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Abstract 

Background Idiopathic short stature (ISS) is characterized by short stature with unknown causes. Recent studies 
showed different gut microbiota flora and reduced fecal short-chain fatty acids in ISS children. However, the roles 
of the microbiome and metabolites in the pathogenesis of ISS remains largely unknown.

Methods We recruited 51 Chinese subjects, comprising 26 ISS children and 25 normal-height control individu-
als. Untargeted metabolomics was performed to explore the fecal metabolic profiles between groups. A shot-
gun metagenomic sequencing approach was used to investigate the microbiome at the strains level. Mediation 
analyses were done to reveal correlations between the height standard deviation (SD) value, the gut microbiome 
and metabolites.

Results We detected marked differences in the composition of fecal metabolites in the ISS group, particularly 
a significant increase in erucic acid and a decrease in spermidine, adenosine and L-5-Hydroxytryptophan, when com-
pared to those of controls. We further identified specific groups of bacterial strains to be associated with the different 
metabolic profile. Through mediation analysis, 50 linkages were established. KEGG pathway analysis of microbiota 
and metabolites indicated nutritional disturbances. 13 selected features were able to accurately distinguish the ISS 
children from the controls (AUC = 0.933 [95%CI, 79.9–100%]) by receiver operating characteristic (ROC) analysis.

Conclusion Our study suggests that the microbiome and the microbial-derived metabolites play certain roles in chil-
dren’s growth. These findings provide a new research direction for better understanding the mechanism(s) underlying 
ISS.
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Introduction
Short stature is defined as a height more than 2 Stand-
ard Deviation (SD) below the mean height for a given 
age, sex, and population. Idiopathic short stature (ISS) 
is the most common cause of short stature in children 
and excludes all possible causes such as undernourish-
ment, endocrine conditions, skeletal dysplasia, genetic 
abnormalities and other systemic diseases [1]. At present, 
the etiology and pathogenesis of ISS remain unclear [2]. 
While recombinant human growth hormone (rhGH) 
therapy has been approved to treat children with ISS [3], 
the growth response to rhGH varies widely reflecting the 
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heterogeneity of ISS [4]. Understanding the pathogenesis 
and disease mechanisms are important steps to identify 
new therapeutic targets and treatment.

Accumulating data has raised the possibility that gut 
microbiota may play an important role in body growth. 
Germ-free infant mice grew slower than the wild-type 
mice suggesting that the microbiota can interact with 
the somatotropic hormone axis to promote systemic 
growth [5]. In stunted undernourished children, a causal 
relationship was found between growth stunting and 
the components of the small intestinal microbiota [6]. 
Moreover, transplantation of immature microbiota from 
undernourished children into germ-free mice revealed 
that the immature microbiota impaired the growth phe-
notype [7]. Recently, a study using 16S rDNA sequenc-
ing reported that the composition of gut microbiota in 
ISS was very different from controls, with a significant 
decrease in the butyrate-producing genera including Fae-
calibacterium [8]. Targeted metabolomic analysis of fecal 
short-chain fatty acids from ISS children also revealed 
marked differences compared to healthy children [8].

Based on these pieces of evidence, we propose that the 
gut microbiota and resulting metabolic products may 
play an important role in the development of ISS. To test 
this hypothesis, we used shotgun metagenomic sequenc-
ing and untargeted metabolomics to analyze the gut flora 
in ISS and control individuals. We identified 50 associa-
tions between the height standard deviation (SD) value, 
microbiome and their derived metabolites by mediation 
analysis, which revealed that adenosine, erucic acid, sper-
midine, and L-5-Hydroxytryptophan could mediate the 
association of bacterial strains and the height SD value.

Materials and methods
Study design
From September 2019 to April 2021, we recruited 25 
normal-height healthy children as controls from the 
general community and 26 children with ISS hospital-
ized in either the Xinhua Hospital Affiliated to Shanghai 
Jiao Tong University School of Medicine, Taizhou central 
Hospital, Shengjing Hospital of China Medical University 
or Zhejiang Xiaoshan Hospital. The study was approved 
by the Ethics Committee of Xinhua hospital (XHEC-
C-2021–041-2), and has been registered in the Chinese 
Clinical Trial Registry (ChiCTR2100047810). Each hos-
pital pediatric center strictly followed the same standard 
procedures for subject enrollment and for collection of 
clinical information and fecal samples. All subjects were 
of Hans Chinese ethnicity.

 The inclusion criteria for children with ISS were as fol-
lows: (1) Height more than 2 SD below the mean height 
for a given age, sex, and population; (2) Normal response 
to growth hormone during stimulation tests (> 10 ng/

mL); (3) Normal body weight and length at birth; (4) 
Absence of all other possible causes of short stature 
including undernourishment, intrauterine growth retar-
dation, endocrine conditions, skeletal dysplasia, chromo-
somal disease, inherited metabolic disease, mental illness 
and other chronic systemic diseases; (5) Normal or slow 
growth rate; (6) Normal or delayed bone age; (7) Age 
3–14 years. The inclusion criteria for the controls were as 
follows: (1) Normal height for a given age, sex, and popu-
lation; (2) Age 3–14 years. For all subjects, the exclusion 
criteria were as follows: (1) Autoimmune disorders such 
as inflammatory bowel disease, autoimmune thyroid dis-
ease and irritable bowel syndrome; (2) Gastrointestinal 
diseases such as cholelithiasis; (3) History of gastrointes-
tinal surgeries such as gastrectomy, colectomy, ileectomy, 
cholecystectomy and appendectomy; (4) Neuropsychi-
atric disorders including autism, epilepsy and depres-
sion; (5) History of malignant tumors; (6) Other diseases 
including obesity, hypertension and diabetes mellitus; (7) 
Use of antibiotics, probiotics, hormones, proton pump 
inhibitors, insulin sensitizers or growth-promoting herbs 
in the previous three months; (8) Familial short stature. 
To reduce patient bias in the two groups, subjects were 
matched as closely as possible in terms of sex, age and 
living area by province.

Fecal sample collection and DNA extraction
Written informed consent was obtained from all sub-
jects meeting inclusion and exclusion criteria. Fresh 
stool samples were collected using disposable fecal col-
lection tubes (Orienter, China), and immediately pre-
served at -80  °C until further analyses. Genomic DNA 
was extracted from fecal samples using Magnetic Soil 
And Stool DNA Kit (Qiagen, US) (Batch 1) or E.Z.N.A.® 
Soil DNA Kit (Omega Bio-tek, US) (Batch 2). DNA integ-
rity was assessed by agarose gel electrophoresis and DNA 
concentrations measured using NanoDrop2000 (Thermo 
Fisher Scientific, US).

Metagenomic sequencing and data analysis
Construction of sequencing libraries
Genomic DNA was fragmented to an average size of 
about 350  bp (Batch 1) or 400  bp (Batch 2) for library 
construction. The library was constructed using NEB-
Next® UltraTM DNA Library Prep Kit for Illumina (NEB, 
US) (Batch 1) or NEXTflexTM Rapid DNA-Seq (Bioo Sci-
entific, US) (Batch 2). Adapters containing the full com-
plement of sequencing primer hybridization sites were 
ligated to the blunt end of fragments.

Processing of sequencing data
Libraries were sequenced on the Illumina NovaSeq 6000 
(Illumina, US). Raw sequencing reads were processed 
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to acquire clean data using Trimmomatic v0.39 soft-
wareand the following steps: (1) Removal of low-quality 
reads which contain more than 35 bp of ‘N’ bases (default 
quality threshold value ≤ 15); (2) Removal of reads which 
shared overlapping sequences above a certain portion 
with the adapter (default length of 10 bp).

Since the sequencing data for microbial DNA are pol-
luted by host DNA and animal DNA derived from diet, 
a blast analysis of host databases using Bowtie2.4.1 soft-
ware (http:// bowtie- bio. sourc eforge. net/ bowti e2/ index. 
shtml) was used to filter out contaminating reads, enrich-
ing for microbial sequences.

Metagenome assembly
High-quality paired-end reads from each sample were 
de novo assembled into at least 500bp scaffolds using 
SOAPdenovo software v2.04 (http:// soap. genom ics. org. 
cn/ soapd enovo. html). Assembled scaffolds were inter-
rupted from the N connections and scafftigs without N 
bases collected as a set for further analysis.

Gene prediction and abundance analysis

(1) The ORF prediction for the assembled set of micro-
bial scafftigs were performed using MetaGeneMark 
v2.10 software (http:// topaz. gatech. edu/ GeneM 
ark/) and ORFs less than 100 nt were filtered out.

(2) For ORF prediction, CD-HIT software v4.8.1 
(http:// www. bioin forma tics. org/ cd- hit) was used to 
remove the redundant sequences and obtain a non-
redundant initial gene set (nucleic acid sequences 
encoded by non-redundant consecutive genes were 
called genes).

(3) Genes in each sample were calculated by comparing 
the clean data to the initial gene set using SOAP2 
software v2.21 (http:// soap. genom ics. org. cn/). The 
final gene set (Unigenes) for further analysis were 
obtained by filtering out the genes with less than 
two reads per sample.

(4) The abundance of each gene in individual samples 
was then calculated by comparing the number of 
reads and considering gene length.

(5) Batch normalization was performed using Com-
Bat_seq (with batch and group information) from 
sva (R package).

Taxonomy annotation

(1) Comparisons between the unigenes and bacte-
rial, fungal, archaeabacteria and viral sequences 
extracted from NCBI NR databases (version 
202,004, https:// www. ncbi. nlm. nih. gov/) was per-

formed using DIAMOND software v2.0.8.146 
(https:// github. com/ bbuch fink/ diamo nd/).

(2) For sequence comparison, we selected those with 
an evalue less than the minimum evalue * ten. 
Because of the possibility of multiple outputs for 
each sequence, the Least Common Ancestors 
(LCA) algorithm (system classification applied to 
MEGAN, https:// en. wikip edia. org/ wiki/ Lowest_ 
common_ ances tor) was used to determine taxon-
omy.

(3) An abundance table with the number of genes for 
individual samples at each taxonomic rank (phyla, 
family, genus and species) was then generated. The 
abundance for a particular species in one sample 
was defined as the sum of gene abundance anno-
tated as that species. The number of genes for a 
particular species in one sample was defined as the 
number of genes (not equal to zero) annotated as 
that species.

Functional database annotations

(1) Using DIAMOND software v2.0.8.146 (https:// 
github. com/ bbuch fink/ diamo nd/), we compared 
the unigenes with KEGG database version 2019.10 
(http:// www. kegg. jp/ kegg/). For comparisons, we 
selected the best blast hits for further analysis.

(2) From these comparisons, the number of genes 
for each sample at different taxonomic ranks was 
obtained. The number of genes for a particular 
function in different samples is equal to the number 
of genes functionally annotated whose abundance is 
not equal to zero.

Binning analysis

(1) Software mmseq2 version 13.45111 (https:// github. 
com/ soedi nglab/ MMseq s2) was then applied to 
build unique scaftig collections. Next bowtie2 was 
used to build unique scaftig collection indexes and 
map the reads back to this collection.

(2) Software metabat2 version 2.15 (https:// bitbu cket. 
org/ berke leylab/ metab at) was used to run the bin-
ning process based on each sample scaftig depth 
data. A single binning process was first conducted 
using scaftigs depth data from all samples followed 
by a mixed binning process. Merged single binning 
and mix binning results were generated by dRep 
v3.2.0 (https:// github. com/ MrOlm/ drep). CheckM 
v1.1.3 (https:// github. com/ Ecoge nomics/ CheckM) 
and finally used for bin genome completeness and 
contamination evaluation. Bins were retained with 
completeness > 75% and contamination < 10%.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://soap.genomics.org.cn/soapdenovo.html
http://soap.genomics.org.cn/soapdenovo.html
http://topaz.gatech.edu/GeneMark/
http://topaz.gatech.edu/GeneMark/
http://www.bioinformatics.org/cd-hit
http://soap.genomics.org.cn/
https://www.ncbi.nlm.nih.gov/
https://github.com/bbuchfink/diamond/
https://en.wikipedia.org/wiki/Lowest_common_ancestor
https://en.wikipedia.org/wiki/Lowest_common_ancestor
https://github.com/bbuchfink/diamond/
https://github.com/bbuchfink/diamond/
http://www.kegg.jp/kegg/
https://github.com/soedinglab/MMseqs2
https://github.com/soedinglab/MMseqs2
https://bitbucket.org/berkeleylab/metabat
https://bitbucket.org/berkeleylab/metabat
https://github.com/MrOlm/drep
https://github.com/Ecogenomics/CheckM
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Untargeted metabolomics analysis
Fresh fecal tissues frozen in liquid nitrogen were 
ground and metabolites extracted with 80% metha-
nol. The supernatant was injected into an LC–MS/
MS system and analysis performed using the Vanquish 
UHPLC system (ThermoFisher, Germany) coupled 
with an Orbitrap Q ExactiveTM HF mass spectrometer 
(Thermo Fisher) in both positive and negative ioniza-
tion modes(Some metabolites are more prone to adher-
ing to hydrogen cations, resulting in the formation of 
molecular ion peaks easily in the positive mode, while 
others are more likely to lose hydrogen cations, facili-
tating the formation of molecular ion peaks in the neg-
ative mode). The raw data from each sample was then 
analyzed by Compound Discoverer 3.1 software (Ther-
moFisher) to obtain a list of peaks with retention time, 
m/z, and integrated peak area. The peak intensities 
were normalized and matched with a database to obtain 
accurate qualitative and quantitative measurements 
which were annotated using the KEGG (https:// www. 
genome. jp/ kegg/ pathw ay. html), HMDB (https:// hmdb. 
ca/ metab olites), and LIPIDMaps (http:// www. lipid 
maps. org/) databases. After filling the gaps for missing 
values, different peak intensities of samples were then 
normalized to the total spectral intensity. Metabolite 
features with coefficient of variation (CV) ≥ 30% were 
then excluded after normalization.

Statistical analysis
Untargeted metabolomics analysis
The differential metabolites were screened by Partial 
least squares discriminant analysis (PLS-DA) using R 
package ropes. Screening criteria for key metabolites 
were as follows: (1) Variable Importance in Projec-
tion (VIP) > 1; (2) The absolute value of the logarithm 
base 2 of the fold change was > 1. Metabolic pathways 
with P-values < 0.05 were considered as significantly 
enriched.

Distance matrix‑based variance estimation
Applied feature selection based on the permutational 
multivariate analysis of variance (PERMANOVA) using 
euclidean distance was used to estimate the contribu-
tions of clinical factors to different omics data (metabo-
lomics and microbiome).

Microbial diversity analysis
For α-diversity, microbiome diversity was evaluated by 
the Shannon index through R package vegan. Microbi-
ome richness was evaluated by the number of features 
and microbiome evenness calculated by the Shannon 
index divided by the logarithm base 2 of richness. For 

analysis of the microbiome β-diversity, R package vegan 
was also used to perform principal coordinate analysis 
and PERMANOVA (Jaccard distance).

Linear discriminant analysis effect size (LEfSe)
LEfSe was used to determine the differential microbiota 
characteristics (strain level and KEGG modules). A Lin-
ear Discriminant Analysis (LDA) score > 2 in the LEfSe 
model was used as the screening criteria.

Associations with clinical parameters
Associations between clinical parameters and metabo-
lomics and gut microbiome (strain level) were assessed by 
Spearman correlation and the false detection rate (FDR) 
calculated using the Benjamini–Hochberg procedure.

Prediction model
Random forest (RF) models were built using the R pack-
age RandomForest to distinguish key features associ-
ated with the ISS and control cohorts. Randomly, 70% 
of individuals were selected as a training dataset and 
30% of individuals were selected as a testing dataset. 
Five repeats of tenfold cross-validation were then used to 
estimate model performance. A ROC curve and plot of 
the test model was generated using the R package pROC 
procedure.

Biomarkers identification through recursive feature 
elimination
We used a recursive feature(RF) elimination approach to 
identify the smallest subset of features that could produce 
an effective model with good prediction accuracy. In 
brief, this involved the iterative fitting of RF, whereupon 
each iteration, a specified proportion of variables, with 
the smallest variable importance progressively discarded. 
The R package Caret process was applied recursively until 
only a single variable remains available as input. At each 
iteration, the model performance is assessed in terms of 
the out-of-bag error, where RF is used in a classification 
capacity or mean squared error is used for regression for-
ests. Following this sequence, a set of variables with the 
smallest number predictive features was identified.

Bi‑directional mediation analysis
By Spearman correlation (FDR < 0.05), we first checked 
whether any clinical parameters were associated with 
the differential metabolites. Next, we carried out a bi-
directional mediation analysis with interactions between 
mediator and outcome, using the mediation function 
from mediation software version 4.5.0 to infer the media-
tion effect of metabolites and microbiome with clinical 
parameters. The FDR was calculated based on the Benja-
mini–Hochberg procedure.

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/metabolites
https://hmdb.ca/metabolites
http://www.lipidmaps.org/
http://www.lipidmaps.org/
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Results
Study groups
Based on strict inclusion and exclusion criteria, a total 
of 51 participants were enrolled comprising 26 subjects 
with ISS and 25 controls. Variables such as age and gen-
der in the two groups were generally matched to reduce 
complications. The clinical characteristics of children 
with ISS and controls are summarized in Table  1 and 

Supplementary files. Spearman’s correlation analysis 
between clinical characteristics and the height SD value 
identified a significantly positive correlation with BMI 
(p < 0.05). For all 51 fecal samples analysed, we obtained 
meaningful data on gut microbiome and metabolic deriv-
atives for statistical analysis.

Metabolic profiling of children with ISS
We used untargeted LC–MS to detect the composition of 
key fecal metabolome features. In total, 1987 compounds 
were observed in the positive and negative modes of LC–
MS. PLS-DA score plots separated the ISS and control 
groups in both positive and negative modes, suggesting 
the presence of metabolic disturbances in the ISS chil-
dren. Here, the R2 and Q2 scores were 0.97 and 0.56 
in the positive mode (Fig.  1A) and 0.99 and 0.50 in the 
negative (Fig.  1C), respectively. The PERMANOVA test 
showed that the PLS-DA model was not overfitting and 
thus was valid for this study (positive mode: Fig. 1B, neg-
ative mode: Fig. 1D).

Under the set cut-off conditions for the PLS-DA 
model (VIP > 1 and log2(FoldChange) > 1), we identified 

Table 1 Characteristics of the study groups

The statistical difference in age between the two groups was analyzed using 
the chi-square test, while the statistical differences for other parameters were 
assessed with the Mann–Whitney U test

Parameters ISS(n = 26) Control(n = 25) P value

Gender(M/F) 13/13 13/12 0.886

Age(years, mean ± SD) 7.72 ± 3.19 7.90 ± 2.56 0.598

Height(cm, mean ± SD) 113.96 ± 16.30 128.61 ± 17.07 0.006

Height SD(mean ± SD) -2.45 ± 0.46 0.14 ± 0.99 < 0.001

Weight(kg, mean ± SD) 19.56 ± 6.67 24.42 ± 8.00 0.002

BMI(mean ± SD) 14.70 ± 1.83 16.04 ± 2.12 0.008

Fig. 1 Differential metabolic profiles in individuals with ISS and Controls. A PLS-DA score plot in positive mode (R2 = 0.97, and Q2 = 0.56). B PLS-DA 
significance test in positive mode(pR2Y = 0.65, pQ2 = 0.03). C PLS-DA score plot in negative mode (R2 = 0.99, and Q2 = 0.5). D PLS-DA significance 
test in negative mode (pR2Y = 0.27, pQ2 = 0.04)
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differential metabolite derivatives between the ISS and 
control groups in positive mode (Fig. 2A). Compared with 
controls, ISS exhibited an increase in organic acid, phos-
phatidyl choline, esters and fatty acids and, a decrease in 
amino acids, nucleotides, polyamines and lysophosphati-
dyl ethanolamine. A total of 52 metabolic pathways were 
enriched in the positive mode, among which 14 pathways 
exhibited a significant difference (p < 0.05, Fig.  2B). We 
observed that most of these pathways were concentrated 
in lipid and amino acid metabolism, such as tryptophan, 
glycerophospholipid, arginine and proline metabolism 
and, in the biosynthesis of unsaturated fatty acids and 
arachidonic acid metabolism. The altered metabolic pro-
files suggested a disturbance in nutrient metabolism in 
ISS children. Among these, four metabolites in particular 
had significant change, including increased level of erucic 
acid and decreased levels of spermidine, adenosine, and 
L-5-Hydroxytryptophan in ISS (Fig. 2C-F).

Microbial community analysis
We investigated gut microbial alterations in ISS chil-
dren using metagenomic sequencing, and the clean reads 
across the 51 samples ranged from 38835568 to 53845134 
(44417337 ± 3355970, mean ± SD) after QC of the raw 
sequencing data. After correcting batch effects (Supple-
mentary files), we performed data analysis. The microbial 
community compositions between the two groups were 
similar at the rank of phylum with Firmicutes, Bacteroi-
detes, Actinobacteria, and Proteobacteria being the most 
abundant phylum (Supplementary files).

To identify any differences in bacterial diversity and 
richness between the two groups, we performed alpha 
diversity analysis, and initial results showed that the dif-
ferences were not significant (pShannon = 0.594) (Fig.  3A). 
Next, we evaluated the beta diversity to compare the 
composition similarity between the microbiota com-
munities and observed the gut microbiota composition. 

Fig. 2 Identification of the fecal differential metabolites and pathways between the ISS and Control group in positive mode. A Visualization 
of differential metabolites. B The bubble plot displayed significantly enriched pathways (p < 0.05), C The relative intensity of the adenosine 
was significantly decreased in ISS. D The relative intensity of the L-5-Hydroxytryptophan was significantly decreased in ISS. E The relative intensity 
of the spermidine was significantly decreased in ISS. F The relative intensity of the erucic acid was significantly increased in ISS. Red and blue colours 
denote ISS and Control groups, respectively. ** p-value < 0.01; *** p-value < 0.001
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From this analysis, we found that ISS children were 
significantly different from controls (pAdonis = 0.001, 
R2 = 0.033) (Fig. 3B). Comparing the relative percentages 
of bacterial genera between ISS and control children, we 
identified 7 genera with an increased abundance and 7 
genera that had a decreased abundance in ISS children 
(Supplementary files). At the species level, the relative 
percentages of bacterial species in ISS were significantly 
different from those of controls, including 21 species with 
an increased abundance and 34 species with a decreased 
abundance (Supplementary files). We further evaluated 
microbial communities at the strain level. Using a total of 
5309009 contigs across all 51 samples to bin the metage-
nome-assembled genomes (MAGs) and 333 high-quality 
MAGs (completeness > 75%; contamination < 5%) were 
generated. These MAGs were annotated to the database 
and taxonomy classifications at the strain level were 
obtained. A total of 66 differentially abundant microbial 

strains exhibited significant changes in abundance, of 
which 23 strains (33.3% were Lachnospirales, 19% were 
Actinomycetes, 19% were Oscillospirales, and 9.5% were 
Bacteroidales) were significantly increased in ISS and 43 
strains (26.6% were Bacteroidales, 26.6% were Oscillospi-
rales, 15.5% were Coriobacteriales, and 6.6% were Lach-
nospirales) were significantly decreased in ISS (Fig. 3C). 
Most MAGs were assigned to Oscillospirales (24.2%), fol-
lowed by Bacteroidales (21.2%), Lachnospirales (15.2%), 
Coriobacteriales (10.6%) and Actinomycetes (7.6%).

A total of 31 differential KEGG modules were identi-
fied between the two groups, mainly involved in nutri-
ent metabolisms, such as amino acid, vitamin, nucleotide 
and organic acid metabolism (refer to Supplementary 
files). We explored the roles of the gut microbiome in 
modulating erucic acid, spermidine, adenosine, and 
L-5-Hydroxytryptophan metabolism by mapping the 
differential enzymes involved in the production of these 

Fig. 3 The alteration of the gut microbiota composition in individuals with ISS and Controls. A Shannon index showed no difference in α diversity 
(pShannon = 0.594). B Principal coordinate analysis (PCoA) analysis showed that the gut microbiota of individuals with ISS significantly differed 
from Controls (pAdonis = 0.001). C Cladogram indicated the phylogenetic distribution of strains correlated with the ISS or Control groups
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metabolites (refer to Supplementary files). We observed 
that adenosine deaminase involved in adenosine metab-
olism to inosine [9] was up-regulated in ISS. There was 
a higher abundance of 21 gut bacterial strains express-
ing adenosine deaminase in ISS children (Fig.  4A). 
In addition, we observed that arginine decarboxylase 
involved in the arginine and spermidine metabolism 
[10] was decreased in the ISS group relative to the con-
trol group. There was a lower abundance of 25 bacterial 
strains expressing arginine decarboxylase in ISS children 
(Fig.  4B). Furthermore, we found that the abundance of 
tryptophan decarboxylase was enriched in ISS relative to 
control subjects, which may result in increased L-5-Hy-
droxytryptophan metabolism to serotonin [11] (Fig. 4C). 
Unfortunately, we were unable to identify any strains har-
boring tryptophan decarboxylase.

Multi‑omics analysis
To compare the relative importance of fecal microbiome 
and metabolites in explaining the variability of inter-indi-
vidual clinical indicators(age, height, weight, height SD 
and BMI), the proportion of variance explained by these 
two factors for the individual clinical indicators was cal-
culated separately. We found that the type and abundance 
of gut bacteria and the composition of the metabolites 
could explain 49% and 64% of the variance, respectively 
(Fig. 5). Together, these two factors combined explained 
72% of the variance in the clinical indicators.

We performed Spearman’s correlation analysis to 
investigate whether the differential metabolites were 
correlated with the clinical parameters. There were 37 
differential metabolites significantly associated with 
the height SD value (Fig. 6), of which 22 were positively 
correlated and 15 were negatively correlated. Spermi-
dine, adenosine, and L-5-Hydroxytryptophan, enriched 
in the control group, were positively correlated with the 
height SD value. In addition, erucic acid was enriched in 
the ISS group and showed a significant association with 
the height SD value. We further assessed the association 
between the metagenomic abundance changes and clini-
cal indicators by Spearman’s correlation analysis. There 
were 35 bacterial strains significantly associated with the 
height SD value (Fig. 6), of which 23 were positively cor-
related and 12 were negatively correlated. We observed 
Longicatena caecimuris_bin.4400, Anaerostipes had-
rus_bin.4374, and Streptococcus thermophilus_bin.2251 
were negatively correlated with the height SD value and, 
Christensenellales sp000437595_bin.1962 and Bacilli 
sp001916775_bin.6360 were positively correlated with 
the height SD value. Moreover, we assessed associations 
between the metabolites and bacterial strains across all 
subjects. Given an FDR of 5%, 66 bacterial strains were 
correlated with 50 metabolites, presenting 461 significant 

associations (Fig.  6). Among them, we found Longicat-
ena caecimuris_bin.4400 was negatively correlated with 
adenosine, L-5-Hydroxytryptophan, and spermidine. 
Anaerostipes hadrus_bin.4374 was negatively correlated 
with spermidine. Streptococcus thermophilus_bin.2251 
was negatively correlated with L-5-Hydroxytryptophan. 
Christensenellales sp000437595_bin.1962 and Bacilli 
sp001916775_bin.6360 were negatively correlated with 
erucic acid.

A mediation analysis was also performed to investigate 
the links between clinical information, the microbiome, 
and metabolites. The analysis identified 126 mediation 
linkages (pmediation ≤ 0.05, pinverse-mediation ≥ 0.05) (Fig.  7) 
including 14 for the microbiome impact on the BMI 
through metabolites, 31 for the microbiome impact on 
the weight through metabolites, 50 for the microbiome 
impact on the height SD value through metabolites and 
31 for the microbiome impact on the height through 
metabolites. We observed adenosine mediated a strong 
association of Longicatena caecimuris_bin.4400 with the 
the height SD value (Fig. 8A). In addition, we found erucic 
acid could mediate the association of Christensenel-
lales sp000437595_bin.1962 and Bacilli sp001916775_
bin.6360 with the height SD value (Fig. 8B-C). Moreover, 
spermidine could mediate the association of Anaerostipes 
hadrus_bin.4374 with the height SD value (Fig. 8D), and 
L-5-Hydroxytryptophan could mediate the association of 
Streptococcus thermophilus_bin.2251 with the height SD 
value (Fig. 8E).

Based on the results of mediation analysis, we included 
metabolites and bacterial strains of mediation link-
ages in the recursive feature elimination (RFE) model 
(Fig.  9A). Finally, 13 features were selected and used to 
perform receiver operating characteristic (ROC) analy-
ses. The model had a significant discrimination for diag-
nostic accuracy [AUC(Test) = 0.933 (95%CI, 79.9–100%)] 
(Fig.  9B). Among the discriminatory features included 
in the classifier, 2-(tert-butyl)-6,7-dimethoxy-4H-3,1-
benzoxazin-4-one had the greatest impact. The mean 
decrease in accuracy of 13 features was calculated in 
Fig. 9C.

Discussion
In this study, using untargeted metabolomics and 
metagenomic sequencing, we identified significant dif-
ferences in fecal metabolite profiles and intestinal micro-
biota in ISS children compared with healthy children. 
Our findings revealed that specific microbial taxa were 
significantly correlated with metabolites and the height 
SD value suggesting that the composition of the gut 
microbiota may influence children’s growth by regu-
lating intestinal metabolic processes. In the clinic, we 
observe that some ISS children are thinner and shorter 
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Fig. 4 Key metabolic pathways mapped by microbial enzyme and fecal metabolism. A Microbial adenosine deaminase that converts adenosine 
to inosine was up-regulated in ISS. 21 bacterial strains that expressed adenosine deaminase were up-regulated in ISS. B Microbial arginine 
decarboxylase involved in the arginine metabolism was down-regulated in ISS. 25 bacterial strains containing arginine decarboxylase were 
down-regulated in ISS. C Microbial tryptophan decarboxylase involved in L-5-Hydroxytryptophan metabolism was up-regulated in ISS. * 
p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001
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than healthy children, even though they have a balanced 
diet, adequate sleep and regular exercise. Through the 
correlation analysis between clinical indicators, we found 
the height SD value was positively related to BMI, sup-
porting the notion that ISS children may have intestinal 
malabsorption.

Intestinal flora interacts with the human body by regu-
lating metabolites. We identified 37 height SD-associated 

metabolites through untargeted metabolomics. Correla-
tion analysis showed some fecal metabolites decreased 
in ISS, such as spermidine, adenosine, and L-5-Hydrox-
ytryptophan, whereas erucic acid was enriched. Spermi-
dine, as a polyamine, is known to play an important role 
in bone remodeling and fetal growth [12]. We also found 
decreased amounts of arginine in the gut of ISS children, 
a precursor for spermidine synthesis [13]. Adenosine is 
generated from the hydrolysis of adenine nucleotides and 
participates in energy metabolism. A study reported that 
chondrocytes could secrete adenosine to regulate the 
homeostasis and function of cartilage [14]. L-5-Hydrox-
ytryptophan is produced from tryptophan, and further 
transformed into melatonin [11]. A study observed that 
L-5-Hydroxytryptophan could increase rapid eye move-
ment sleep amount [15], suggesting that it may promote 
the secretion of growth hormone. Erucic acid is present 
in rapeseed oil and has been reported to inhibit animal 
growth [16]. A study showed that high erucic acid feed-
ing decreased the absorption of nutrient substances, such 
as lipids and protein, inhibited growth, and disrupted the 
intestinal development of fish [16]. Among the differ-
ential metabolites, we observed that a number of lipids 
increased in ISS, while some amino acids and nucleo-
tides decreased in ISS. KEGG pathway analysis showed 
that most metabolic pathways were enriched in amino 

Fig. 5 Inter-individual variation in clinical indicators explained 
by bacteria and metabolites

Fig. 6 Spearman correlation analysis of clinical indicators, bacterial strains, and metabolities. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001
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acid and lipid metabolic pathways, indicating that ISS 
may have problems in the absorption and utilization of 
nutrients.

In this study, significant alterations in the abundance 
of gut microbiota were found in ISS children. The rela-
tive abundance percentages of butyrate-producing bac-
teria, such as Faecalibacterium and Eubacterium has 
been reported to be significantly reduced in ISS children 
[8]. However, our study revealed different butyrate-pro-
ducing bacteria in the gut, Butyricicoccus, Coprococcus, 
Fusobacterium_mortiferum, Alistipes_putredinis, and 
Coprococcus_comes, were reduced in ISS children. About 
95% of butyrate is absorbed and utilized within the colon, 
whereas only a small amount enters the circulation 
[17]. Butyrate plays a role in the regulation of the intes-
tinal homeostasis and in repairing the intestinal barrier 
function [18]. We hypothesise that reduced amounts of 
butyrate in ISS children may have an influence on normal 
functions, such as digestion and absorption of nutrients. 
Moreover, we identified a total of 31 differential KEGG 
modules between the two groups. These differential mod-
ules were also mainly involved in the nutrient metabolism 
pathways such as amino acid metabolism and nucleotide 

metabolism. We speculate that disturbance of nutrient 
metabolism was of relevance to the gut ecosystem of ISS. 
Further, we explored the roles of the gut microbiota in 
modulating fecal metabolism by mapping the differential 
enzymes associated with the disturbed metabolisms. We 
found that the level of fecal spermidine and its relevant 
metabolic enzyme (arginine decarboxylase) were consist-
ently decreased in ISS children. We also found a group 
of bacterial strains expressing arginine decarboxylase was 
also decreased in ISS children. In addition, the micro-
bial metabolic enzyme (adenosine deaminase) involved 
in the metabolism of adenosine was up-regulated and a 
group of bacterial strains containing adenosine deami-
nase exhibited the same trend. Taken together, these 
findings suggest that the fecal levels of spermidine and 
adenosine in children with ISS may be collectively modu-
lated by groups of gut bacterial strains. Bi-directional 
mediation analysis found 5 highly significant causal 
relationships. Longicatena caecimuris_bin.4400 may 
affect children’s growth by regulating the metabolism of 
adenosine. Correlation analysis showed Longicatena cae-
cimuris_bin.4400 was negatively related to the height SD 
value and adenosine. We analyzed the enzymes expressed 

Fig. 7 Sankey plots showed the correlation network between the gut microbiome and the clinical indicators was mediated by fecal metabolites. 
Red connections indicate positive correlations (FDR < 0.05), whereas blue connections indicate negative correlations (FDR < 0.05)
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by the Longicatena caecimuris_bin.4400 and found two 
enzymes (purine nucleoside phosphorylase and adeno-
sine deaminase) involved in adenosine metabolism. 
Purine nucleoside phosphorylase catalyzes adenosine 
to the adenine [19] whereas adenosine deaminase cata-
lyzes the hydrolytic deamination of adenosine to produce 
inosine [9]. The significantly enriched presence of Lon-
gicatena caecimuris_bin.4400 in the gut of ISS children 
may thus play a role in the reduction of adenosine. The 
mechanism of how Christensenellales sp000437595_
bin.1962 and Bacilli sp001916775_bin.6360 regulate the 
metabolism of erucic acid to affect children’s growth 
remains to be further explored. A study reported that 
big broiler chicks had a higher abundance of Chris-
tensenellales compared to small chicks [20], which sug-
gests that Christensenellales may promote growth. Bacilli 
sp001916775_bin.6360 belongs to the class Bacilli. Sev-
eral studies reported that a dietary supplementation with 
Bacillus strains help improved the growth performance 
of mice and broilers [21, 22].

A combination of 13 fecal metabolites and bacteria 
enabled construction of a disease classifier. The model 
discriminated ISS children from healthy children with 

a relatively high degree of accuracy (AUC of 0.953 in 
the test set). It is suggested that this identified metab-
olite signature has the potential of assisting clinical 
diagnosis and treatment in the future. In the clinic, we 
have observed that some ISS children are picky eaters. 
There is mounting evidence that dietary intake modu-
lates the composition and function of the microbiome 
and metabolites [23]. In this study, we found erucic acid 
was increased in the ISS. Rapeseed and mustard oils 
have a high content of erucic acid [24], suggesting that 
a lower intake may be beneficial to ISS children. Fur-
ther, based on the finding of low amounts of adenosine 
it may be desirable for ISS children to change to a diet 
with a high content of adenosine and arginine. From 
other clinical observations, some ISS children have 
insufficient sleep or poor sleep quality, and adequate 
sleep is important for normal growth and development. 
Since L-5-Hydroxytryptophan was also decreased in 
ISS children, and L-5-Hydroxytryptophan is mainly 
produced from tryptophan, supplementing their diet 
with food rich in tryptophan may also help to improve 
sleep quality. A study reported that children with stunt-
ing had lower serum concentrations of tryptophan [25]. 

Fig. 8 Mediation analysis and identification of interrelationships between the microbiome, metabolities, and the height SD. A Analysis of the effect 
of Longicatena caecimuris_bin. 4400 on the height SD of children as mediated by adenosine. B Analysis of the effect of Christensenellales 
sp000437595_bin.1962 on the height SD of children as mediated by erucic acid. C Analysis of the effect of Bacilli sp001916775_bin.6360 on the height 
SD of children as mediated by erucic acid. D Analysis of the effect of Anaerostipes hadrus_bin.4374 on the height SD of children as mediated 
by spermidine. E Analysis of the effect of Streptococcus thermophilus_bin.2251 on the height SD of children as mediated by L-5-Hydroxytryptophan. 
The gray lines showed the Spearman associations between the two factors. Red and blue arrows indicate direct mediation and reverse mediation, 
respectively
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Fig. 9 Metabolites and microbiome classifies ISS from Controls. A Recursive feature elimination (RFE) identified the 13 most important features. B 
ROC analysis was performed to evaluate these 13 features, and the AUC of the training set and test set were 100% and 93.3%, respectively. C The 
mean decrease in accuracy of 13 features was calculated. Red and blue shading denotes metabolites and microbiomes, respectively
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Future research can explore whether children with ISS 
have lower serum tryptophan or deficits in conversion 
of tryptophan to L-5-Hydroxytryptophan.

Despite our efforts to correct batch effects using the 
Combat-seq method, this remains a limitation of our 
current study. Furthermore, the relatively small sam-
ple size constitutes another limitation. In our future 
research, we will collect data in a more systematic man-
ner and expand the sample size in order to enhance the 
reliability of our findings. In conclusion, we identified 
gut microbiota and metabolite disturbances in children 
with ISS that may affect their growth and development. 
Through mediation analysis, we found several fecal 
metabolites closely related to the abundance of specific 
gut bacterial strains and found significant correlations 
with height SD value in ISS children. On this basis, 
our study points to dietary recommendations that may 
help promote normal growth and development of these 
children.
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