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Abstract
Background  Children with atrial septal defect (ASD) and ventricular septal defect (VSD) are frequently examined for 
respiratory symptoms, even when the underlying disease is not found. Chest radiographs often serve as the primary 
imaging modality. It is crucial to differentiate between ASD and VSD due to their distinct treatment.

Purpose  To assess whether deep learning analysis of chest radiographs can more effectively differentiate between 
ASD and VSD in children.

Methods  In this retrospective study, chest radiographs and corresponding radiology reports from 1,194 patients 
were analyzed. The cases were categorized into a training set and a validation set, comprising 480 cases of ASD and 
480 cases of VSD, and a test set with 115 cases of ASD and 119 cases of VSD. Four deep learning network models—
ResNet-CBAM, InceptionV3, EfficientNet, and ViT—were developed for training, and a fivefold cross-validation method 
was employed to optimize the models. Receiver operating characteristic (ROC) curve analyses were conducted to 
assess the performance of each model. The most effective algorithm was compared with the interpretations provided 
by two radiologists on 234 images from the test group.

Results  The average accuracy, sensitivity, and specificity of the four deep learning models in the differential diagnosis 
of VSD and ASD were higher than 70%. The AUC values of ResNet-CBAM, IncepetionV3, EfficientNet, and ViT were 0.87, 
0.91, 0.90, and 0.66, respectively. Statistical analysis showed that the differential diagnosis efficiency of InceptionV3 
was the highest, reaching 87% classification accuracy. The accuracy of InceptionV3 in the differential diagnosis of VSD 
and ASD was higher than that of the radiologists.
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Introduction
Congenital heart disease (CHD) is the most common 
congenital birth defect. Ventricular septal defect (VSD) 
and atrial septal defect (ASD) are the most common non-
cyanotic CHDs, and they account for about 25–35% of all 
CHDs [1]. Currently, echocardiography is the predomi-
nant screening method employed for CHD. However, 
the necessity for sedation or even anesthesia in some 
children, due to a lack of cooperation, poses significant 
challenges. Additionally, the requirement for professional 
echocardiographers means that many primary hospitals 
may not have the necessary expertise, thereby increasing 
the risk of missed diagnoses.

Children with ASD and VSD are often medically exam-
ined for respiratory symptoms. Notably, chest radiog-
raphy has the advantage of X-ray photography—which 
displays both the heart and the lungs, i.e., the shape 
of the heart is shown, in addition to a reflection of the 
state of pulmonary circulation [2, 3]—over ultrasound. 
Therefore, the potential ability to use chest radiography 
for differential diagnosis between VSD and ASD would 
be very important. However, considering that making a 
diagnosis of CHD requires highly specialized knowledge, 
imaging physicians in nonspecialist hospitals have a high 
rate of misdiagnosis and missed diagnosis. Currently, the 
combination of artificial intelligence and imaging data is 
increasingly being applied to various medical image anal-
ysis tasks such as lesion segmentation, disease detection, 
and assisted diagnosis [3–7]. This approach has demon-
strated considerable application value in the detection 
and diagnosis of systemic diseases across imaging modal-
ities, including the brain [8], heart and chest [9], and 
abdomen [10]. Deep learning based on chest radiographs 
has been used to diagnose diseases such as pneumonia 
and pneumothorax [11–14], as well as predict the long-
term prognosis of asymptomatic individuals.

The purpose of this study was to investigate the appli-
cation of artificial intelligence methods in the automatic 
differentiation of ASD and VSD using chest radiographs. 
We proposed a deep learning approach that utilizes chest 
radiographs to distinguish between VSD and ASD, with 
the aim of enabling imaging physicians in nonspecialized 
hospitals to achieve rapid and accurate differential diag-
noses. This research seeks to advance the goal of artificial 
intelligence-assisted diagnosis of simple CHD.

Methods
This retrospective study was approved by the institu-
tional review board(NO.2022-02-006-H01), and the need 
for patients’ informed consent was waived.

Subjects
We conducted a retrospective analysis of the chest radio-
graphs data of 1194 patients who had undergone digital 
radiographic examination (GE Healthcare, Discovery, 
USA) between June 2017 and May 2023, including 489 
males and 705 females (with an average age of 5.56 ± 2.67 
years). The patients were divided into the ASD group and 
the VSD group.

The inclusion criteria were as follows: (1) no treat-
ment for CHD received before chest radiography; and (2) 
gold standard angiocardiography and/or surgical results 
available for comparison. The exclusion criteria were as 
follows: (1) history of CHD surgery or other related treat-
ments; (2) history of other heart diseases; (3) incomplete 
patient information; and (4) image quality of chest plain 
film insufficient to meet the diagnostic requirements.

Image collection
The children were placed in the standing position, 
instructed to inhale calmly, and the digital X-ray images 
were taken with the X-ray machines (GE Healthcare, Dis-
covery, USA). The posterior and anterior chest films were 
collected, with tube current and tube voltage of 5-8 mA 
and 75-85  kV, respectively, and the filming distance of 
180 cm.

Training, validation, and test sets
The entire dataset contained 1194 images, including 595 
of ASD and 599 of VSD. The dataset was divided into 
the training and validation set and the test set. A total of 
960 samples, including 480 cases of ASD and 480 cases 
of VSD, were allocated to the training and validation set, 
while the remaining 115 cases of ASD and 119 cases of 
VSD were reserved for testing.

Image pretreatment and deep learnning model training
As shown in the flowchart (Fig. 1), our environment was 
NVIDIA 3080Ti GPU with 12 GB memory, Python 3.9.7, 
Pytorch-GPU 1.10.2, SimpleITK 2.1.1, Numpy 1.21.5, 
Windows 10. Due to variations in image sizes, all images 
were resampled to a size of 1024 × 1024 pixels. The batch 
size was set at 4; the optimization function was Adam; 
the weights were initialized using the default initializer 

Conclusions  Deep learning methods such as IncepetionV3 based on chest radiographs in the study showed 
good performance for differential diagnosis of congenital VSD and ASD, which may be able to assist radiologists in 
diagnosis, education, and training, and reduce missed diagnosis and misdiagnosis.
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(Standard normal distribution) of Pytorch; and the initial 
learning rate was set at 0.0001. We used a dynamic learn-
ing rate adjustment strategy, and the learning rate was 
adjusted to one-tenth of the original every 50 epochs. 
After 200 epochs, the training procedure stopped.

With the same training environment, four deep learn-
ing networks were trained and validated in this study, 
they were ResNet-CBAM, IncepetionV3, EfficientNet, 
and ViT. Among them, ResNet-CBAM was the integra-
tion of the ResNet network, which was the most com-
monly used network for medical image classification, 
with the CBAM attention module. IncepetionV3 was one 
of the most commonly used classification networks and 
achieved good performance on a variety of image classi-
fication tasks, EfficientNet was a network that achieved 
excellent classification performance with a small number 
of parameters, and ViT was a typical application of trans-
former in the image field. After performance comparison, 
InceptionV3 [15] was finally selected as the differential 
diagnostic network. This network is characterized by its 
unique architectural feature of using inception modules, 
which are composed of multiple parallel convolutional 
and pooling layers at different kernel sizes. These mod-
ules enable the network to capture a wide range of fea-
tures, from fine details to larger-scale patterns, thereby 
effectively improving its ability to represent complex 
visual information. Additionally, InceptionV3 incorpo-
rates factorization of convolutions, and this architecture 
balances model depth and computational efficiency.

Comparation between the models and diagnosis of 
radiologists
In order to assess the diagnostic performance of the 
deep learning models with that of the radiologists, 234 
images in the validation group were visually diagnosed 
by the two radiologists mentioned above who inde-
pendently categorized the cases as normal adenoids or 
adenoid hypertrophy. The differences in diagnostic abil-
ity between deep learning models and radiologists were 
compared using the Delong test. The Cohen Kappa test 
was used to assess the agreement between the deep 
learning models and radiologists, and between different 
radiologists.

Evaluation and data analysis
Statistical analyses were performed using SPSS Statistics 
for Windows, version 25.0 (IBM Corp.) We performed 
a normality test on the obtained data, and normally dis-
tributed data were presented by mean (standard devia-
tion) and skewed data were presented by median (upper 
and lower quartiles). We calculated the accuracy, sensi-
tivity, specificity, and other indicators of defect detection; 
obtained the ROC curve of the model based on sensi-
tivity and specificity; and calculated the area under the 
ROC curve (AUC). Kappa values were used to determine 
inter-observer agreement. Kappa values of 0.81-1.00 
indicated perfect consistency, 0.61–0.80 indicated high 
consistency, 0.41–0.60 indicated moderate consistency, 
0.21–0.40 indicated fair consistency, and 0-0.20 indicated 

Fig. 1  Flowchart of the study. ASD, atrial septal defect. VSD, ventricular septal defect
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very low consistency. P < 0.05 was considered as a level 
with significant difference.

Results
General data
The present study collected posterior and anterior chest 
films images from 1194 children, including 489 males 
(41.0%) and 705 females (59.0%), with a mean age of 
5.53 ± 2.66 years (from 6 months to 12 years; Table  1). 
There was no statistically significant difference in the 
gender and age of the children in the three groups 
(P > 0.05).

Image segmentation results
Figure  2 presents representative X-ray images of ASD 
and VSD in children. Figure 3 illustrates the comparison 
between the artificial segmentation and the results of 

model predictions. The results demonstrate near-human 
performance in segmentation, with the predicted lung 
domain exhibiting a high degree of accuracy, thereby 
effectively fulfilling the requirements for image classifica-
tion tasks.

Detection efficiency of the Deep Learning Model
We used four networks in total, including ResNet-CBAM 
and others such as Inceptionv3 and ViT. We calculated 
the accuracy, specificity, sensitivity, PPV, TPR, TNR, and 
F1 scores of all networks in the test set. Four networks 
were trained for image classification and the reliability of 
the models in the differential diagnosis of ASD and VSD 
was verified using the activated regions in their classifica-
tion. The results are shown in Table 2. The accuracy rate 
of InceptionV3 was the highest, reaching 0.872, and the 
sensitivity, specificity, positive predictive value, and F1 
score were 0.975, 0.765, 0.811 and 0.886, respectively. 
The ROC curves of the four networks were plotted. The 
results showed that InceptionV3 had the largest area 
under the ROC curve, indicating its strongest ability to 
distinguish between ASD and VSD (Fig. 4).

Comparison between models and radiologists
In this study, the deep learning model showing the best 
performance, InceptionV3, was selected for compari-
son with the radiologists’ diagnosis (Table  3). Although 
Delong’s test showed no significant difference between 
InceptionV3 and each radiologist in the test group 

Table 1  Clinical and demographic characteristics of the study
Characteristic Training 

group
(n = 762)

validation 
group
(n = 198)

Test 
group
(n = 234)

Age (year) 5.50 ± 2.68 5.56 ± 2.64 5.57 ± 2.67
Sex, n (%)
Male 319(41.9) 81(40.9) 89(36.3)
Female 443(58.1) 117(59.1) 145(63.7)
Clinical evaluation, 
n (%)
ASD 443 (58.2) 69(34.8) 83 (35.5)
VSD 319 (41.8) 129 (65.2) 151 (64.5)

Fig. 2  The representative X-ray images of ASD and VSD in children. A shows the chest X-ray preprocessing image of the representative ASD case; B is the 
representative X-ray image of VSD
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(P = 0.241, P = 0.368), InceptionV3 demonstrated higher 
AUC and sensitivity than that of the expert and the fellow 
(Fig. 5).

The Cohen Kappa test was used to determine the con-
sistency among radiologists. The result showed that 
the Kappa value between the expert and the fellow was 
approximately 0.81, indicating excellent agreement.

Activation heat maps from chest radiographs
For the network with the best results, Grad-CAM was 
used to draw class activation mapping (CAM) to visualize 
typical representatives of correct classification and mis-
classification and consider visualizing internal and exter-
nal test data. Color indicated the amount of attention 
the model paid to a particular region, with red indicat-
ing more attention and blue indicating less attention. As 
shown in Fig. 6, both in the test and in the validation set, 
the red area of the true positive case of ASD was located 
in the right upper lung, while the red area of the true pos-
itive case of VSD was located in the left upper lung.

Discussion
In the present study, we employed four network mod-
els—EfficientNet, InceptionV3, ResNet18, CBAM, and 
ViT—utilizing the original chest X-ray images as input 
and classifying them into VSD or ASD categories as out-
put. To objectively assess the performance of the deep 
learning models in detecting VSD or ASD, we imple-
mented a fivefold cross-validation method. This involved 
randomly dividing the defect dataset into five segments, 
using four segments for training and reserving one for 
testing, while supplementing each test with an additional 
segment of normal data. This procedure was repeated 
five times, ensuring that the validation data varied with 
each iteration. This approach helped mitigate discrepan-
cies in results and reduce the risk of overfitting due to 
the imbalance in VSD and ASD cases. The model that 
demonstrated the best performance during the fivefold 
cross-validation was subsequently employed for external 
testing.

The results of this study demonstrated that the aver-
age accuracy, sensitivity, and specificity of the four deep 
learning models for the differential diagnosis of VSD 
and ASD across five different test datasets were high, 
exceeding 0.70, with an average AUC value greater than 
0.80. Among these models, InceptionV3 achieved the 
highest accuracy rate of 0.872, with sensitivity, specific-
ity, positive predictive value, and F1 score recorded at 
0.975, 0.765, 0.811, and 0.886, respectively. In addition, 
the Delong test and Kappa test of the test group showed 
no significant difference between InceptionV3 and each 
radiologist in the differential diagnosis ability of imaging 
specialists for VSD and ASD, and the diagnostic accu-
racy of the deep learning model was higher than that of 
the imaging physicians. These findings suggest that our 
model could assist physicians in refining their differential 
diagnoses, thereby enabling them to diagnose patients 

Table 2  Classified network test datas
Statis-
tical 
Measure

EfficientNet InceptionV3 ResNet18_
cbam

ViT

ACC 0.8461 0.8718 0.8547 0.6582
SPE 0.8261 0.7652 0.7565 0.6174
SEN 0.8656 0.9748 0.9496 0.6975
PPV 0.8374 0.8112 0.8014 0.6535
NPV 0.8731 0.9003 0.8896 0.7352
AUC 0.901 0.9142 0.8715 0.6641
F1-score 0.8512 0.8855 0.8692 0.6748
ACC accuracy, SPE specificity, SEN sensitivity; PPV positive predictive value, NPV 
negative predictive value, AUC area under curve

Fig. 3  Comparing the results of manual segmentation and model segmentation. A shows the chest X-ray preprocessing image of an ASD case; B is the 
lung field contour manually segmented by the physician; C is the image of the input model
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more effectively with the support of artificial intelligence. 
The model exhibited high diagnostic sensitivity and a low 
probability of missed diagnoses, which could significantly 
alleviate the workload of imaging physicians and enhance 
their diagnostic efficiency.

The deep learning model demonstrated greater sen-
sitivity to VSD cases compared to ASD, as evidenced 
by a higher false detection rate for ASD. This discrep-
ancy may be attributed to two primary factors. Firstly, 
from a hemodynamic perspective, the blood volume in 
the left atrium is smaller than that in the left ventricle, 
and the pressure difference between the atria is signifi-
cantly less than that of the left ventricle. Additionally, the 
shunt in ASD is generally smaller, leading to milder car-
diac structural changes compared to VSD. Secondly, the 

increase in pulmonary circulation blood volume associ-
ated with ASD occurs later and to a lesser degree, result-
ing in relatively mild signs of increased vascular texture 
and thickening on chest radiography. Consequently, the 
deep learning model may have missed detecting some 
instances of ASD.

Compared with the imaging physicians, the deep learn-
ing model showed a higher false-positive rate. In the test 
and the validation set, 33 cases of ASD were on average 
falsely detected as VSD in the four deep learning mod-
els. We found that most of the false-positive cases were 
primary-foramen ASD or ASD with longer lesion time 
and larger defects. The location of the primary-foramen 
ASD was close to the mitral and tricuspid valve annulus, 
so tricuspid and mitral regurgitations may occur, result-
ing in the enlargement of the left heart circulation. In 
addition, if a larger ASD was not treated for a long time, 
pulmonary vascular resistance gradually increased, lead-
ing to pulmonary hypertension. When the pressure of 
the right atrium was greater than that of the left atrium, 
the right-to-left shunt could occur, and the left heart cir-
culation of the patient also increased. Thus, in these two 
cases, patients could have left atrial and left ventricular 
enlargement, and the deep learning model was prone to 
mistaking ASD for VSD. Therefore, in the future, it is 
necessary to add training data on multiple defect types 
and constantly iteratively update the model to improve 

Table 3  Diagnostic performance of InceptionV3, the expert, and 
the fellow in differentiating ASD and VSD
Statistical Measure The expert InceptionV3 The fellow
ACC 0.8041 0.8617 0.7845
SPE 0.9520 0.9543 0.9437
SEN 0.1642 0.4749 0.1145
PPV 0.4337 0.6911 0.2904
NPV 0.8312 0.8946 0.8215
AUC 0.7823 0.8821 0.6749
P value 0.2416 Reference 0.3681
ACC accuracy, SEN sensitivity, SPE specificity; PPV positive predictive value, NPV 
negative predictive value, AUC area under curve

Fig. 4  Diagnostic performance of four models in differentiating ASD and VSD. Data are area under the receiver operating characteristic curve. The AUCs 
of the four classification networks are 0.87 (ResNet18_cbam), 0.90 (EfficientNet), 0.91 (InceptionV3), and 0.66 (ViT)
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the sensitivity and accuracy of the model for defect 
detection, especially for VSD.

Previous studies have shown that the use of artificial 
intelligence technology to assist in the detection of VSD 
or ASD has certain advantages. Gharehbaghi et al. [16] 
used a machine learning method, a time growth neu-
ral network, to distinguish between VSD heart sound, 
atrioventricular valve regurgitation heart sound, and 
normal heart sound in children, and achieved accuracy 
and sensitivity of 86.7% and 83.3%, respectively. Liu et 
al. [17] constructed The residual convolution recurrent 
neural network classification model based on deep learn-
ing to analyze children’s heart sounds, which was able to 
preliminarily determine the type of left-to-right shunt 
CHD. Indeed, the diagnostic result of the model was bet-
ter than expert auscultation, with an accuracy value of 
0.940–0.994, which could improve the efficiency of CHD 
diagnosis. Toba et al. [18] predicted the pulmonary-
to-systemic circulation flow ratio of patients with CHD 
based on deep learning chest radiograph analysis, quanti-
tatively and objectively, which may confer an opportunity 
to quantify otherwise qualitative and subjective findings 

of pulmonary vascularity in the clinical setting. Kim et 
al. [19] provided highly reliable cardiovascular boundary 
measurement according to the deep learning algorithm 
to diagnose and quantitatively evaluate valvular heart 
disease. Based on chest radiographs, this study applied 
the deep learning method to the differential diagnosis of 
VSD and ASD, and the detection effect was better than 
that in the previous studies. The average accuracy and 
sensitivity for the total test cases reached more than 80%, 
indicating improved diagnostic efficiency. The fivefold 
cross-validation method showed that the four models 
had good differential diagnostic ability for VSD and ASD 
and good robustness.

Importantly, the deep learning model showed good dis-
crimination ability as well as displayed the location and 
range of specific identification points in the form of a 
heat map. The main feature of the class activation graph 
was to use the characteristic graph of the last convolu-
tion layer to find the corresponding weight of each chan-
nel through back-propagation. The larger the weight, 
the more important the corresponding characteristic 
graph. Then, the corresponding weights and feature maps 

Fig. 5  The ROC curves of the deep learning model, the expert, and the fellow for differentiating ASD and VSD 
 The AUCs of the three classification networks are 0.86 (the deep learning model), 0.80 (the experts), and 0.78 (the fellows)
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were multiplied to obtain the final class activation map 
[20–23]. The process of obtaining the attention heat map 
was as follows: the image to be visualized was input into 
the network model, the category was determined, and 
the output feature map of the layer to be visualized was 
obtained; then, the weight was assigned through the cat-
egory of the image; values were assigned to each channel 
of the obtained feature map and added to form a single 
channel feature map. Figure 5 is activation heat maps of a 
rep-resentative example. In this study, we utilized a color-
coding scheme where red indicates a large value and blue 
signifies a small value; the greater the value, the more 
attention the model pays to the corresponding area. Our 
findings from both the test and validation sets revealed 
that the red area associated with true positive cases of 
ASD was located in the right upper lung, suggesting that 
alterations in circulation within this region significantly 
contributed to the diagnosis of ASD. Conversely, the red 
area for true positive cases of VSD was found in the left 
upper lung, indicating that changes in circulation in this 
area had the greatest impact on the diagnosis of VSD. 

This phenomenon may be attributed to the fact that vari-
ations in pulmonary blood flow typically originate from 
the peripheral arteries before affecting the pulmonary 
hilum, leading to more pronounced peripheral changes 
in the early stages of the disease. Additionally, due to 
anatomical and gravitational effects, pulmonary vessels 
in the upper lobes are generally thinner than those in 
the lower lobes under normal conditions. Consequently, 
when pulmonary circulation is altered, these same ves-
sels may exhibit increased thickness or thinning, making 
changes in the upper pulmonary vessels more detect-
able by the deep learning model. Furthermore, in cases 
of ASD, the right atrium and right ventricle are enlarged, 
resulting in a relatively dense texture in the right lung, 
which enhances the visibility of increased blood flow 
in this region. Similarly, in VSD, the left atrium and left 
ventricle are enlarged, leading to a denser texture in the 
left lung, thereby making the manifestation of increased 
blood flow in the left lung more apparent. These specula-
tions warrant further experimental validation.

Fig. 6  Activation Heat Maps from Chest Radiographs. A and B are from the internal test set, and C and D are from the external validation set. Chest radio-
graph with ASD (A and C) and VSD (B and D) were visualized using grad-CAM, which represents the area (yellow and red) that the deep learning model 
considered important for predicting an increased pulmonary
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This study had several limitations. Firstly, the number 
of cases in the test set was relatively small; however, we 
employed fivefold cross-validation to mitigate the impact 
of a potentially unbalanced test set on the results. Future 
research should aim to increase the number of defect 
cases in external testing to achieve a more objective 
evaluation of the deep learning model. Secondly, while 
our model demonstrated effectiveness in detecting VSD 
and ASD, it is important to note that most of the VSD 
cases tested were perimembranous VSD, and the major-
ity of ASD cases were secundum ASD. These represent 
relatively simple and singular defect types, which may 
not encompass the full spectrum of defects encountered 
in clinical practice. In fact, apart from straightforward 
VSD and ASD cases, there exist other CHD malforma-
tions that are more challenging to detect. Currently, VSD 
and ASD are frequently diagnosed through cardiac com-
puted tomography and echocardiography in clinical set-
tings. Future efforts should involve incorporating chest 
radiograph data for various types of VSD and ASD into 
the training process, thereby developing a deep learn-
ing model that is better suited for clinical application. 
Furthermore, the training of deep learning classification 
models relies on parameter adjustments of annotated 
training sets to achieve discriminative performance that 
closely aligns with actual labels; however, this process is 
susceptible to overfitting and may introduce potential 
biases. Moving forward, we will concentrate on adaptive 
deep learning methods for image classification based on 
risk analysis to enhance the model’s accuracy.

Conclusions
In this study, deep learning using different convolutional 
network models was applied to differentiate and diagnose 
ASD and VSD using children’s chest posterior anterior 
X-ray images. The results showed that despite different 
variations, all models exhibited good performance, with 
the Inception3 model being the best and having diagnos-
tic efficacy no worse than that of radiology experts. This 
study indicates that deep learning models have clinical 
value in distinguishing between ASD and VSD, which 
can effectively improve the diagnostic efficiency of ASD 
and VSD in primary hospitals.
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