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Abstract
Objective  The search for other indicators to assess the weight status of individuals is important as it may provide 
more accurate information and assist in personalized medicine.This work is aimed to develop a machine learning 
predictions of weigh status derived from bioimpedance measurements and other physical parameters of healthy 
infant juvenile cohort from the Southern Cuba Region, Santiago de Cuba.

Methods  The volunteers were selected between 2002 and 2008, ranging in age between 2 and 18 years old. In 
total, 393 female and male infant and juvenile individuals are studied. The bioimpedance parameters are obtained 
by measuring standard tetrapolar whole-body configuration. A classification model are performed, followed by a 
prediction of other bioparameters influencing the weight status.

Results  The results obtained from the classification model indicate that fat-free mass, reactance, and corrected 
resistance primarily influence the weight status of the studied population. Specifically, the regression model 
demonstrates that other bioparameters derived from impedance measurements can be highly accurate in estimating 
weight status.

Conclusion  The classification and regression predictive models developed in this work are of the great importance 
for accessing to the weigh status with high accuracy of younger individuals at the Oncological Hospital in Santiago de 
Cuba, Cuba.
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Introduction
According to World Health Organization (WHO), the 
body mass index (BMI) quantifies the weight status of 
individuals. There are various classes differentiating the 
weight status: underweight (BMI < 18.49 Kg/m2), nor-
mal weight (BMI 18.50–24.99 Kg/m2), overweight (BMI 
25.0–29.99 Kg/m2), class I obesity (BMI 30.0–34.99 Kg/
m2), class II obesity (BMI 35.0–39.99 Kg/m2) and class III 
obesity (BMI > 40.0 Kg/m2) [1, 2]. Besides, this associa-
tions vary across global regions and for younger and elder 
groups [1, 2].

Bioimpedance is a technique used to measure the elec-
trical impedance or resistance of biological tissues or 
fluids. It involves the application of an electrical current, 
usually through the skin, and the measurement of the 
resulting voltage [3–5]. Bioimpedance is a non-invasive 
technique that can provide useful information on vari-
ous physiological parameters, making it a valuable tool 
in healthcare and fitness settings. Several physiological 
parameters can be measured by bioimpedance, includ-
ing body composition, hydration status, cell membrane 
integrity, tissue health among other.

The quantification of total body water (TBW), which 
includes both extracellular water (ECW) and intracellular 
water (ICW), plays a crucial role in diagnosing various 
health conditions [6–11]. For instance, dehydration can 
be identified through separate measurements of TBW 
and fat-free mass (FFM), whereas overhydration indicates 
the presence of oedema in individuals with heart disease 
or lymphoedema and mastectomy.

In the context of renal patients undergoing haemodial-
ysis, a retention of fluid between treatments is observed. 
Assessing the volume of this excess fluid is vital to adjust 
the ultrafiltration process and understand how the fluid 
loss is divided between ECW and ICW [10, 11]. In 
patients on maintenance haemodialysis, recent studies 
observed an increase in the ECM/ICM index related with 
risk of sarcopenia. Bioimpedance technique is a non-
invasive method to measure all of these anthropometric, 
metabolic and bioelectric parameters, offering a promis-
ing alternative to traditional techniques [3–12].

In recent years, the issue of overweight children and 
adolescents in Latin America and the Caribbean has 
become increasingly prevalent. Currently, an estimated 
3 in 10 children and adolescents between 5 and 19 years 
old have overweight in the region [13, 14]. In 2020, UNI-
CEF, The World Bank and WHO estimated that in Latin 
America and the Caribbean, a 7.5% of children under 
5 years old, representing about 4  million children, are 
classified as overweight [13, 14]. This is higher than the 
global average of 5.7% [13, 14]. The origin of overweight 
and obesity statuses in childhood are the consumption 
of sugary drinks, ultra-processed foods and the lack of 
physical activity [13, 14].

In order to solve this issue, UNICEF has been promot-
ing initiatives, in collaboration with governments from 
across the region, to improve the nutritional status of 
the population, guide families and communities, and 
contribute to regulatory actions to change food environ-
ments [13–17]. In addition, to avoid overweight, UNI-
CEF supports nutritional campaigns in several countries 
and stimulates actions for the promotion, protection, and 
support of breastfeeding from birth to two years of age 
[13, 14]. Furthermore, scientists have created a US-Latin 
American research agenda on child obesity, finding evi-
dence of anthropological factors influencing on the child 
obesity problem [13–17].

Alternatively, machine learning is a subfield of artifi-
cial intelligence that involves the development of algo-
rithms and statistical models that enable computers 
to learn from data and make predictions or decisions 
without being directly programmed [18–20]. In medi-
cine, machine learning has the potential to make more 
accurate diagnoses, decision making and personalized 
treatment plans [18–21]. Despite the development of 
bioimpedance method, there is no direct association 
between the bioelectrical parameters with weight sta-
tus estimation. As the WHO system have the lack of 
variation between global regions and age for estimating 
the weight status, further studies are required to solve 
these problems. In this context, the aim of this work is 
to provide a predictive model, based on classification 
and regression learner methods, as a complementary 
approach to weigh status evaluation of younger volun-
teers from the main Oncological Hospital of Santiago de 
Cuba, Cuba.

Methodology
We conducted a pilot random study at the Oncological 
Hospital in South Cuba, specifically in Santiago de Cuba. 
This is a public sector hospital specialized in cancer dis-
eases. The study involved volunteers who were selected 
between 2002 and 2008 and aged between 2 and 18 
years old. In total, 776 female and male volunteers were 
studied. This research followed the code of ethics, good 
medical and clinical practices established by the Health 
General Law of the Ministry of Public Health of Republic 
of Cuba (Number 41, 13 July 1983 and updated in 2010).

The research was evaluated and approved by the eth-
ics committees and scientific councils of Provincial Blood 
Bank Renato Guitart, Oncological Hospital Conrado 
Benítez, Pediatric Hospital Juan Martinez Maceira and 
Pediatric Hospital Antonio María Béguez César. All rel-
evant national regulations, institutional policies, and the 
Regional Committees for Medical, Health Research Eth-
ics, and scientific council were in accordance with the 
tenets of the Helsinki Declaration. Additionally, parents 
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of children and adult participants signed informed con-
sent before starting the study.

The database collected in this study is not publicly 
available because it is still under study to extract more 
information that can provide valuable data for a better 
understanding of the behavior of bioelectrical parameters 
in healthy and diseased patients. However, the datasets 
are available from the corresponding author upon rea-
sonable request.

Bioimpedance parameters were obtained by measur-
ing using the standard tetrapolar whole-body configura-
tion. The Bioimpedance analyzer used was the BioScan 
98® model (Biológica Tecnología Médica S.L., Barcelona, 
Spain. URL: http://www.bl-biologica.es). Healthy vol-
unteers participated in a previous fast for at least 3  h, 
with an empty bladder, and had not exercised or con-
sumed alcohol in the previous 12 h. A 50 kHz frequency 
was used for the measurements. Adults used disposable 
pre-gelled Ag/AgCl electrodes model 3 M Red Dot 2560 
(3 M, Ontario, Canada), while the paediatric sample used 
the 3 M 2248-50 Red Dot.

The study was performed in the morning by trained 
personnel in an air-conditioned room at 23  °C with an 
ambient humidity of 60–65%. To perform the measure-
ment, subjects were placed in a supine position without 
clothing, without a pillow under their heads, with their 
arms separated 30° from the chest and their legs sepa-
rated at an angle of 45° without contact between them, 
on a non-conductive surface. The electrodes were placed 
after cleaning the skin with 70% alcohol. The injec-
tor electrodes were placed medial to the dorsal surfaces 
of the hands and feet, close to the third metacarpal and 
metatarsophalangeal joints. Detector electrodes were 
placed between the distal epiphyses of the ulna and 
radius, at the level of the pisiform eminence, as well as 
at the midpoint between both malleolus respectively. The 
distance between the injector and detector electrodes 
was 5 cm.

To perform a serious AI study, machine learning 
involves problem formulation, dataset quality analysis, 
feature selection, and model generalization in the real 
world [18–24]. In this study, weight status is considered 
as the response, and bioelectrical and biological param-
eters of each volunteer constitute the features. With a 
large dataset of 393 individuals, we used a 95% cross-
validation for training and 5% for validation to avoid the 
overfitting problem [23–25]. Initially, a feature selection 
of 24 features is made, followed by a down-selection 
under the simplest model premise for describing weight 
status. Various machine learning methods were used for 
classification and prediction of relevant bioelectrical and 
bioparameters. Further details will be provided along 
next sections.

Results and discussion
Weight status classification model using machine learning 
techniques
After revising the data, the cohort consisted of 393 
infants and juveniles, including 184 females and 209 
males. Within the cohort, 133 children are classified with 
normal weight, 128 overweight and 132 underweight 
based on age and sex. In this sense, the cohort is balanced 
according to sex and weight status. Other weight status 
classes were not encountered due to the age range. It is 
well-know that accessing to the weight status in preado-
lescents and early childhood is a problem that must deal 
with care due to the difference and the metabolic changes 
occurring during the growing [1, 2]. In this sense, we 
conducts a study in three age groups chronologically 
sored, namely 2 to 18 year old (2–18 age group compil-
ing the entire cohort), 2 to 11 year old (2–11 age group) 
and12 to 18 year old (12–18 age group).

The weight status with classed normal weight, over-
weight and underweight is considered as the response for 
the classification model. Features considered for training 
include anthropometric parameters such as sex, height, 
weight, age, body surface area (BSA), body mass index 
(BMI), fat mass (MGC) according to Nhanes, total body 
water volume according to Kotler (TBWKotl), skeletal 
muscle mass (smmbia), extracellular mass (ECM), body 
density (Densbia), fat-free mass according to Siri (FFMS) 
[26],. In addition, other bioelectrical parameters such as 
resistance (r), impedance (Z), capacitive reactance (Xc), 
phase angle (phase), corrected resistance (rc), corrected 
capacitance (xc) and specific resistivity (ρ00). To com-
plete the features, other metabolic parameters are con-
sidered intra (ICWKotl) and extracellular (ECWKotl) water 
according to Kotler, extra-intracellular index (ECWKotl/ 
ICWKotl), basal energetic cost (GBE), and basal metabolic 
index (IMB).

The best classification model is the bagged trees 
ensemble for the three age group studied. For the entire 
cohort (i.e., 2–18 age group), the accuracy of the clas-
sification model is 98.50% and 5.00 total misclassifica-
tion cost. For the 2–11 age group the accuracy is 93.80% 
with a total misclassification cost of 5.00, while for the 
12–18 age group is 98.70% and 4.00 misclassification 
cost. The receiver operating characteristic curve (ROC) 
provides information regarding the true positive ver-
sus the false positive rate for a selected trained classifier 
[27–29]. The red point represents the values of the false 
negative rate (FNR) and the true positive rate (TPR) for 
the classifier. Furthermore, the area under the curve 
(AUC) provide information of the accuracy of the clas-
sifier model [27–29]. A larger AUC value indicates bet-
ter classifier accuracy and predictions [27–29]. Figure  1 
displays the ROC for each weight class and year group. 
From Figure a), b) and c) the AUC = 1.00, assigning low 
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false positive rate observations incorrectly to the posi-
tive class in concern. For the 2–11 age group (Figure d, e 
and f ), the classification model assigns 2.00% of the false 
positive rate observations incorrectly to the positive nor-
mal weight and overweight classes with an AUC of 0.98. 
Analogously, 6.00% of the false positive rate observa-
tions are wrongly assigned to the positive underweight 
class with AUC = 0.98. Analogously, for the 12–18 age 
group (Fig. 1g, h and i), the model predicts accurately the 
weigh status with AUC = 1.00 and low false positive rate 
of 1.00% for underweight individuals.

Confusion matrix provides detailed information about 
the accuracy predictions by comparing within specific 

classes [30, 31]. Figure  2 show the confusion matrix of 
each age group. For the entire age group (Fig.  2a) the 
model predict the normal weight status with an accuracy 
of 99.20%, the overweight and underweight statuses with 
a 97.70% and 98.50% of accuracy, respectively. In addi-
tion, the model misclassifies 0.80% underweight indi-
viduals as a normal weight, 2.30% of normal weight to 
overweight and 1.50% of overweight to the true class of 
underweight.

Analogously, for the younger age range (Fig.  2b), 
the model predicts the normal weight status with an 
accuracy of 96.20%, while the overweight and under-
weight with 91.30 and 93.81% of accuracy. However, 

Fig. 1  Receiver operating characteristic curve (ROC) for each positive class considered: a), b) and c) corresponds to the complete cohort, d), e) and f) to 
2–11, while g), h) and i) to 12–18 age group, respectively
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the model assigns wrongly 3.80% to the normal weight 
class of underweight individual, 8.70% of underweight 
to overweight and 6.30% of normal and overweight to 
underweight class. From Fig.  2c, the overweight class 
is predicted with the highest accuracy. In addition, 
the normal weight and underweight classes are also 
predicted with a 98.00% of accuracy assigning 2.00% 
wrongly weight status classes to normal and under-
weight class. These findings can be explained con-
sidering that some individuals can be on a transition 
between weight statuses.

Feature importance analysis is a critical step in the 
development and optimization of classification mod-
els, as it helps to identify the most relevant features 
and ensure the accuracy and reliability of the model, 
avoiding the common over fitting problems in regres-
sion learners [22–24]. Figure  3 displays the feature 
importance for each age groups. As it is shown in the 
Fig.  3a, the most important features of the entire age 

group are the fat-free mass (FFMS), reactance (Xc) 
and the corrected resistivity (rc). Among age groups, 
again the FFMS and Xc prevails as the most impor-
tant characteristics. Considering the other insignifi-
cant characteristics, the main difference is that the 
thirds important characteristic in the 2–11 age group 
(Fig.  3b) is ICWKotl and rc in the 12–18 age group 
(Fig. 3c). Note that in the three cohorts the FFMS, Xc 
and rc play an important role accessing to the weight 
status of individuals.

The main results derived from the features impor-
tance analysis indicate that there are other character-
istics derived from bioimpedance measurements that 
can be used alternatively for weight status predictions. 
For instance, the phase angle and the body density have 
more contribution to determine the weight status than 
the anthropometric body mass index (BMI). Reports 
concerning the failure of bioimpedance spectroscopy 
to determine the weight status have been described 

Fig. 2  Confusion matrix for (a) 2–18, (b) 2–11 and (c) 12–18 age group, respectively
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[32–34]. However, bioimpedance measurements are 
not superior to BMI as a predictor of overall adiposity 
in a general population [32, 33]. A study to determine 
obesity of 200 Taiwanese women with breast cancer by 
combining BIA and BMI revealed the underestimation 
of WHO criterion to state the cut-off of females with 
breast cancer [34]. On the other hand, both BIA and 
BMI methods can similarly detect normal and obese 
female individuals and are less accurate in determining 
underweight [32–34]. Our results suggest that there 
are other anthropometric and bioelectrical parameters 
(FFMS, Xc, rc) that can be used to support the diagno-
sis of weight status of pre- and adolescents individuals.

It is well-known FFM results in an important change 
of the human energy control of obese patients [35, 36]. 
Research shows that fat-free mass plays both an active 
and passive role in the body energy intake and require-
ments [13]. Increasing your fat-free body mass can be 
helpful for weight management [13]. The results sup-
ports those findings.

The role of fundamental characteristics for accessing the 
weight status
Given that FFMS, Xc, and rc are the primary charac-
teristics that determine weight status in the studied 
cohort, this section focuses on developing regression 
models to predict these characteristics and assess 
their robustness in determining weight status. For 
the selected characteristic as the response, the data 
is divided into two parts: 95% for training and 5% for 
cross-validation. Figure  4a displays the predicted ver-
sus true response for the entire cohort, whereas Fig. 4b 
and c correspond to the 2–11 and 12–18 age groups, 
respectively. The observations are well-replicated by 
the chosen models, as indicated by all points lying near 
the control straight line. These results indicate good 
generalizability and high relevance of the identified 
features in explaining relative trends of the selected 
responses (FFMS, Xc, rc and ρ00).

Table  1 collects the results of the model for each 
response and their respective accuracy values. The 

Fig. 3  Feature importance of: (a) 2 to 18, (b) 2 to 11 and (c) 12 to 18 age group, respectively. The highest bar represents the most important characteristic 
of the classification model
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accuracy is taken by considering the root mean square 
error (RMSE), R-squared (R2), mean square error 
(MSE) and the mean absolute error (MAE). As it is 
shown in Table  1, the main model describing these 
characteristic is the linear support vector machine 
(Linear SVM), except for ρ00  where the best model is 

the rational quadratic (GPR) and quadratic support 
vector machine (Quadratic SVM) in the 2–11 and 
12–18 age groups, respectively.

Figure 5a shows the trend of response parameters in 
relation to the weight status of the entire cohort, while 
Fig. 5b and c display the results for the 2–11 and 12–18 

Table 1  Accuracy parameters of each model and age group categorized chronologically
Age Group Response Model RMSE R2 MSE MAE
Group 2–18 FFMS (kg) Linear SVM 0.59 1.00 0.35 0.49

Xc (Ω) Linear SVM 0.72 1.00 0.52 0.61
rc (Ω) Linear SVM 5.27 1.00 27.81 4.20
ρ00  (Ω) Linear SVM 0.08 1.00 0.01 0.05

Group 2–11 FFMS (kg) Linear SVM 0.76 1.00 0.58 0.64
Xc (Ω) Linear SVM 1.21 1.00 1.47 0.74
rc (Ω) Linear SVM 6.50 1.00 42.28 4.81
ρ00  (Ω) Rational Quadratic

GPR
0.15 1.00 0.02 0.05

Group 12–18 FFMS (kg) Linear SVM 0.59 1.00 0.36 0.49
Xc (Ω) Linear SVM 0.72 1.00 0.51 0.56
rc (Ω) Linear SVM 5.30 1.00 28.13 4.30
ρ00  (Ω) Quadratic SVM 0.01 1.00 0.05 0.05

Fig. 4  Response vs. predicted plot of the selected responses of each cohort: (a) 2–18, (b) 2–11 and (c) 12–18 age groups
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age groups, respectively. Along the cohorts, under-
weight status have the lowest FFMS and highest Xc and 
rc, while the overweight have the lowest Xc and highest 
ρ00 . In the case of normal weight, the parameters lies 
between overweight and underweight statuses. These 
results agree with the affirmation that underweight 
individuals generally have larger phase angle because 
Xc is directly proportional to the phase angle, while 
overweight individuals have lower phase angle asso-
ciated to the body fluid imbalance [35]. In our study 
the mean value of the phase angle are 7.07 ± 0.74º, 
7.06 ± 0.45º and 6.70 ± 0.58º for underweight, nor-
mal and overweight status, respectively, of the entire 
cohort. In addition, the true and predicted values are 
close each other, reaffirming the accuracy of the mod-
els. In general, the predictor models reproduces well 
the observed parameters in all age groups. This find-
ing supports the affirmation that by controlling the 
fat-free mass one can monitoring the fluid unbalance 
of individuals and the weight status as a consequence 
[36, 37].

Figure  6 discloses the dependence of the above-men-
tioned responses upon gender of each age groups. In the 
entire cohort (Fig. 6a), there is no significant difference of 
rc and Xc between sex, while boys have larger FFMS and 
lower ρ00 than girls. In contrast, for the early stage group 
(Fig.  6b), the difference is appreciated in all responses; 
boys have larger Xc and rc than girls, larger FFMS is 
observed for infant girls. For the adolescent group 
(Fig. 6c) the result shows that boys have larger FFMS and 
lower rc, Xc and ρ00.

The weight gain in children is primarily dependent 
on fat-free mass, fat mass in children tends to decrease 
during their development stages [38, 39]. Only after 
the onset of puberty and as sex differences in overall 
and regional body composition become more notice-
able, there is a visible increase in body fat percent-
age [40, 41]. Once children hit puberty, sex hormones 
lead to changes in body composition. During puberty, 
young females typically experience an increase in body 
fat, particularly in the hips and breasts, while young 
males tend to see an increase in muscle mass [42].

Fig. 5  True and predicted anthropometric and bioelectrical parameters by weight status of each: (a) 2–18, (b) 2–11 and (c) 12–18 age group
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Conclusions
In this work, a predictive classification and regres-
sion learner model is used to study the association of 
weight status as a possible risk of disease of infant-
juvenile cohort from Santiago de Cuba, Cuba. We 
used 24 characteristics derived from bioimpedance 
measurements, including other physical parameters. 
The classification model shows that there are other 
characteristics different than body mass index that 
can be used as a predictors of weight status [fat-free 
mass (FFMS), reactance (Xc), corrected resistance (rc) 
and specific resistivity (ρ00)]. The regression learner 
model was trained with the data and the abovemen-
tioned characteristics, predicting with high accuracy 
the weight status of the volunteers. The results con-
cerning the variation of the above-mentioned charac-
teristics against weight status and sex along the cohort 
agree with those reported in the literature. These pre-
dictive models developed in this work are of the great 
importance for accessing to the weigh status with high 

accuracy of younger individuals at the Oncological 
Hospital in Santiago de Cuba, Cuba.
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