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Abstract
Background  Cerebral blood flow dynamics can be explored through analysis of endothelial frequencies. Our 
hypothesis posits a disparity in endothelial activity among neonates with perinatal asphyxia, stratified by the presence 
or absence of neuronal lesions.

Methods  We conducted a retrospective longitudinal study involving newborns treated with hypothermia for 
moderate to severe asphyxia. Participants were grouped based on the presence or absence of neuronal damage to 
investigate temporal endothelial involvement in cerebral blood flow regulation. Regional cerebral oxygen saturation 
(rScO2) was measured using near-infrared spectroscopy (NIRS), and temporal series were analyzed in the frequency 
domain, utilizing the original frequency of the INVOS™ device.

Results  The study included 88 patients, with 53% (47/88) being male and 33% (29/88) demonstrating brain lesions 
on magnetic resonance imaging. Among them, 86% (76/88) had a gestational age exceeding 37 weeks according to 
the Ballard scale, and 81% (71/88) had a birth weight exceeding 2500 g. Cohen’s d effect size was calculated to assess 
differences in endothelial frequency between groups, indicating a small effect size based on cerebral MRI findings 
(Cohen’s d values for Day 2 = 0.2351 and Day 3 = 0.2325).

Conclusion  NIRS represents a valuable tool for monitoring cerebral autoregulation in neonates affected by perinatal 
asphyxia, underscoring the utility of assessing endothelial frequency or energy on rScO2 measured by NIRS using the 
original INVOS™ device frequency.
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Introduction
Perinatal asphyxia remains a significant clinical concern, 
contributing substantially to neurological complications 
in neonates and ranking as the second leading cause of 
neonatal mortality and morbidity worldwide [1, 2]. This 
condition, characterized by reduced oxygen and glucose 
supply to the infant during or immediately after birth, 
initiates a cascade of complex pathophysiological pro-
cesses that can lead to both immediate and long-term 
neurological consequences, accounting for a consider-
able portion of neonatal mortality [2, 3]. These processes 
encompass distinct stages, including primary and sec-
ondary energy failure, latency, reperfusion injury, and a 
reparative phase, each playing a critical role in the spec-
trum of perinatal asphyxia [4].

Current therapies, notably therapeutic hypothermia, 
have demonstrated efficacy in mitigating long-term com-
plications. However, enduring neurological and renal 
impairments, along with other multiorgan dysfunc-
tions, persist [5–7]. Throughout the progression of the 
condition, alterations in cerebral blood flow manifest 
in patients with adverse neurological outcomes. These 
changes in blood flow dynamics are attributed to neu-
ronal damage occurring in the initial and subsequent 
phases of perinatal asphyxia [8, 9]. Variations in endo-
thelial frequencies observed during hypothermia among 
patients with and without neurological injury can be 
attributed to neuronal damage occurring in the early and 
advanced stages of perinatal asphyxia [8–10]. This dam-
age leads to an upsurge in extracellular glutamate, which 
influences cerebral endothelial cells via the N-methyl-D-
aspartate (NMDA) receptor and consequent vasodilation 
[10].

This study comprehensively assessed the proposed 
hypothesis by specifically investigating endothelial fre-
quencies and utilizing Regional Cerebral Oxygen Sat-
uration (rScO2) values measured via Near-Infrared 
Spectroscopy (NIRS) as prognostic indicators for peri-
natal asphyxia [10–12]. The findings are anticipated to 
underscore the pivotal role of NIRS values in predicting 
the severity of perinatal asphyxia and the likelihood of 
neuronal damage, thereby reshaping clinical strategies for 
managing this significant medical condition. The primary 
objective was to examine the correlation between endo-
thelial frequency within the specified spectral band and 
rScO2 values obtained via NIRS with cerebral magnetic 
resonance imaging (MRI) injury in neonates undergoing 
hypothermia treatment for moderate and severe perina-
tal asphyxia.

Methods
Study design and setting
A retrospective longitudinal study was conducted on 
neonates treated with hypothermia for moderate to 

severe perinatal asphyxia at the neonatal intensive care 
unit of the Fundación Cardio Infantil-Instituto de Car-
diología in Bogotá, Colombia, from November 2021 
to August 2022. The study population comprised term 
neonates (determined by a Ballard score of ≥ 37 weeks 
of gestation) within ≤ 12  h postnatal and a birth weight 
of ≥ 1800 g. The study was reviewed and approved by the 
ethics committee of the Fundación Cardio Infantil-Insti-
tuto de Cardiología (code: CEIC-0602-2022).

This study focused on analyzing cerebral saturation 
values obtained via NIRS in newborns who experienced 
perinatal asphyxia and were treated with therapeutic 
hypothermia, with continuous monitoring using cerebral 
NIRS. The cohort was divided into two groups: newborns 
without neuronal lesions and newborns who developed 
neuronal lesions confirmed by MRI after the treatment 
period.

Eligibility criteria
Inclusion criteria required the presence of moderate to 
severe perinatal asphyxia, confirmed by umbilical cord 
arterial blood gases with pH ≤ 7.0 or base deficit ≥ -16, 
or postnatal blood gases within the first hour of life with 
pH 7.01–7.15 or base deficit of -10 to -15.9. Additionally, 
inclusion required a history of acute perinatal events and 
an Apgar score ≤ 5 at 5 min or the need for at least 10 min 
of positive pressure ventilation. Only neonates with mod-
erate to severe hypoxic-ischemic encephalopathy, defined 
by Sarnat stages 2 and 3, were eligible. Exclusion criteria 
encompassed neonates with intrauterine growth restric-
tion leading to a birth weight below 1800  g, congenital 
anomalies, or chromosomal disorders.

Clinical variables
We described the following variables: sex, gestational age 
in weeks determined by Ballard score, route of delivery 
(vaginal and caesarean), type of resuscitation at birth 
(basic and advanced), encephalopathy severity according 
to Sarnat staging, APGAR score, severity of asphyxia, pH, 
bicarbonate (HCO3), base excess, lactate, hemoglobin, 
and use of inotropic agents. Patient data were obtained 
from hospital medical records.

Moderate neonatal encephalopathy is classified as stage 
II according to the Sarnat staging, whereas severe neona-
tal encephalopathy is classified as stage III according to 
Sarnat [13, 14]. Severe perinatal asphyxia is characterized 
by the presence of at least three of the following criteria: 
Apgar score ≤ 5 at 5 min, pH < 7.0 in the first hour of life 
in arterial, venous, or capillary cord blood samples, base 
excess deficit ≤ -16 mmol/L in the first hour of life, mod-
erate to severe encephalopathy (Sarnat stages II–III), and 
lactate ≥ 12 mmol/L during the first hour of life [15]. On 
the other hand, moderate perinatal asphyxia requires the 
presence of at least two of the following criteria: Apgar 
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score ≤ 7 at 5 min, pH < 7.15 in the first hour of life in arte-
rial, venous, or capillary cord blood samples, and mild to 
moderate encephalopathy (Sarnat stages I–II) [13–15]. 
Basic neonatal resuscitation included initial respiratory 
support through thermoregulation, positioning, secre-
tion aspiration, and positive pressure ventilation and/
or endotracheal intubation [16]. Advanced resuscitation 
involved chest compressions, umbilical catheterization, 
and medication administration [16].

Therapeutic hypothermia was initiated within six hours 
after birth and maintained for 72 h, followed by a 6-hour 
rewarming period. During this time, cerebral oxygen-
ation was continuously monitored using neonatal cere-
bral oximetry sensor INVOS™ (Irvine, California, United 
States of America) placed on the frontal cranial region. 
Data were recorded every 30 s and averaged over the first 
24 (day 1), 48 (day 2), and 72 (day 3) hours of hypother-
mia, as well as during the 6-hour rewarming period.

The hypothermia protocol involved total body cooling 
with the ThermoWrap® hypothermia blanket and tem-
perature monitoring using an esophageal thermal sen-
sor placed in the lower third of the esophagus. The core 
temperature was reduced to between 33 and 34 °C within 
30 to 40 min during the induction phase. Subsequently, 
the target temperature was maintained at 33.5 °C ± 0.5 for 
72 h during the maintenance phase. Reheating was con-
ducted over 6 h at a rate of 0.5  °C per hour until a final 
temperature of 36.5  °C was reached. Continuous moni-
toring of rScO2 was performed with the INVOS™ sensor 
(Irvine, California, United States of America) throughout 
all phases of hypothermia.

The machine generated continuous readings, recording 
data every 30 s. These records were exported to an Excel 
database using the INVOS software Shortcut to Invos 
Analytics Tool. Missing data points in the brain NIRS 
time series were identified and interpolated using MAT-
LAB R2023a.

Following the completion of therapeutic hypothermia 
and subsequent warming, MRI scans were performed to 
classify neonates into two groups based on the presence 
or absence of cerebral lesions. All patients underwent 
brain imaging at one week of age (between 5 and 7 days). 
Brain injury severity was evaluated using conventional 
T1- and T2-weighted spin echo sequences, diffusion-
weighted imaging, and apparent diffusion coefficient 
maps.

The brain injury criteria followed ASCON16 recom-
mendations. Patterns of acute asphyxia included: (a) 
abnormal signal in the basal ganglia and peri-rolandic 
cortex, (b) alteration or disappearance of normal signal 
intensity in the posterior limb of the internal capsule, (c) 
prolonged partial asphyxia pattern with signal involve-
ment in vascularization areas bordering the middle cere-
bral artery and posterior cerebral artery, affecting white 

matter, (d) patterns of perinatal ischemic or hemorrhagic 
stroke and/or venous sinus thrombosis. Presence of at 
least one criterion classified MRI findings as indicative of 
cerebral alteration.

Additionally, neonates who did not survive long 
enough to undergo MRI evaluation were excluded from 
the study. The independent variable analyzed was spec-
tral power localized within the range of 0.0095  Hz to 
0.021  Hz (endothelial frequencies) in the NIRS values 
[11, 12]. The dependent variables were the presence or 
absence of cerebral lesions identified through MRI eval-
uation. All subsequent analyses were performed using 
MATLAB R2023a.

Data processing and analysis
The data underwent the following processing and analy-
sis steps: 1) Data Loading: Separate data files were pre-
pared for each subgroup within the two cohort groups, 
delineating 24-hour periods of hypothermia treatment 
and the final 6 hours of warming, and imported into the 
MATLAB environment. 2) Detrending: Cerebral satura-
tion values from NIRS were detrended within each sub-
group to eliminate linear trends, ensuring that frequency 
analysis could focus on underlying physiological phe-
nomena. 3) Power Spectral Density Estimation: Welch’s 
method for power spectral density (PSD) estimation was 
applied using the ‘pwelch’ function in MATLAB. Param-
eters included a window length of 500 samples, 60% over-
lap, FFT length of 500 points, and a frequency resolution 
of 0.033 Hz. The PSD was computed over the frequency 
range of interest (0.0095–0.021 Hz), targeting endothelial 
frequencies.

Frequency range selection
The frequency range of interest (0.0095–0.021  Hz) was 
selected based on physiological considerations associated 
with endothelial frequencies and the sampling rate of 
the NIRS device used. These values correspond to wave 
effects in blood flow attributed to nitrous oxide-mediated 
endothelial activity.

Energy Calculation: The energy within the specified 
frequency range (0.0095–0.021 Hz) was computed using 
the trapezoidal numerical integration method (trapz). 
This calculation represents the energy associated with 
the specific wave effects observed in blood flow.

Group Comparison: Calculated energy values were 
stored for each subgroup, enabling subsequent statistical 
comparison between groups with and without neuronal 
lesions.

Statistical analysis
Qualitative variables were summarized using absolute 
and relative frequencies, while quantitative variables 
were described using measures of central tendency and 
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dispersion. The normal distribution assumption was 
assessed using the Shapiro-Wilk test. To compare energy 
values within the specified endothelial frequency range 
between the two main groups each day, a Mann-Whitney 
U test was employed [14]. To evaluate the clinical signifi-
cance of differences in endothelial spectral power, effect 
sizes were calculated using Cohen’s d test [17]. Effect 
size interpretations were as follows: values below 0.20 
indicate no significant effect, 0.21 to 0.49 suggest a small 
effect, 0.50 to 0.70 indicate a moderate effect, and values 
above 0.80 indicate a large effect.

Results
A total of 88 patients were enrolled in the study, with 67% 
(59/88) exhibiting normal MRI findings (Fig. 1). Among 
them, 53% (47/88) were male, 86% (76/88) had a gesta-
tional age greater than 37 weeks according to the Bal-
lard scale, and 81% (71/88) had a birth weight exceeding 
2500 g (Table 1). Patients diagnosed with MRI-detected 
anomalies showed a mean pH 0.1 lower compared to 
those without brain lesions (6.9 vs. 7.0; p-value = 0.02). 
The mean rScO2 values were 80% on Day 1 (24 h), 82% 
on Day 2 (48 h), 81% on Day 3 (72 h), and 81% during the 
rewarming period (6 h). Regarding the change in rScO2 
between two groups, there was no change in the value 
during treatment (p > 0.05).

Analysis of NIRS data over multiple days revealed a 
significant difference in the mean area under the power 
spectral density curve between groups with and without 
neuronal lesions (Fig.  2). Although the average energy 

curves displayed noticeable differences, the box plots 
illustrating the same data indicated trends that did not 
achieve statistical significance (Fig. 3a-d).

Cohen’s d effect size was computed to assess the mag-
nitude of difference between the means of both groups. 
The results of Cohen’s d indicated a small effect size in 
endothelial frequency between groups based on cerebral 
MRI findings (Table  2), with Cohen’s d values for Day 
2 = 0.2351 and for Day 3 = 0.2325. This subtle distinction 
is more evident in the Gardner-Altman plots (Fig. 4a-d) 
than in the box and whisker plots.

Discussion
We conducted a study to examine the relationship 
between endothelial frequency within a specific spec-
tral band, rScO2 values measured via NIRS, and cerebral 
MRI abnormalities in neonates receiving hypothermia 
treatment for moderate to severe perinatal asphyxia. 
The analysis of effect size using Cohen’s d revealed a 
small standardized difference between the means of the 
two groups. This suggests that NIRS could be a valu-
able tool for monitoring cerebral autoregulation in neo-
nates affected by perinatal asphyxia. The spectral power 
parameter in the working frequency band of the endo-
thelium appears to be a promising biomarker that can be 
used in real-time based on neonatal cerebral NIRS mea-
surements. This can assess over time the frequency of the 
endothelial component of cerebral blood flow control.

While no statistically significant differences were 
observed between the two groups across the four time 

Fig. 1  Study flow chart. Notes: ICU: Intensive Critical Unit; MRI: magnetic resonance imaging; NIRS: Near-Infrared Spectroscopy
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periods, a detailed examination using Cohen’s d revealed 
a small effect size difference between them, particularly 
evident on days 2 and 3, coinciding with the reperfusion 
phase. This observation may be attributed to the vary-
ing severity of asphyxia and encephalopathy, which likely 
influenced the measured brain values using NIRS in 
newborns undergoing therapeutic hypothermia. Specifi-
cally, newborns with perinatal asphyxia exhibited distinct 
brain value differences compared to those who devel-
oped brain injuries or remained unaffected, particularly 
on the second and third days of monitoring. Our analysis 
focused on NIRS brain data within the frequency range 
of 0.0095 Hz to 0.021 Hz, known to correlate with nitric 
oxide-induced endothelial frequency.

Initially, both groups showed similar energetic sig-
natures, suggesting comparable baselines. However, as 

treatment progressed, the group with neuronal inju-
ries exhibited notable peaks in high-energy values, a 
trend less pronounced in the group without injuries. 
This increase in energy among the group with neuro-
nal injuries may indicate heightened neuronal activity 
or increased metabolic demand, potentially in response 
to the injury. These peaks offer critical insights into the 
ongoing neural consequences of the injury over time.

The theory of hypoperfusion-hyperperfusion is cru-
cial to our findings, as constant monitoring via NIRS 
allows for detecting changes in cerebral oxygenation 
[18–20]. During perinatal asphyxia, hypoperfusion 
leads to a decrease in oxygen and nutrient supply to the 
brain, potentially resulting in irreversible neuronal dam-
age if not quickly reversed [20, 21]. On the other hand, 
the hyperperfusion phase serves as a compensatory 

Table 1  Clinical characteristics of the newborns
Total
n = 88

Normal MRI
n = 59

Abnormal MRI
n = 29

p-value

Male, n(%) 47 (53) 31 (53) 16 (55) 0.81
Gestational age weeks Ballard, n(%)
> 37 76 (86) 52 (88) 24 (83) 0.52
< 37 12 (14) 7 (12) 5 (17)
Birth weight grams, n(%)
> 2500 71 (81) 48 (81) 23 (79) 0.81
< 2500 17 (19) 11 (19) 6 (21)
Route of delivery, n(%)
Vaginal 41 (47) 26 (44) 15 (52) 0.49
Caesarean 47 (53) 33 (56) 14 (48)
Type of resuscitation at birth, n(%)
None 4 (5) 2 (3) 2 (7)
Basic 38 (43) 27 (46) 11 (38) 0.39
Avanced 46 (52) 30 (51) 16 (55)
Sarnat staging, n(%)
II - moderate encephalopathy 80 (91) 55 (93) 25 (86) 0.43
III - severe encephalopathy 8 (9) 4 (7) 4 (14)
APGAR 1 min, n(%)
5 44 (50) 33 (56) 11 (40) 0.11
6 44 (50) 26 (44) 18 (62)
APGAR 5 min, n(%)
5 80 (91) 56 (95) 24 (83) 0.11
6 8 (9) 3 (5) 5 (17)
Severity of asphyxia, n(%)
Moderate 36 (41) 26 (44) 10 (34) 0.39
Severe 52 (59) 33 (56) 19 (65)
pH, me(IQR) 6.95 (0.15) 7.0 (0.15) 6.9 (0.1) 0.02
HCO3, m(SD) 13.04 (4.21) 12.8 (3.7) 13.42 (5.1) 0.52
Base Excess, m(SD) -17.6 (5.12) -17.3 (5.05) -18.3 (5.2) 0.38
Lactate, me(IQR) 10.81 (3.5) 10.8 (4) 10.78 (5.3) 0.33
Hemoglobin level, m(SD) 17.8 (19.2) 17.9 (19.3) 17.8 (16,19) 0.62
Use of inotropic, n(%)
No 37 (42) 23 (39) 14 (48) 0.40
Yes 51 (58) 36 (61) 15 (52)
Notes: m: media; me: median; MRI: magnetic resonance imaging; SD: standard deviation; IQR: interquartile range
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mechanism to restore blood flow to the brain. How-
ever, this can lead to increased intracranial pressure 
and disruption of the blood-brain barrier, causing cere-
bral edema. Therefore, our findings highlight impor-
tant results for quickly identifying hypoperfusion and 
hyperperfusion phases, which could be used to optimize 
therapeutic interventions, maintain adequate cerebral 
oxygenation, and prevent additional complications [22, 
23].

We hypothesize that the modest effect size observed 
between the two patient groups may be attributed to 
variations in endothelial frequency. These frequencies, 
influenced by nitric oxide (NO), a pivotal molecule in 
vasodilation, could plausibly be elevated due to increased 
NO release following perinatal asphyxia [11, 12]. The 
pathophysiology of brain hemorrhages resulting from 
perinatal asphyxia has been previously detailed. Evidence 
includes the presence of NMDA receptors in brain endo-
thelial cells responsive to heightened glutamate release, 
which triggers increased NO synthesis during phases of 
energy depletion in perinatal asphyxia [8–10].

Current tools such as MRI and electroencephalogram 
often fail to predict early brain damage, typically detect-
ing changes only after injury onset [24, 25]. NIRS offers 
a reliable, real-time, and non-invasive method for con-
tinuous monitoring of rSO2 and blood flow alterations, 
serving as an early biomarker for organic injury [26–28]. 

It provides an accurate assessment of early changes in 
tissue oxygenation and blood flow, particularly in cases 
of perinatal asphyxia [29, 30]. While some studies have 
demonstrated NIRS’s efficacy in mitigating cerebral 
hypoxia and detecting neurological injuries [31], oth-
ers have not established a definitive association between 
NIRS data and neurological damage beforehand [32].

Limitantions
Our study is constrained by a small sample size, which 
limited our ability to detect subtle differences between 
groups. Methodological limitations, including the 
absence of a control group and variability in the timing of 
NIRS measurements, may have introduced confounding 
variables. However, the observed peaks in endothelial fre-
quency align consistently with current medical literature 
findings. The inclusion of the 6-hour warming period in 
our analysis after day 3 may have constrained our ability 
to precisely assess the effects of hypothermia or warm-
ing on our results. The absence of changes on MRI during 
the first week of life in these patients can be attributed 
to the rapid temporal evolution of brain damage, imaging 
limitations, and the impact of hypothermia intervention. 
Thus, continuous patient follow-up is crucial.

Furthermore, our study did not evaluate vascular endo-
thelial injury in children relative to NIRS data, nor did 
it compare these findings with physiological data (such 

Fig. 2  Mean energy of Near-Infrared Spectroscopy. Notes: Mean energy of Near-Infrared Spectroscopy (NIRS) value, per group, over the days of hypother-
mia treatment and subsequent warming phase. Both cohorts begin around the same value at instance 0. The small effect size observable with Cohen’s 
d is represented here as well on days 2 and 3
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as heart rate, blood pressure) or echography commonly 
used in clinical practice. Future research should priori-
tize larger sample sizes to enhance statistical power and 
deepen understanding of endothelial frequency mea-
sured by NIRS in perinatal asphyxia. Standardizing 
these variables across studies will be essential for achiev-
ing more reliable and generalizable results. Addition-
ally, future investigations should explore the association 
between endothelial frequency measured by NIRS in 
perinatal asphyxia and clinical outcomes such as length 
of hospital stay, neurological status at discharge, and 
maternal risk factors.

Conclusion
NIRS could be a valuable tool for monitoring cerebral 
autoregulation in neonates affected by perinatal asphyxia, 
emphasizing the added value of calculating endothelial 
frequency or energy on rScO2 measured by NIRS using 
the original frequency of the INVOS™ device, 0.13  Hz. 
Analysis of NIRS data over several days revealed a signifi-
cant difference in the mean area under the power spec-
tral density curve between the groups with and without 
neuronal lesions assessed by MRI. Furthermore, a more 
pronounced difference in endothelial frequency was 
observed on days 2 and 3, coinciding with the reperfusion 

Table 2  P-Values and Cohen’s d value per time period
Day P-value Cohen’s d Value
Day 1 0.60 -0.0812
Day 2 0.49 0.2351
Day 3 0.79 0.2325
Rewarming 0.25 0.0882

Fig. 3  Comparison of endothelial energy according to neurological injury in cerebral magnetic resonance imaging, represented by box plots Notes: A: 
Day 1 comparison; B: Day 2 comparison; C: Day 3 comparison; D: Day 4 comparison

 



Page 8 of 9Agudelo-Pérez et al. BMC Pediatrics          (2024) 24:609 

phase. This suggests that reperfusion injury may be more 
severe in the group with abnormalities in MRI.
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