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Abstract
Objective  The search for other indicators to assess the weight and nutritional status of individuals is important as it 
may provide more accurate information and assist in personalized medicine. This work is aimed to develop a machine 
learning predictions of weigh status derived from bioimpedance measurements and other physical parameters of 
healthy younger volunteers from Southern Cuba Region.

Methods  A pilot random study at the Pediatrics Hospital was conducted. The volunteers were selected between 
2002 and 2008, ranging in age between 2 and 18 years old. In total, 776 female and male volunteers are studied. 
Along the age and sex in the cohort, volunteers with class I obesity, overweight, underweight and with normal 
weight are considered. The bioimpedance parameters are obtained by measuring standard tetrapolar whole-body 
configuration. The bioimpedance analyser is used, collecting fundamental bioelectrical and other parameters of 
interest. A classification model are performed, followed by a prediction of the body mass index.

Results  The results derived from the classification leaner reveal that the size, body density, phase angle, body mass 
index, fat-free mass, total body water volume according to Kotler, body surface area, extracellular water according to 
Kotler and sex largely govern the weight status of this population. In particular, the regression model shows that other 
bioparameters derived from impedance measurements can be associated with weight status estimation with high 
accuracy.

Conclusion  The classification and regression predictive models developed in this work are of the great importance 
to assist the diagnosis of weigh status with high accuracy. These models can be used for prompt weight status 
evaluation of younger individuals at the Pediatrics Hospital in Santiago de Cuba, Cuba.
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Introduction
Bioimpedance is a technique used to measure the electri-
cal impedance or resistance of biological tissues or fluids. 
It involves the application of an electrical current, usually 
through the skin, and the measurement of the resulting 
voltage [1–4]. Bioimpedance is a non-invasive technique 
that can provide useful information on various physio-
logical parameters, making it a valuable tool in healthcare 
and fitness settings. Several physiological parameters can 
be measured by bioimpedance, including body compo-
sition, hydration status, cell membrane integrity, tissue 
health among other.

The measurement of extracellular and intracellular 
water (ECW and ICW, respectively) total body water 
(TBW) is important for estimation of many patholo-
gies [5–9]. Dehydration can be detected by independent 
measurements of TBW and fat-free mass (FFM), while 
overhydration may indicate the presence of oedema in 
cardiac patients or of lymphoedema after a mastectomy 
[8]. It is well-known that renal patients treated by haemo-
dialysis accumulate fluid between treatments. It is impor-
tant to evaluate their amount of excess fluid, in order to 
determine and calibrate the ultrafiltration and also how 
this fluid loss is distributed between ECW and ICW [7, 
8]. An increment of ECM/ICM ratio has been recently 
associated factor to increased sarcopenia risk in mainte-
nance haemodialysis patients [9]. All of these physiologi-
cal parameters can be measured by bioimpedance. The 
development of bioimpedance method surges as an alter-
native non-invasive methods to get access of these physi-
ological parameters [1–10].

Of particular interest, the health status is associated 
with weight status of individuals [11–24]. For instance, 
Obesity is an important risk factor for premature death 
and the development of a type diabetes, hypertension, 
heart disease, and chronic kidney disease (CKD) [11–13]. 
Obesity has increased nearly twice over the past decades 
[14]. On the other hand, underweight is another risk fac-
tor in general health status and has been associated with 
fractures, lung diseases, atrial fibrillation, cardiovascular 
diseases and chronic kidney disease [15–24].

According to World Health Organization (WHO), the 
body mass index (BMI) quantifies the weight status of 
individuals. There are various classes differentiating the 
weight status: underweight (BMI < 18.49 Kg/m2), nor-
mal weight (BMI 18.50–24.99 Kg/m2), overweight (BMI 
25.0–29.99 Kg/m2), class I obesity (BMI 30.0–34.99 Kg/
m2), class II obesity (BMI 35.0–39.99 Kg/m2) and class 
III obesity (BMI > 40.0 Kg/m2) [25]. Besides, this associa-
tions vary across global regions and for younger and elder 
groups [12, 25].

Machine learning is a subfield of artificial intelligence 
that involves the development of algorithms and statisti-
cal models that enable computers to learn from data and 

make predictions or decisions without being explicitly 
programmed [26, 27]. In medicine, machine learning has 
the potential to make more accurate diagnoses, decision 
making and personalized treatment plans [26, 27].

Despite the development of bioimpedance, there is no 
direct association between the bioelectrical parameters 
with weight status. As the WHO system have the lack of 
variation between global regions and age for estimating 
the weight status, further studies are required to solve 
these problems. In this context, the aim of this work is 
to provide a predictive model, based on classification and 
regression learner method, as a complementary approach 
to weigh status evaluation of younger volunteers from the 
main Pediatrics Hospital of Santiago de Cuba, Cuba.

Methodology
A pilot random study at the Pediatrics Hospital in South 
Cuba, specifically in Santiago de Cuba was conducted. 
This is a public sector hospital specialized in cancer dis-
eases, having the facilities to perform the impedance 
measurements. The study involved volunteers who were 
selected between 2002 and 2008 and aged between 2 and 
18 years old. In total, 776 female and male volunteers 
were studied. This research followed the code of ethics, 
good medical and clinical practices established by the 
Health General Law of the Ministry of Public Health of 
Republic of Cuba (Number 41, 13 July 1983 and updated 
in 2010).

The research was evaluated and approved by the eth-
ics committees and scientific councils of Provincial Blood 
Bank “Renato Guitart”, Pediatrics Hospital “Conrado 
Benítez”, Pediatric Hospital “Juan Martinez Maceira” and 
Oncological Hospital “Antonio María Béguez César”. All 
relevant national regulations, institutional policies, and 
the Regional Committees for Medical, Health Research 
Ethics, and scientific council were in accordance with the 
tenets of the Helsinki Declaration. Additionally, parents 
of children and adult participants signed informed con-
sent before starting the study.

The database collected in this study is not publicly 
available because it is still under study to extract more 
information that can provide valuable data for a better 
understanding of the behavior of bioelectrical parameters 
in healthy and diseased patients. However, the datasets 
are available from the corresponding author upon rea-
sonable request.

Bioimpedance parameters were obtained by measur-
ing using the standard tetrapolar whole-body configura-
tion. The Bioimpedance analyzer used was the BioScan 
98® model (Biológica Tecnología Médica S.L., Barcelona, 
Spain. URL: http://www.bl-biologica.es). Healthy volun-
teers participated in a previous fast for at least 3 h, with 
an empty bladder, and had not exercised or consumed 
alcohol in the previous 12  h. A 50  kHz frequency was 

http://www.bl-biologica.es
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used for the measurements. A disposable pre-gelled Ag/
AgCl electrodes model 3 M Red Dot 2560 (3 M, Ontario, 
Canada) were used.

Trained personnel performed the study in an air-con-
ditioned room set at 23  °C, with a relative humidity of 
60–65%, during the morning. The subjects were posi-
tioned in a supine posture without clothing or a pillow 
beneath their heads. Their arms were positioned 30° 
apart from their chest, while their legs were separated at 
an angle of 45° without touching each other, on a non-
conductive surface. Before electrode placement, the skin 
was thoroughly cleaned with 70% alcohol. The injector 
electrodes were placed medial to the dorsal surfaces of 
the hands and feet, near the third metacarpal and meta-
tarsophalangeal joints. Detector electrodes were placed 
between the distal epiphyses of the ulna and radius, at 
the level of the pisiform eminence, as well as at the mid-
point between both malleolus respectively. The distance 
between the injector and detector electrodes was main-
tained at 5 cm.

To perform a serious AI study, machine learning 
involves problem formulation, dataset quality analysis, 
feature selection, and model generalization in the real 
world [26–28]. The Classification and Regression Learner 
App implemented in MATLAB code is uses for data 
analysis and machine learning study [29]. In this study, 
weight status is considered as the response, and bioelec-
trical and biological parameters of each volunteer consti-
tute the features. With a large dataset of 776 study cases, 
a 95% cross-validation for training and 5% for validation 
are used to avoid the overfitting problem [26–31]. Ini-
tially, a feature selection of 20 features is made, followed 
by a down-selection under the simplest model premise 
for describing weight status before classification. Vari-
ous machine learning methods were used for classifica-
tion and prediction of the body mass index (BMI), and 
the results presented in the next section are from the best 
model describing BMI.

Results and discussion
Weight status classification model using machine learning 
techniques
After revising the data, the entire cohort collects 776 
infants and juveniles, including 344 females and 432 
males. The focus of this study is the weight status as a 
risk factor for chronic renal failure. Within the cohort, 
20 volunteers were class I obese (2.57%), 200 were over-
weight (25.70%), 277 were underweight (35.69%), and 
279 had normal weight (35.95%) based on age and sex. 
Other weight status classes were not encountered due to 
the age range. Features considered for training include 
sex, height, weight, age, resistance (r), capacitive reac-
tance (Xc), phase angle (phase), body surface area (BSA), 
body mass index (BMI), impedance (Z), total body water 

volume according to Kotler (TBWKotl), skeletal muscle 
mass (smmbia), body density (Densbia), fat-free mass 
(FFMS), fat mass (MGC) according to Nhanes, extra-
cellular mass (ECM), intra (ICWKotl) and extracellular 
water according to Kotler (ECWKotl), basal energetic cost 
(GBE), and basal metabolic index (IMB).

Results of the training data are depicted in Fig. 1. The 
best classification model is the bagged trees ensemble 
with 94.8% accuracy and 40 total misclassification costs. 
For more accurate predictions, Fig. 1 displays the receiver 
operating characteristic curve (ROC) for each weight 
class. The ROC curve provides information regarding 
the true positive rate versus the false positive rate for a 
selected trained classifier [32, 33]. The red point high-
lights the values of the false negative rate (FNR) and the 
true positive rate (TPR) for the classifier. Additionally, the 
area under the curve (AUC) number is an indicator of the 
accuracy of the classifier model [32, 33]. A larger AUC 
value indicates better classifier accuracy and predictions 
[32, 33]. The classification model made good predic-
tions in all positive classes considered in this study with 
AUC > 0.93. From the red points highlighted in the figure, 
it can be seen that the classification model assigns 3.00% 
of the false positive rate observations incorrectly to the 
positive normal weight class with an AUC of 0.94. Analo-
gously, 2.00% of the false positive rate observations are 
wrongly assigned to the positive underweight and over-
weight classes with AUC = 0.99. Despite a relatively good 
AUC value in the case of class I obesity (Fig. 1c), there is 
a difference between the false positive and true positive 
rate observations, resulting in less accuracy compared to 
the other weight status classes. This finding is attributed 
to only 2.60% of the dataset having class I obesity, result-
ing in worse performance of the model compared to the 
other weight status classes.

Feature importance separates the main features with 
direct influence of the model prediction, avoiding the 
common over fitting problems [26–31]. Figure 2 displays 
the feature importance represented in a Pareto plot. As it 
is shown in the Pareto plot, the most influencer features 
are the size, body density (Densbia), phase angle (Phase), 
body mass index (BMI), fat-free mass (FFMS), total body 
water volume according to Kotler (TBWKotl), body sur-
face area (BSA), extracellular water according to Kotler 
(ECWKotl), sex and -with minor relevance- the imped-
ance (Z).

After applying the Pareto rule or the law of vital few 
and trivial many, which assumes that 85% of the impor-
tance of a classification prediction is derived from a few 
vital features, one can identify the most significant char-
acteristics to include in future regression-classification 
models. The selected features, in order of importance, 
are Size, Densbia, Phase, BMI, FFMS, TBWKotl, BSA, 
ECWKotl, and Sex. Figure  2 (red lines) illustrates the 
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Pareto plot used to determine the intercept between 
the 85% horizontal line and the green curve describing 
the importance, with the corresponding abscissa feature 
representing the last characteristic considered for future 
regression models. Overall, the size, body density, phase 
angle, and body mass index are the primary determinants 
of weight condition, as demonstrated by Fig.  2. These 
characteristics are used in the next section to perform a 
predictive regression model of weight status.

The results derived from the features importance 
analysis suggest that other bioimpedance-derived 

characteristics can be used alternatively for weight status 
predictions. Specifically, the phase angle and body den-
sity have a greater contribution to determining weight 
status than the common body mass index. Although 
some reports have described the failure of bioimpedance 
spectroscopy to determine weight status, other stud-
ies have suggested that bioimpedance measurements 
are not inferior to BMI as a predictor of overall adipos-
ity in a general population [34, 35]. Amani and cowork-
ers have stated that BIA and BMI methods can similarly 
detect normal and obese women but are less accurate in 

Fig. 1  Receiver operating characteristic curve (ROC) for each positive class considered
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determining underweight female subjects [34]. A pilot 
study of 200 Taiwanese women with breast cancer, which 
combined BIA and BMI, revealed the underestimation of 
the World Health Organization (WHO) criterion to state 
the cut-off of younger women with breast cancer [36]. 
The results suggest that other parameters, namely the 
phase and body density, can be used to support the diag-
nosis of weight status.

Developing a regression-based machine learning model 
for BMI prediction
With the selected features in Sect.  3.1, the next step 
deals with the machine learning predictions. The qua-
dratic support vector machine (SVM) model is selected 
for predicting the BMI, which is actually used to identify 
the weight status. The data is divided in two parts, 95% 
for training and 5% for cross validation. Figure 3a shows 
the response versus predicted plot of the body mass 
index. The accuracy is evaluated by the RMSE = 0.475, 
MSE = 0.181, R2 = 0.999 and MAE = 0.265, indicating a 
good generalizability and high relevance of the identi-
fied features toward explaining relative trends of the 
weight status. All points lie near of the control straight 
line, revealing that the chosen model replicates the 
observations.

Figure 3b displays the response behaviour of BMI of the 
predicted and original weight status. For the class I obe-
sity, the median value of the original data is 31.36 kg/m2, 
while the predicted value is 31.77  kg/m2. Analogously, 
a median BMI of 21.48, 26.20, and 16.06  kg/m2 are 

observed for normal weight, overweight and underweight 
status, respectively, are found, and the predicted median 
BMI are close to the observable values. Underweight 
status has been associated with an increased risk of end-
stage kidney disease [24]. Kim and co-workers [24] stud-
ied 26,406 participants diagnosed with end-stage kidney 
disease. After fully adjusting for other potential predic-
tors, the moderate to severe underweight group (< 17 kg/
m2) had a significantly higher risk of end-stage kidney 
disease than that of the normal weight group [24]. On the 
other hand, obesity also is associated with chronic kid-
ney disease [11, 12]. In this sense, the model can be used 
to make predictions of weight status. From Fig. 3c, girls 
have larger BMI than boys, girls habitually accumulate 
more adipose tissue than boys, and the predictive model 
derived in the present study reproduces this fact.

Developing a classification model for determining weight 
status in an adolescent cohort
Controlling the weight status of adolescent will improve 
their health during to adulthood [37–41]. Several large 
longitudinal studies have shown that obese and over-
weight children who achieve a healthy weight later in 
life have similar cardiovascular risks as individuals who 
were never obese. Other diseases such as metabolic syn-
drome, left ventricular hypertrophy and geometry in 
hypertensive children have been related to the weight 
status in adolescents [37–41]. In this section a predic-
tive model of the weight status taking from the data the 
adolescent cohort ranging between 12 and 18 years old 

Fig. 2  (a) Correlation matrix and (b) Pareto plots of the weight status classification model
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are performed. The adolescent cohort (selected from the 
2 to 18 years old cohort) contain 548 individuals, among 
them 35 male and 514 female, 252 normal weight, 177 
overweight, 103 underweight and 16 class I obesity vol-
unteers. The same feature selection and conditions are 
adopted from Sect. 3.1, but in this case the BMI was not 
included as a characteristic for making weight status 
predictions. The best classification model is the bagged 
threes ensemble with 97.10% of accuracy and 16 total 
misclassification cost. Note that the model has better 
accuracy as compared with the entire age cohort dis-
cussed in Sect. 3.1.

The ROC for each weight class is shown in Fig. 4. The 
AUC values exceed 0.99, indicating that the classifica-
tion model has excellent accuracy. Figure  5a illustrates 
the correlation matrix obtained from the training data. 
The model achieves a 93.80% accuracy in predicting 
class I obesity, with a 6.28% false negative rate for over-
weight assignments. Normal weight status has a 96.80% 

accuracy, with a 3.19% false negative rate for assignments 
between overweight and underweight. Overweight pre-
dictions exhibit 99.40% accuracy, with a mere 0.61% 
false negative rate for normal weight assignments, while 
underweight predictions have a 94.21% accuracy with a 
5.82% false negative rate for normal weight assignments.

These false negative rates can be interpreted as transi-
tions between weight statuses. For example, class I obe-
sity is defined by WHO as having BMI between 30.00 and 
34.99 Kg/m2, while overweight lies between 25.00 and 
29.99 Kg/m2, and the boundary between these statuses 
is narrow with a BMI difference of only 0.01 Kg/m2 [12, 
25]. Therefore, the 6.32% false assignment of overweight 
to class I obesity can be attributed to a transitional state 
from overweight to class I obesity. Similar conclusions 
can be drawn for normal and underweight statuses. This 
is crucial for early diagnosis and implementing treat-
ment strategies to manage weight status of the adolescent 
cohort.

Fig. 3  (a) Response vs. predicted plot of body mass index (BMI), (b) predicted and original BMI data
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Fig. 5  (a) Correlation matrix and (b) Pareto plots of the weight status classification model of the adolescent cohort

 

Fig. 4  Receiver operating characteristic curve (ROC) for each positive class considered in adolescent cohort
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Figure  5b displays the feature importance of the ado-
lescent cohort in a Pareto plot. The most influential fea-
tures, which follow the 85 − 15 Pareto rule, are: Phase, 
FFMS, ECWKotl, basal energetic rate (GBE), total extra-
cellular mass (ECM), and BMI in descendent order. Con-
trary to reports in the literature stating that impedance 
measurement is not effective in predicting weight status 
[34, 35]. Figure 5b shows that the phase angle is a robust 
parameter for predicting weight status in adolescents.

Conclusions
In this work, a predictive classification and regression 
learner model is used to study the association of weight 
status as a possible risk of chronic kidney disease of 
healthy infant-juvenile cohort from the Pediatrics Hos-
pital, Santiago de Cuba, Cuba. The present study used 
19 characteristics derived from bioimpedance measure-
ments, including other physical parameters. The classi-
fication model shows that there are other characteristics 
different than body mass index that can be used as a 
predictors of weight status (the size, body density, phase 
angle, body mass index, fat-free mass (FFMS), total body 
water volume according to Kotler, body surface area, 
extracellular water according to Kotler and sex). For a 
specific adolescent cohort, the most influential param-
eter determining the weight status is the phase angle. The 
regression learner model was trained with the data and 
the abovementioned characteristics, predicting with high 
accuracy the weight status of the volunteers.
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