interval estimation.

Methods: This cross sectional retrospective study was performed at King Abdulaziz Hospital, Saudi Arabia, between
March 2010 and June 2012. The study monitored consecutive neonates born to mothers from one Arab Muslim
tribe that was assumed to have a low prevalence of G6PD-deficiency. Neonates that satisfied the following criteria
were included: full-term birth (37 weeks); no admission to the special care nursery; no phototherapy treatment;
negative direct antiglobulin test; and fathers of female neonates were from the same mothers’ tribe. The G6PD
activity (Units/gram Hemoglobin) was measured spectrophotometrically by an automated kit. This study used
statistical analyses endorsed by IFCC and CLSI for reference interval estimation. The 2.5th percentiles and the
corresponding 95% confidence intervals (Cl) were estimated as LRLs, both in presence and absence of outliers.

Results: 207 males and 188 females term neonates who had cord blood quantitative G6PD testing met the
inclusion criteria. Method of Horn detected 20 G6PD values as outliers (8 males and 12 females). Distributions of
quantitative cord G6PD values exhibited a normal distribution in absence of the outliers only. The Harris-Boyd
method and proportion criteria revealed that combined gender LRLs were reliable. The combined bootstrap LRL in
presence of the outliers was 10.0 (95% Cl: 7.5-10.7) and the combined parametric LRL in absence of the outliers was
11.0 (95% Cl: 10.5-11.3).

Conclusion: These results contribute to the LRL of quantitative cord G6PD detection in full-term neonates. They
are transferable to another laboratory when pre-analytical factors and testing methods are comparable and the
IFCC-CLSI requirements of transference are satisfied. We are suggesting using estimated LRL in absence of the
outliers as mislabeling G6PD-deficient neonates as normal is intolerable whereas mislabeling G6PD-normal neonates
as deficient is tolerable.
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Background

Glucose-6-phosphate dehydrogenase (G6PD) deficiency
is a common X-linked recessive enzymopathy [1]. Geno-
typically, males are either hemizygous for the G6PD
gene with normal gene expression or G6PD deficient,
while females can be normal, heterozygous, or homozy-
gous. While about 186 variants have been recognized,
not all of them are clinically significant [2]. The World
Health Organization (WHO) has classified G6PD vari-
ants into five classes: Class I (severe enzyme deficiency
with chronic non-spherocytic hemolytic anemia); Class
IT (<10% of normal); Class III (10-60% of normal); Class
IV (60-100% of normal); and Class V (>200% of normal)
[3]. The G6PD deficiency is well-known to cause hyper-
bilirubinemia that may be severe enough to cause
kernicterus or neonatal death [1,4]. Early recognition of
G6PD deficiency can help prevent these serious compli-
cations. Thus, the WHO has endorsed screening cord
blood samples from all neonates in populations with a
prevalence of G6PD deficiency of 3 to 5% or more in
males [5]. The WHO has endorsed 5 methods as screen-
ing or diagnostic tests for G6PD deficiency including
quantitative measurement of G6PD activity in red blood
cells (RBCs) [5,6]. Reference limits are the cornerstones
of interpretation of any laboratory result, including
quantitative cord G6PD values. Previous studies have
reported on the lower reference limit (LRL) or lower de-
cision limit (LDL) of quantitative cord G6PD values, but
these have methodological and/or statistical flaws [7-18].
These studies did not implement standard statistics used
to estimate LRLs that have long been endorsed by the
International Federation of Clinical Chemistry (IFCC)
and the Clinical and Laboratory Standards Institute
(CLSI) [19-25]. None of these studies have addressed the
detection and handling of outliers. Only two of these
studies addressed the type of distribution of G6PD
values and were in accordance with known methods of
defining reference intervals (RIs), including the 95% cen-
tral RIs [7,8]. Instead of reporting non-parametric RIs that
do not make any assumptions about the data distribution,
[26] some researchers have based the LRL on the mean
without addressing normal distribution testing [13]. Some
reported LRLs/LDLs have been estimated from small
sample sizes, [7,11,12] from populations with high G6PD
deficiency prevalence, [8-10,13,15,16] and from mixtures
of G6PD-normal and G6PD-deficient preterm and full-
term neonates [8,15]. Therefore, we aimed to estimate the
LRLs of quantitative cord G6PD activity from a large
population of healthy term neonates in accordance with
the standard method of IFCC-CLSI [19-25]. In our opin-
ion, using of these common standards would overcome
limitations of the previous studies and yield true findings
[27]. We elected not to estimate the upper reference limit
as it has no clinical implication [28].
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Methods

Setting

We conducted this cross sectional retrospective study at
King Abdulaziz Hospital (KAH) in the Al-Ahsa area of the
Eastern province of Saudi Arabia. Since 2009, KAH has
been accredited by the Joint Commission of International
Accreditation and its laboratory has been accredited by
the College of American Pathologists, which implements
the CLSI standards in its accreditation checklists.

Analytic method for G6PD

In early 2008, KAH began universal cord blood screening
for G6PD deficiency coupled with direct antiglobulin test-
ing and blood grouping [29]. A semi-qualitative fluores-
cence spot test (FST) with a cut-off point of 2.1 Units/
gram Hemoglobin (U/g Hb) was used until 01 March
2010, at which point it was replaced with an automated
commercial kit. This kit is Udilipse Auto Analyzer from
United Diagnostics Industry, Dammam, Saudi Arabia that
offers quantitative measurement of G6PD activity.

Just after delivery of the placenta, whole cord blood
was collected in ethylenediaminetetraacetic acid (EDTA)
Vacutainer tubes (Becton-Dickinson, Rutherford, NJ, USA).
Blood specimens were transported to the laboratory by
pneumatic tubes. Quantitative G6PD activity measure-
ments were performed in batches every morning, 7 days a
week, with blood samples stored in the vertical position at
2-8 degree Celsius (°C) until analysis. The principal me-
thod of the Udilipse kit is in accordance with the standar-
dized WHO method for G6PD assay of the hemolysate at
25°C outlined as follows [6]:

Glucose-6-Phosphate + NADP S 6—Phosphogluconate

+ NADPH + H*

The reagents of this kit are outlined as follows:

Reagent 1 (G6PD Buffer): Ready to use 50 micromolar
(mM)/Liter triethanolamine buffer, 5 mM/Liter EDTA,
pH 7.6 £ 0.05 (25°C).

Reagent 2 (G6PD NADP): Reconstituted 30 mM nico-
tinamide adenine dinucleotide phosphate (NADP).

Reagent 3 (G6PD Substrate): Reconstituted 17 mM
Glucose-6-Phosphate Sodium.

Reagent 4 (G6PD Lysis): Ready to use 0.2% Saponin
aqueous solution.

Hemolysate was prepared according to the manu-
facturer’s manual for the Udilipse kit by adding a well-
mixed 100 microliters of whole blood to 400 microliters
of 0.2% Saponin. The G6PD activity was measured
within one hour of hemolysate preparation. The activity
of the G6PD enzyme is measured by the rate of NADPH
formation, which is measured spectrophotometrically by
means of the increase in extinction at 340, 334 or 365
nanometer. As the Udilipse kit only measures G6PD
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activity, hemoglobin was measured spectrophotometric-
ally on the same sample by CELL-DYN Sapphire (Ab-
bott Diagnostics, Santa Clara, CA, USA). Then, the
values of G6PD activity and hemoglobin were entered
and stored in Cerner Lab Information System Software
(Cerner Corporation, Kansas City, MO, USA), which is
already programmed to express the G6PD activity in U/
g Hb by dividing the obtained G6PD activity by the
obtained hemoglobin values.

Reference sample group

The IFCC-CLSI recommends estimating RLs from a
healthy population [20,25]. In our case, the healthy
population would be the population free from G6PD
mutations. The Al-Ahsa area is composed of an oasis
part inhabited by Arab Muslims of urban descent and a
desert part inhabited by Arab Muslims of Bedouin des-
cent. The overall prevalence of G6PD deficiency in the
Al-Ahsa area is 23% in males and 13% in females [30].
The G6PD-Mediterranean (WHO class II) constitutes
84% of G6PD mutations in this population and the
G6PD-A" (WHO class III) represents 5.8% [2,28,31].
G6PD deficiency is confined to the oasis part of the area,
as malaria was much more prevalent in the oasis than in
the desert [32-34]. A recent retrospective Ahsai study
found no single severe G6PD deficient case among 236
neonates from one Arabic Bedouin tribe subjected to
cord blood screening by FST [29]. Therefore, this tribe
can function as the reference population for estimating
the LRLs of G6PD [35]. Henceforth, this tribe will be
referred to as the reference tribe.

The reference sample group was identified from the
delivery room log book via the mothers’ names. It
consisted of all consecutive neonates born to mothers
from the reference tribe between March, 2010 and June,
2012 that satisfied all the following posteriori inclusion
criteria: 1) full-term (37 weeks of gestation); 2) roomed
in with mothers and were not admitted to the special
care nursery; 3) no phototherapy treatment during the
neonatal period; 4) negative direct antiglobulin test; and
5) fathers of female neonates were from the reference
tribe. For male neonates it does not matter whether the
father is from the reference tribe or not, but it does
matter for female neonates as the G6PD is inherited as
X-linked recessive. Thus, only copies of birth notices of
female neonates were reviewed to ascertain that both
parents were from the reference tribe. At KAH, birth
notices that include the full name of both parents are
issued upon home discharges and copies of these birth
notices are stored in hard and electronic medical records
of neonates. We selected only full-term neonates as we
did not expect to have an adequate number of preterm
neonates of the reference sample group during the study
period and as G6PD values have been shown to be
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higher in preterm neonates <34 weeks of gestation
[15,36,37]. Gestational age was calculated according to the
best obstetric estimate at KAH based on the first or sec-
ond trimester obstetric ultrasound and/or the last men-
strual period, and on the Ballard score when the best
obstetric estimate was uncertain [38,39]. The photother-
apy threshold used in this hospital has been published pre-
viously and is more conservative than those used by the
American Academy of Pediatrics [29]. All the study data
were extracted from electronic health care records
(QuadraMed CPR 5.0.9, Reston, VA, USA). This study was
exempted from review by the Institutional Review Board.

Statistical analysis

We performed statistical analyses as endorsed by the
IFCC- CLSI [24,25]. The IFCC-CLSI has endorsed the
use of the 2.5th percentile of the values as the LRL.
Further, this body endorses the use of a minimum of 146
reference individuals in each gender partition to calculate
the 95% confidence interval (CI) of the 2.5th percentile
[25]. We estimated the 2.5th percentiles for males, fema-
les, and the combined group.

The IFCC-CLSI suggests detecting outliers by Tukey’s
boxplot for unskewed data and by method of Horn for
skewed data. The method of horn uses Tukey’s boxplot
on Box-Cox transformed data [40]. Although the me-
thod of Horn is implanted in RefVal 4.11, [41] we also
estimated the best lambda and performed the Box-Cox
transformation by using already available SPSS syntax
[42]. The two Tukey’s inner fences are the 25th per-
centile minus 1.5 interquartile range (IQR) and the 75th
percentile plus 1.5 IQR. The two Tukey’s outer fences
are the 25th percentile minus 3.0 IQR and the 75th
percentile plus 3.0 IQR. Values outside the inner fences
but inside the outer fences are considered mild outliers
and values outside the outer fences are considered ex-
treme outliers.

Data extraction and entry of the outliers were double-
checked. It was difficult to ascertain whether these outliers
were due to G6PD mutations or to pre-analytic errors as
these values were not cross-referenced with molecular
testing. Assuming that the reference tribe is in Hardy-
Weinberg equilibrium, the Hardy-Weinberg equation
was used as a surrogate to determine whether these
outliers represent G6PD mutations [43,44]. The asymp-
totic Pearson’s chi-square goodness-of-fit test with 2
degrees of freedom was calculated to test the departure
from Hardy-Weinberg proportions [45]. Distributions of
G6PD values with and without outliers were presented as
histograms with superimposed best-fitting normal distri-
bution curves. Non-integer G6PD values were rounded
down to the nearest integer at the boundaries of histo-
gram bins. The type of distribution of the G6PD values
was assessed by visual examination of the histograms,
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comparison between measures of central tendency (mean,
median, and mode), skewness, kurtosis, the Anderson-
Darling test, and the Shapiro-Wilk test [46,47]. A distri-
bution was considered normal if it had a two-sided
P value > .05 for skewness coefficient, kurtosis coefficient,
and the Anderson-Darling or Shapiro-Wilk tests [46,47].
The IFCC recommends testing for normal distribution
using coefficients of skewness and kurtosis and the
Anderson-Darling test [46]. The Shapiro-Wilk test, which
has not been evaluated by the IFCC, was also used as it
has recently been found to be more powerful than the
Anderson-Darling test [47]. For comprehensiveness,
z-scores of both skewness and kurtosis ware calculated as
[Skewness (or Kurtosis)/SD of Skewness (or Kurtosis)]
and z-scores between +1.96 were considered statistically
insignificant [48].

The IFCC-CLSI recommends excluding values from
unhealthy individuals and estimating the LRLs from
healthy individuals only [20,25]. Thus, LRLs were esti-
mated both in presence and absence of the detected out-
liers as these outliers might be due to G6PD mutations.
As laboratory professionals diverge on the best method
to estimate LRL, LRLs and their 95% Cls were estimated
by three methods when appropriate: parametric, non-
parametric bootstrap based on 500 bootstrap samples
and non-parametric rank- based [24,25,41,49]. Lower
reference limits were also estimated based on methods
of previous studies in order to compare between LRLs
based on those methods and those based on method of
the IFCC-CLSI. The Harris-Boyd method was used to
assess the reliability of gender combined LRLs [50,51].
The combined gender LRLs were considered to be reli-
able when the larger SD divided by the smaller SD <1.5
and when the normal deviate z value was less than the
critical z value of 5. Additionally, the proportion criteria
were used for non-normal distributions as it is more
accurate than the Harris-Boyd method for such distribu-
tions. (Lahti A, 2004), [52] The combined gender LRLs
were considered to be reliable when proportion of G6PD
values less than the combined LRL did not exceed 4.1%
in any gender subgroups [52].

The binomial test was used to compare the observed
frequencies of male and female neonates. The two-sample
t-test assuming equal variances or Mann—Whitney U test
was used to compare differences between male and female
neonates’ continuous variables when appropriate. The
two-sample ¢-test assuming unequal variances was used to
compare means of this study with those of previous stud-
ies. The one-sample Wilcoxon signed rank test was used
to compare medians of this study with hypothetical values
equal to medians of previous studies. A two-sided P value
<.05 was considered statistically significant. Data analysis
was performed using the RefVal 4.11, IBM SPSS Statistics
20 (Chicago, IL, USA), and OpenEpi 2.2.1 programs.
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Results
Figure 1 depicts the process of study selection. A total of
463 term neonates (241 males and 222 females) of the
reference tribe were born during the study period. Of
these, 62 neonates (13.4%) did not meet the posteriori
inclusion criteria (32 males and 30 females). The 2.5th
percentile of the G6PD values of the excluded neonates
was 9.6 U/g Hb (range: 7.3-19.6). Of the 401 neonates
(86.6%) that met the posteriori inclusion criteria (209
males and 192 females), 2 males and 4 females had no
quantitative G6PD testing on their cord blood as the
reagents were not available at the time of birth. Thus, 395
term neonates with a similar proportion of males (n = 207)
and females (n =188) left for analysis (P =.37). Mean (SD)
gestational age of male and female neonates were similar
[39.6 (1.3) versus 39.6 (1.4) weeks, P =.68). Mean (SD)
birth weight of male and female neonates were similar
[3315 (460) versus 3243 (442) grams, P =.12).

The combined gender reference sample group had a
mean (SD) birth weight of 3281 (452) grams and a mean
gestational age of 39.6 (1.3) weeks.

The outliers

The G6PD values among the males had no significant
skewness (0.07). The SPSS syntax indicated that the
original data had the lowest skewness. Thus, Tukey’s
boxplot was performed on their original values (Figure 2).
Both the RefVal and SPSS programs detected exactly the
same eight (3.9%) G6PD values as outliers among males
(Figure 2).

The G6PD values among the females had significant
negative skewness (—0.93), thus, Tukey’s boxplot was
performed on their Box-Cox transformed values (Method
of Horn). The SPSS program indicated that a lambda of
1.84 is the best. The Box-Cox transformed G6PD values
had a skewness of —0.003. Both the RefVal and SPSS pro-
grams detected exactly the samel2 (6.4%) G5PD values as
outliers among the females (Figure 3).

Some of the outliers were separated by a gap from the
rest of the G6PD values (see below). Assuming that the
frequency of mutated G6PD alleles among males is 0.039
(number of detect outliers among males/total number of
males), the Hardy-Weinberg equation revealed that the
expected number of both heterozygous and homozygous
females would be 14, nearly the same as number of the
detected outliers (P = .87).

Estimation of LRLs in presence of the outliers

The histograms (Figures 4 and 5), measures of central
tendency, and all statistical tests of normality (Table 1)
suggested that the G6PD values of males, females and
the combined group exhibited non-normal distributions.
The G6PD values of males had one gap in each ends.
The gap in lower end bounded by 9.10 and 7.90 U/g Hb
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463 term neonates were born to the mothers of the reference tribe during the study period

Excluded neonates:

112 neonates with positive direct antiglobulin test
113 neonates admitted to level 3 NICU

:25 neonates admitted to level 2 NICU

128 neonates required phototherapy

:3 female neonates whom their father were not from the reference tribe

:Out of these , 19 neonates had more than one of the abovementioned
lexclusion criteria, thus the total number of excluded neonates was 62

401 neonates met the inclusion creteria

I

I

I 6 neonates had no quantitative G6PD testing on their cord blood ————
I I

|

395 neonates were included in the analysis

Figure 1 Flow chart describing neonates’ selection.

and the gap in upper end bounded by 22.80 and 20.80
U/g Hb (Figure 4). The G6PD values of females had one
gap in the lower end only which bounded by 9.60 and
7.50 U/g Hb (Figure 4).

Table 1 depicts that G6PD levels in male and
female neonates were similar (P =.50). It depicts the
estimated LRLs in presence of the outliers. The RefVal
indicated that even the two-stage transformation of
the combined group did not yield a normal distribu-
tion. As a result, it recommended using the bootstrap
method for the combined LRLs. The combined LRLs
were reliable as the proportion of G6PD values less
than the common LRL (10.0 U/g Hb) did not exceed
4.1% among male or female neonates, the ratio of
SDs < 1.5 and the normal deviate z test < the critical z value
of 5 (Table 1).

Estimation of LRLs in absence of the outliers

After the outliers were excluded, LRLs were estimated
from cord blood samples of 375 neonates (199 males
and 176 females). The histograms (Figures 6 and 7) and
measures of central tendency (Table 2) suggested that
the G6PD values of males, females and the combined
group all exhibited normal distributions. This was con-
firmed by the non-statistically significant coefficients of
skewness and kurtosis and by the Anderson-Darling and
Shapiro-Wilk tests (Table 2). As expected, the observed
gaps in presence of the outliers disappeared.

Table 2 depicts that G6PD levels in male and female
neonates were similar (P =.62). Estimated parametric
LRLs had the tightest 95% CI, followed by bootstrap and
non-parametric LRLs (Table 2). The combined LRLs
were reliable as the ratio of SDs< 1.5 and the normal
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deviate z test < the critical z value of 5 (Table 2). As a
result, the suggested LRL is 11.0 U/g Hb.

Table 3 depicts LRL estimations based on methods of
previous studies. They were nearly the same, lower, or
higher than those estimations based on statistical ana-
lyses of the IFCC-CLSI (Table 3). The observed mean
and median G6PD values were nearly the same, lower,
or higher than those of 8 previous studies (Table 3).

Discussion

The present study estimated the LRLs of quantitative cord
G6PD using standard statistical methods endorsed by the
[FCC-CLSI for establishing RlIs [24,25]. The study used a
homogenous reference sample group of healthy term
neonates expected to have a low prevalence of G6PD defi-
ciency. The results showed that 11.0 U/g Hb is a reliable
combined parametric LRL for both genders. This value
may help to identify G6PD-deficient heterozygous female
neonates [28,53]. This LRL can be transferred to other
laboratories using a similar G6PD measurement method,
satisfying the conditions for transference validation.

Reference limits are the cornerstones of interpretation
of quantitative cord G6PD activity measurements. Stan-
dardization of statistical analysis for RI estimation is
critical and is enabled by the IFCC-CLSI'’s endorsement of
a standard statistical analysis for RI estimation [24,25].
Yet, the present study is the first to implement this stand-
ard method of statistical analysis to estimate one-sided Rls
of quantitative cord G6PD. It demonstrated clearly that
different methods are yielding different LRL estimations
as most of our estimations based on methods of previous
studies were inconsistent with our estimations based on
method of the IFCC-CLSI (Table 3). Thus, standardized
statistical analysis and reporting of studies on LRL estima-
tions should be encouraged.

Our observed gaps in G6PD values of males confirmed
the findings of others [8,13,16,54]. Apparently, presence of
these gaps depends on type of G6PD mutation and age
of RBCs [55]. An old Italian study found that 98-100% of
RBC of 115 normal schoolboys (G6PD-B) were G6PD (+),
98-100% of RBCs of 45 schoolboys bearing G6PD-
Meditrianian were G6PD (-), and six schoolboys bearing
G6PD-Seattle-like had a mosaic population of G6PD (+)
and (-) RBCs [54]. For that reason, gaps were observed
between G6PD values of G6PD-Meditrianian and normal
boys while no gap was observed between G6PD-Seattle-
like and normal boys [54]. Having said that, our observed
gaps developed as their outermost borders and afterward
values might be due to pre-analytic errors.

Our observed gap in the cord G6PD values of females
has not been reported before. It is rather contradicting
that G6PD values of females are continuum as heterozy-
gotes may express a spectrum of values; normal, inter-
mediate, and deficient [16,56]. The intermediate values
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Table 1 Characteristics of G6PD values and lower reference limits (2.5th percentiles) in presence of outliers

Males (n =207)

Females (n=188)

Combined (n =395)

Mean (SD)? 141 2.1)
Median (interquartile range)® 14.1 (12.9-15.3)
Mode? 14.7
z-score of skewness® 0.07/0.17 =041
z-score of kurtosis® 23/034=68
Skewness coefficient (P-value) 66
Kurtosis coefficient (P-value) <.001
Anderson-Darling test (P-value) <.001
Shapiro-Wilk test (P-value) <001
Two-stage transformation parametric 9.8 (8.8-10.7)
LRL (95% CI)?

Bootstrap LRL (95% CI)* 10.0 (7.3-109)
Non-parametric LRL (95% CI)? 10.0 (7.1-10.8)

Combination tests
1. Proportion of observations 4/207 (1.9%)
less than the combined LRL
(proportion criteria)
2. Harris-Boyd method
Larger SD/Smaller SD
Normal deviate z test

Critical z value of 5

141 (2.1) 14.1 (2.1)
14.2 (13.2-15.2) 14.1 (13.0-15.3)
15.1 133
—093/0.18=5.2 -040/0.12=-33
39/035=11.1 30/025=120

<001 002

<.001 <.001

<.001 <.001

<.001 <.001
94 (7.9-10.6) Unreliable as transformed distribution is not normal
9.0 (5.5-10.9) 100 (7.5-10.7)
9.0 (5.2-10.9) 100 (7.1-10.7)

5/188 (2.7%)

1.0
Zero
6.4

2G6PD activity expressed as Units/gram Hemoglobin.
bz-score = Skewness (or Kurtosis)/SD of Skewness (or Kurtosis).

will bridge the gap between normal and deficient values.
That is why it is difficult to diagnosis heterozygotes
without a family history or molecular testing [56-59].
Thus, this observed gap developed by chance or because
their outermost borders and afterward values might be
due to pre-analytic errors. However, excessive skewing
of X-chromosome inactivation (allele ratios 3:1) in hete-
rozygotes might account partly for our observed gap in
G6PD values of females [60]. The excessive skewing has
been reported to be in favor of RBCs bearing normal
G6PD gene [54]. As a result, G6PD values for heterozy-
gotes would be within RI of non-G6PD deficient females.
On other hand, the skewing could be in favor of abnor-
mal RBCs, and then G6PD values for heterozygotes
would be within RI of homozygous G6PD-deficient
females [60,61]. Reported incidence of excessive skewing
of X-chromosome in cord blood of healthy, term, female
neonates is 9- 24% [62,63]. Nevertheless, as the observed
gap could be due to pre-analytic errors or chance and
has no plausible explanation, further confirmatory and
exploratory studies are required before firm conclusions
can be drawn.

Comprehensive normal distribution testing in the
present study showed that the distribution of quantitative
cord G6PD exhibited a normal distribution only in

absence of the outliers. Previous studies that have run
limited normal distribution testing diverge on the normal
distribution of G6PD values. The G6PD values exhibited a
normal distribution in the study by Boo et al. but a non-
normal distribution in the study by Fok et al. [7,8]. The
fact that only full-term neonates were included in both
the present study and that by Boo et al. might explain the
normal distribution in those populations, while the inclu-
sion of both preterm and term neonates in the study by
Fok et al. might account for the non-normal distribution,
as G6PD activity has been shown to vary with gestational
age (Table 3) [15,36,37]. Some researchers based their LRL
and LDL estimations on the mean without addressing
normal distribution testing [13]. Taken together, these
observations emphasize the importance of conducting
comprehensive normal distribution testing or estimating
non-parametric RIs that do not make any assumptions
about the data distribution [26].

Outliers are known to skew statistical tests based on
sample means and variances, making it strongly advisable
to detect outliers before performing these tests. Thus, it
was not surprising that presence of these outliers widened
the 95% Cls and distorted the homogeneity and the nor-
mal distributions, particularly for the combined gender
group where even the two-stage transformation did not
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Figure 6 Distributions of quantitative cord G6PD values in male and females in absence of the outliers with superimposed best-fitting
normal distribution curves.

yield a normal distribution. The IFCC-CLSI emphasizes
retaining outliers unless they are due to human or labora-
tory errors or representing unhealthy individuals. Retro-
spective nature of study precludes ascertaining whether or
not these outliers were due to human or laboratory errors.
However, there were three evidences suggesting that the
outliers in the present study might be due to G6PD muta-
tions. First, the frequencies of these outliers were in

Hardy-Weinberg proportions. Second, presence of gaps
between some of these outliers and the rest of presumed
normal G6PD values. Third, a recent study from Jeddah
area of western Saudi Arabia that found all the 20 female
neonates with a cord G6PD value 6.6 U/g Hb subjected to
molecular testing were G6PD- deficient [64]. However,
the Jeddah study did not subject female neonates with a
cord G6PD value > 6.6 U/g Hb to molecular testing [64].
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Figure 7 Distributions of quantitative cord G6PD values in the combined gender group in absence of the outliers with superimposed
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Table 2 Characteristics of G6PD values and lower reference limits (2.5th percentiles) in absence of the outliers

Males (n=199)

Females (n =176) Combined (n=375)

Mean (SD)? 141 (1.7)
Median (interquartile range)® 14.1 (13.0-15.2)
Mode® 147
z-score of skewness® —-0.20/0.17=-1.18
z-score of kurtosis® —-0.13/0.34=-0.38
Skewness coefficient (P-value) 24
Kurtosis coefficient (P-value) 87
Anderson-Darling test (P-value) >999

Shapiro-Wilk test (P-value) 0.64
Parametric LRL (95% CI)® 108 (10.3-11.3)
Bootstrap LRL (95% Cl)* 10.7 (10.1-11.2)
Non-parametric LRL (95% CI)? 10.7 (10.0-11.2)
Harris-Boyd method combination test

Larger SD/Smaller SD

Normal deviate z test

Critical z value of 5

141 (14) 14.1 (1.6)
14.1 (13.2-15.1) 14.1 (13.1-15.2)
15.1 133
-0.30/0.18=-1.67 —0.24/0.13=-1.85

-0.11/0.37=-0.28 —0.06/0.25=0.24

11 06
89 92
>.999 12
0.18 0.14
11.0 (10.5-11.6) 11.0 (10.5-11.3)°
106 (10.2-11.6) 10.7 (10.3-11.1)
106 (9.6-11.6) 10.7 (10.2-11.1)
12
Zero
6.2

?G6PD activity expressed as Units/gram Hemoglobin.
bz-score = Skewness (or Kurtosis)/SD of Skewness (or Kurtosis).
“The suggested lower reference limit (LRL) and its 95% confidence interval (Cl).

We are suggesting using estimated LRLs in absence of
the outliers for three reasons. First, the outliers of the
present study might be due to pre-analytic errors. Sec-
ond, they might be due to G6PD mutations. Third, all
estimated LRLs were higher in absence than in presence
of the outliers. Increasing cut-off point of LRLs will in-
crease their sensitivity at the expense of their specificity.
This is quite acceptable as mislabeling G6PD-deficient
neonates as normal is intolerable whereas mislabeling
G6PD-normal neonates as deficient is tolerable [65].
The parametric method is preferable to bootstrap and
non-parametric methods for normal distributions [49].
This study showed that parametric LRLs had tight 95%
CIs. The reference sample group in the present study
satisfied the assumptions of the Harris-Boyd method as
the G6PD values exhibited a normal distribution and the
proportions of males and females were similar [50]. The
Harris-Boyd method showed that the LRL of the com-
bined genders is reliable. The standard statistical tests, the
two-sample t-test assuming equal variances and Mann—
Whitney U test also showed that G6PD levels were similar
in male and female neonates. This is logic and consistent
with the fact that the LRL was estimated from non-G6PD
deficient neonates, as normal males and females should
have the same G6PD values [58]. Consequently, we sug-
gested the parametric LRL of the combined gender group
(11.0 U/g Hg) as the LRL for cord G6PD of term neonates.
Future studies on the LRLs for preterm neonates using
the IFCC-CLSI are warranted as G6PD activity has been
shown to vary across gestational age categories [15,36,37].

Some laboratory professionals have advocated estima-
ting the 5.0th percentile as the LRL when a one-sided RI
is assumed [66]. We elected the 2.5th percentile as the
LRL in compliance with the IFCC-CLSI guidelines. How-
ever, the 5.0th percentiles of the G6PD values in this study
were similar to the 2.5th percentiles (data not shown).

The IFCC-CLSI allow transferal of a reference limit
from one laboratory to another when pre-analytical
factors and testing methods are comparable in both
laboratories and when one of their 3 validation methods
is satisfied [25]. One of these validation methods is the
N-20 reference sample group method, in which 20 sam-
ples from carefully assessed reference individuals are
tested. When no more than 2 of these 20 samples fall
outside the transferred reference limit, it is statistically
valid to accept the transferred reference limit. Various
commercial G6PD Kkits are available (Table 3), but as few
studies have addressed their comparability, [65] future
studies using the CLSI guidelines for methodological
comparison are warranted [67].

Observed mean and median G6PD values were sta-
tistically significantly different from those reported in
previous studies. The discrepancy could be due to differ-
ences in the timing of these studies, the ethnicities of
the reference sample groups, gestational ages, G6PD Kkits
and their reagents, and statistical strategies for LRL
estimation (Table 3). However, not all of these differ-
ences are clinically significant, as trivial differences were
sometimes statistically significant due to large sample
sizes (Table 3).



Table 3 Summary of 8 previous studies on the lower reference limit (LRL)/lower decision limit (LDL) of cord G6PD activity and our LRL/LDL estimations based

on methods of those studies

G6PD measurement
method

Study Mean (SD)? P-value® LRL/LDL® Our LRL/LDL estimations® based on Method for LRL/LDL estimation
OR Median® methods of previous studies
|. Previous studies with means/medians similar statistically/clinically to those of the present study
Fok et al. (1985) [8] 10.6 108
Male (n = 660) 14.8 <.001¢
143 (39 30
Female (n = 568) 14.6 <.001¢
146 (2.9) .002°
Ainoon et al. 146 (mean) SD was not reportedC 87 85

(2003)[10] (n=976)

Riskin et al. (2012) [15] 14.7 (2.0) <.001¢
(n = 2269 term neonates)
Male >7.0 85
Female >10.0 96

II. Previous studies with means lower than those of the present study

Boo et al. (1994) [7] >4.1 9.9
Male (n=135) 83(2.2) <001

95% Cl:7.9-86 <001
Female (n=127) 85 (2.1)

95% (1:8.2-89
Azma et al. (2010) [11] 124 (2.3) <001 10.2 120
(n=94)

Chinese neonates born at >30 weeks of

gestation.

Observed normal G6PD activity separated from
abnormal activity in male neonates.

The 3rd percentile of values

after excluding deficient male neonates (< 3.0).

Malay and Chinese neonates. Gestational age was
not addressed. G6PD deficiency is < 60% of the

normal mean level.

Jew (Sephardic, Ashkenazi, Ethiopian), Arab
(Muslim, Druze, Christian), and Caucasus preterm

and term neonates.

G6PD deficiency is < 60% of the normal mean level.
[70] Gender distribution. Hardy-Weinberg equation.

Normal Malay, Chinese, and Indian neonates born

at 37 weeks of gestation with

G6PD level 4.1 U/g Hb or negative fluorescence

spot test.

Mean-25D

Normal term Malay neonates with negative
fluorescence spot test. 68% reference interval

(mean-1SD)

Cobas Bio,F.Hoffmann,
La Roche & Co. (Switzerland)

Randox Laboratories, Ltd.

Sentinel Diagnosticskit (Italy)

Manually according to the
standardized

WHO method for G6PD
assay of the hemolysate.

OSMMR-D (R&D Diagnostics
Ltd,, Greece)

LEV/EL/LEVT-L L7 1/WOY [RAUSDPIWIOIG MMM//:d1Y

LEL'EL "€L0T $2HIDIPa4 DNG D 12 1PAY-|V

Gl Jo || abeq



Table 3 Summary of 8 previous studies on the lower reference limit (LRL)/lower decision limit (LDL) of cord G6PD activity and our LRL/LDL estimations based
on methods of those studies (Continued)

IIIl. Previous studies with mean/median higher than those of the present study

Reclos et al.(2003) [9] Uneventful pregnancies and normal full-term OSMMR200 0 (R&D
deliveries.

Greek Male (n=505) 20.8 (1.6) <001 125 85 G6PD deficiency is < 60% of the normal Diagnostics Ltd., Greece)
mean level.[70]

Greek Female (n=551) 19.5 (2.0) <001 11.7 85

Albanian Male (n = 444) 216 (20) <001 13.0

Albanian Female 210 (2.6) <001 126

(n=363)

Kaplan et al. (2005) [13] Healthy term and near-term African American Technicon RA 1000 analyzer
neonates. (Bayer Diag.NY)

Male (436) 218 (2.9) <001 14.5 9.1 Observed normal G6PD activity separated from
abnormal activity in male neonates.

Algur et al. (2012) [16] Sephardic Jew born at 36 weeks of gestation. Sentinel Diagnostics kit

(Italy)

Male (n=1256) 188 <001 9.0 9.1 Males: observed normal G6PD activity separated
from abnormal activity.

Female (n=1153) 184 <001 9.5 7.4 Probable normal females: > 50% of the normal

male median level.

2G6PD activity expressed as Units/gram Hemoglobin (U/g Hb). Some of the original values were rounded to one decimal.

bp-value for the two-sample t-test that was used to compare our means with those of previous studies and the one-sample Wilcoxon signed rank test that was used to compare our medians with those of
previous study.

“Not clinically significant.

90ur estimated LRL would be 9.6 U/g Hb based on the observed gap in G6PD values of females.

LEV/EL/LEVT-L L7 1/WOY [RAUSDPIWIOIG MMM//:d1Y

LEL'EL "€L0T $2HIDIPa4 DNG D 12 1PAY-|V
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Controversy exists as to whether G6PD activity should
be expressed as U/g Hb or per number of RBCs. The
WHO and some researchers have endorsed expressing
the G6PD activity per number of RBCs to per U/g Hb,
as the hemoglobin content may fluctuate independently
of the G6PD activity, particularly when RBCs are hypo-
chromic [6,12]. Other researchers have compared the
two expressions using neonatal peripheral blood and
found that they are perfectly correlated [35]. However,
the correlation between the two expressions of cord
G6PD activity still needs to be determined.

The present study has four limitations that should be
noted. First, retrospective nature of the study precluded
assuring that the grandmothers were form the reference
tribe as their names were not printed in the birth
notices. Nevertheless, we do not assume that prevalence
of neonates of grandmothers who were not from the
reference tribe was high enough to alter prevalence of
G6PD deficiency in the reference tribe significantly. The
intermarriages between the reference tribe and other
tribes are not a familiar tradition. The intermarriages
between Bedouin descents and urban descents rarely
occurred. For instance, in the present study, 3 out of 222
(1.4%) female neonates were product of intermarriages
between the reference tribe and other tribes that all were
Bedouin descents. Second, reported LRLs were not
cross-referenced with molecular testing, so a future
study using molecular testing to verify these LRLs is
warranted. Third, the G6PD activity was only expressed
as U/g Hb, precluding comparison with other studies
that expressed G6PD activity per number of RBCs [12].
Fourth, methods of Horn and Harris-Boyd have some
limitations that have been addressed elsewhere; vyet,
these are the best available methods for assessing out-
liers and common LRL, respectively [51,68,69]. However,
even the standard statistical tests, the two-sample ¢-test
assuming equal variances and Mann—Whitney U test
also showed that G6PD levels were similar in male and
female neonates.

Conclusions

The present study estimated the LRLs of cord G6PD
activity using the standard method of statistical analysis
endorsed by the IFCC-CLSI. We believe that we have
included healthy neonates as we used stringent inclusion
criteria and we included a reference group that has a
low prevalence of G6PD deficiency. The results showed
that the LRL of cord G6PD activity for full-term neo-
nates of both genders is 11.0 U/g Hb and that this value
is transferable to other settings when the IFCC-CLSI
requirements of transference are satisfied. Further stud-
ies are warranted on LRLs for preterm neonates using
the statistical standards of the IFCC-CLSI, cross-
referencing the LRL with molecular testing, comparing
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methods of expressing cord G6PD activity, and compa-
ring various commercial kits. Standardized statistical
analysis and reporting of studies on RI estimation should
be encouraged.
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