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Abstract
Background Neonatal sepsis, a perilous medical situation, is typified by the malfunction of organs and serves as the 
primary reason for neonatal mortality. Nevertheless, the mechanisms underlying newborn sepsis remain ambiguous. 
Programmed cell death (PCD) has a connection with numerous infectious illnesses and holds a significant function in 
newborn sepsis, potentially serving as a marker for diagnosing the condition.

Methods From the GEO public repository, we selected two groups, which we referred to as the training and 
validation sets, for our analysis of neonatal sepsis. We obtained PCD-related genes from 12 different patterns, 
including databases and published literature. We first obtained differential expressed genes (DEGs) for neonatal 
sepsis and controls. Three advanced machine learning techniques, namely LASSO, SVM-RFE, and RF, were employed 
to identify potential genes connected to PCD. To further validate the results, PPI networks were constructed, artificial 
neural networks and consensus clustering were used. Subsequently, a neonatal sepsis diagnostic prediction model 
was developed and evaluated. We conducted an analysis of immune cell infiltration to examine immune cell 
dysregulation in neonatal sepsis, and we established a ceRNA network based on the identified marker genes.

Results Within the context of neonatal sepsis, a total of 49 genes exhibited an intersection between the differentially 
expressed genes (DEGs) and those associated with programmed cell death (PCD). Utilizing three distinct machine 
learning techniques, six genes were identified as common to both DEGs and PCD-associated genes. A diagnostic 
model was subsequently constructed by integrating differential expression profiles, and subsequently validated by 
conducting artificial neural networks and consensus clustering. Receiver operating characteristic (ROC) curves were 
employed to assess the diagnostic merit of the model, which yielded promising results. The immune infiltration 
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Introduction
Sepsis is a medical condition characterized by an uncon-
trolled host response to infection, and it is presently the 
primary cause of mortality among critically ill patients 
across the globe [1]. In the United States, the current 
incidence rate of sepsis is approximately 3‰, with severe 
sepsis accounting for at least 200,000 deaths every year 
[2]. Neonatal sepsis, which refers to a systemic infec-
tion with bacteremia that arises within the first month of 
an infant’s life, is a primary cause of neonatal mortality, 
with its associated death rate posing a significant chal-
lenge to global health. Neonatal sepsis can be classified as 
early- or late-onset, with 72 h post-birth as the dividing 
line. Neonatal infections are responsible for about 26% of 
deaths in children under five years old [3]. In 2022, low- 
and middle-income countries reported a neonatal sepsis 
incidence of 17.7% and a mortality rate of 16.2% [4]. Over 
the past few decades, research on neonatal sepsis has 
focused on various types of infections and has resulted 
in the emergence of primary and secondary prevention 
strategies.

There are two classifications of cell death: acciden-
tal cell death and programmed cell death (PCD). PCD 
is playing a vital role in a variety of functions. Presently, 
twelve types of PCD have been recognized, which include 
Apoptosis, Pyroptosis, Ferroptosis, Autophagy, Necrop-
tosis, Cuproptosis, Parthanatos, Entotic cell death, 
Netotic cell death, Lysosome-dependent cell death, Alka-
liptosis, and Oxiptosis. The discovery of the Gasdermin 
family and the association between pyroptosis, innate 
immunity, and disease has expanded the research field 
[5]. In 2012, ferroptosis was described as a regulated 
form of cell death resulting from the build-up of lipid-
based oxygen species through an iron-dependent pro-
cess [6]. Likewise, the latest type of cell death, known 
as copper death, ensues from the buildup of copper in 
mitochondria, which triggers the aggregation of lipidated 
TCA cycle enzymes through direct copper binding [7].

Numerous types of programmed cell death contribute 
to the pathogenesis of sepsis. Lymphocyte death in sepsis 
is primarily mediated through apoptosis, which involves 
both death receptor and mitochondrial pathways and is 
activated by various stimuli across different lymphocyte 
subsets. The death of neutrophils, especially through 
NETosis, has been linked to the progression of multiple 

organ failure in septic patients [8–10]. In a recent study 
conducted by Abrams et al., it was reported that strong 
formation of NETs is primarily observed in cases of 
severe sepsis, and it is linked to disseminated intra-
vascular coagulation (DIC), which can lead to adverse 
outcomes [11]. Pyroptosis has been shown to have a sig-
nificant role in the imbalance of hemostasis and “immu-
nothrombosis” in sepsis, participating in the regulation 
of transcription factor (TF) release and activity in mac-
rophages and endothelial cells [12]. During respiratory 
infections, Pseudomonas aeruginosa manipulates host 
polyunsaturated phosphatidylethanolamine to trigger 
ferroptosis in bronchial epithelium, facilitating bacte-
rial penetration [13]. Early on in the immune response, 
macrophages experience a surge in iron and lipid per-
oxidation, and ferroptosis inducers such as RSL3, salazo-
sulfapyridine, and acetaminophen enhance macrophage 
bactericidal activity [14]. In sepsis, ferroptosis acts as a 
double-edged sword, promoting bacterial invasion and 
sepsis induction while also causing immune cell death 
and decreased immune function. Nonetheless, it can also 
aid immune cells in eliminating pathogens.

Utilizing bioinformatics analysis and machine learning 
methods aids in comprehending the fundamental pro-
cesses of neonatal sepsis by examining gene expression 
datasets. However, there is a scarcity of in-depth func-
tional research on PCD in neonatal sepsis. As a result, 
this study focused on creating a predictive model with 
high diagnostic accuracy employing PCD-associated 
genes, and aimed to identify potential therapeutic targets 
for neonatal sepsis management.

Materials and methods
Neonatal sepsis datasets and data process
Gene expression data from peripheral blood samples 
of neonatal sepsis patients were acquired through 
RNA sequencing and retrieved from the Gene Expres-
sion Omnibus (GEO) database. The study involved the 
analysis of two distinct datasets, namely GSE69686 and 
GSE25504, to investigate neonatal sepsis. The diagnosis 
of neonatal sepsis is challenging and, to this day, neither 
a single over-arching definition of neonatal sepsis nor any 
unified diagnostic criteria exist. Positive blood culture 
remains the gold standard for defining newborn sepsis. 
We reviewed the records in the original dataset, and the 

analysis revealed notable disparities in patients diagnosed with neonatal sepsis. Furthermore, based on the identified 
marker genes, the ceRNA network revealed an intricate regulatory interplay.

Conclusion In our investigation, we methodically identified six marker genes (AP3B2, STAT3, TSPO, S100A9, GNS, and 
CX3CR1). An effective diagnostic prediction model emerged from an exhaustive analysis within the training group 
(AUC 0.930, 95%CI 0.887–0.965) and the validation group (AUC 0.977, 95%CI 0.935-1.000).

Keywords Neonatal sepsis, Machine learning, Diagnosis, Programmed cell death, Immune infiltration
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inclusion criteria for neonatal sepsis are as follows: (a) 
persistently abnormal clinical examination (at least 2 d 
of clinical signs), (b) positive culture results (blood) and 
(c) presence of abnormal laboratory studies supporting 
systemic inflammation (C-reactive protein [CRP] within 
48 h of evaluation > 45 mg/L). Infants with negative cul-
tures but persistently abnormal exams and systemic 
inflammation were classified as having clinical sepsis. 
There were 64 neonatal sepsis and 85 control samples 
in the GSE69686 dataset, whereas the GSE25504 data-
set included 170 samples from four different platforms, 
namely GPL570, GPL6947, GPL13667, and GPL15158. 
GSE69686 was selected for the primary analysis based on 
sample size and sequencing platforms, while GSE25504 
(GPL6947 platform) was employed as the validation data-
set, comprising 26 neonatal sepsis and 37 control sam-
ples. Baseline characteristics of the patients of GSE25504 
(GPL6947 platform) are shown in Table S1. PCD-related 
genes were sourced from various locations, including the 
GSEA gene set, KEGG, and pertinent literature, result-
ing in a total of 1,257 associated genes [5, 15–17]. These 
genes were organized based on different types (Table S2), 
and the specific workflow was depicted (Fig. 1).

Identifying DEGs between neonatal sepsis and 
control samples
Limma, a widely used R package, employs a generalized 
linear model-based methodology to detect genes with 
significant differences in expression, known as differ-
entially expressed genes (DEGs). By applying the limma 
package (version 3.56.2) in R 4.2.1, DEGs between neo-
natal sepsis and control samples were determined. In this 
research, a P-value < 0.05 and |logFC| > 0.5 were cho-
sen as the criteria for recognizing DEGs. Heatmaps and 

volcano plots of DEGs in neonatal sepsis were then gen-
erated for visualization.

Gene function enrichment analysis
The shared genes were identified by intersecting the 
DEGs acquired from the analysis of neonatal sepsis and 
control samples with PCD-related genes. The R package 
“clusterProfiler” (version 4.8.3) was employed to conduct 
Gene Ontology (GO) enrichment and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analyses. 
The statistical significance of GO terms and KEGG path-
ways was evaluated by considering the adjusted P-value 
below 0.05.

Identification of candidate diagnostic biomarkers
To identify potential diagnostic biomarkers for neonatal 
sepsis, we employed three advanced machine learning 
techniques: the least absolute shrinkage and selection 
operator (LASSO) [18], support vector machine-recur-
sive feature elimination (SVM-RFE) [19], and random 
forest (RF) [20]. Finally, the genes that were identified 
as potential gene biomarkers by all three classification 
models were selected for further investigation. We used 
a 10-fold cross-validation was employed to evaluate the 
models.

Construction of protein-protein interaction networks (PPI)
The PPI was built using the user-friendly GeneMANIA 
website, which facilitates the generation of gene function 
hypotheses, the analysis of gene lists, and the determina-
tion of gene priorities when conducting functional analy-
sis [21].

Fig. 1 Flow chart
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Diagnostic model validation
ROC analysis was carried out using the pROC package 
(version 1.18.4) in R to determine the AUC. The signa-
ture genes’ expression was examined in both the training 
(GSE69686) and testing groups (GSE25504-GPL6947). 
Moreover, the R software’s neuralnet (version 1.44.2) 
was employed to create an artificial neural network using 
the obtained characteristic genes, establishing a highly 
accurate diagnostic model. Furthermore, the “Consen-
susClusterPlus” package (version 1.64.0) was utilized for 
assessing the prediction effect.

Nomogram model construction
In order to forecast the likelihood of neonatal sepsis, a 
diagnostic nomogram model was developed using the 
rms package (version 6.7), where the “Points” indicate the 
scores assigned to the relevant factor. Following that, the 
performance of the nomogram model in terms of predic-
tion was evaluated through a calibration curve. Lastly, 
the model’s practical applicability was evaluated through 
decision curve analysis (DCA).

Immune infiltration analysis
CIBERSORT is a computational technique for establish-
ing the proportions of immune cells in neonatal sepsis 
and control samples to recognize varying immune cell 
proportions [22]. Immune cell infiltration analysis was 
conducted using the “Cibersort” R software package (ver-
sion 1.04). Bar graphs were employed to visualize the per-
centage of each immune cell type across various samples. 
We visualized the comparison of distinct immune cell 
types between neonatal sepsis and control samples using 
vioplot. Additionally, we generated heatmaps showcasing 
the correlation of 22 infiltrating immune cells using the 
“corrplot” R package.

GSEA
To explore the biological relevance of signature genes 
functionally, GSEA was executed in various subgroups 
[23]. KEGG gene sets were selected as the gene set data-
base [24–26]. We used normalized enrichment score 
(NES) and false discovery rate (FDR) to assess the statis-
tical significance of differences. The cut-off values for sig-
nificance were set at FDR < 0.25, P < 0.05, and |NES| > 1.

Construction of ceRNA network
Utilizing the starBase database, mRNA-miRNA inter-
action pairs were predicted [27]. Simultaneously, we 
obtained RNA sequences of marker genes. Using miranda 
software, we predicted nucleic acid binding between 
mRNA and miRNA. Subsequently, we utilized starBase 
to predict miRNA interactions and filtered the miRNA-
lncRNA pairs to establish a comprehensive ceRNA net-
work that includes mRNA-miRNA-lncRNA interactions.

Statistical analysis
The statistical analysis was performed with the aid of R 
software (version 4.2.1). For comparison of groups, the 
Wilcoxon test was employed, with a P-value < 0.05 con-
sidered to be indicative of statistical significance. All the 
statistical tests we conducted were two-sided.

Results
Screening of DEGs in neonatal sepsis
We analyzed DEGs between neonatal sepsis and control 
samples in GSE69686 and visualized the results with a 
volcano plot (Fig. 2A). We detected 475 DEGs, of which 
103 were upregulated and 372 were downregulated 
(Table S3) The heatmap displayed the top 50 dysregu-
lated DEGs between neonatal sepsis and control samples 
(Figure S1). By cross-referencing the 475 DEGs with 1257 
PCD-related genes, we found 49 common genes using a 
Venn diagram (Fig. 2B).

Functional enrichment analysis of shared genes between 
DEGs and PCD-related genes
The functional enrichment analysis of the 49 common 
genes between DEGs and PCD-related genes was car-
ried out. KEGG analysis showed that the main pathways 
enriched by these genes were “lipid and atherosclerosis,” 
“neutrophil extracellular trap formation,” and “T cell 
receptor signaling pathway” (Fig.  2C). Regarding cel-
lular components (CC), GO analysis indicated that the 
shared genes were primarily located in the “external side 
of plasma membrane,” “secretory granule lumen,” and 
“cytoplasmic vesicle lumen.” The key biological processes 
(BP) involving these genes were “positive regulation of 
cytokine production,” “intrinsic apoptotic signaling path-
way,” and “regulation of autophagy.” Molecular function 
(MF) analysis demonstrated that the shared genes were 
mainly involved in “protein heterodimerization activity,” 
“peptidase activator activity,” and “phosphatase binding” 
(Fig. 2D).

Identification of potential marker genes by machine 
learning
To further analyze the aforementioned 49 genes, they 
were input into LASSO, SVM-RFE, and RF algorithms. 
The LASSO algorithm identified 15 genes (Fig.  3B, 
C), while SVM-RFE selected the top 13 genes with an 
accuracy of 0.852 (Fig.  3A) and an error rate of 0.148 
(Fig. 3A). The RF algorithm produced 49 genes, and the 
top 20 in importance were chosen as the resulting genes 
(Fig. 3D, E). A Venn diagram was used to find the inter-
section of the three algorithms, and the intersecting 
genes were considered potential marker genes (Fig. 3F), 
resulting in a total of six genes (AP3B2, STAT3, TSPO, 
S100A9, GNS, CX3CR1). We also employed the VIF and 
tolerance metrics to evaluate multicollinearity. All the 
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Fig. 3 Screening potential marker genes for neonatal sepsis. (A) 13 diagnostic marker genes were screened by the SVM-RFE algorithm. (B,C) 15 diag-
nostic marker genes were screened by the LASSO regression algorithm. (D,E ) 20 diagnostic marker genes were screened by the RF algorithm. (F) Venn 
diagram of marker genes screened by LASSO, SVM-RFE and RF algorithms. (G) Correlation between the six maker genes in neonatal sepsis samples

 

Fig. 2 Gene expression characteristics of neonatal sepsis. (A) DEGs in GSE69686 between neonatal sepsis and control samples were visualized by vioplot. 
(B) Intersection of DEGs and PCD-related genes. (C) GO pathway enrichment analysis. (D) KEGG pathway enrichment analysis
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calculated VIF values are below the threshold of 10, and 
most are well below 5, further confirming the absence 
of significant multicollinearity among our chosen vari-
ables (Table  S4,Figure S2. GeneMANIA was employed 
to predict functionally similar genes for these potential 
marker genes. In Figure S3, the potential marker genes 
were positioned in the inner circle, while the predicted 
genes were located in the outer circle. The functional cat-
egories were primarily focused on long-chain fatty acid 
binding, positive regulation of DNA-binding transcrip-
tion factor activity, and cellular response to interleukin-6. 
The chromosomal positions of the six marker genes were 
visualized in Figure S4. By correlation analysis, we found 
a strong correlation between these six marker genes 
(Fig. 3G).

Validation of diagnostic model
The six potential marker genes were assessed for their 
diagnostic value by creating ROC curves for each gene 

individually and for all six genes combined, with an AUC 
of 0.930 (95%CI 0.887–0.965) (Fig. 4A, B). The diagnos-
tic model was then validated in the GSE25504-GPL6947 
validation group and showed excellent diagnostic sig-
nificance with an AUC of 0.977 (95%CI 0.935-1.000) 
(Fig.  4D), with respective AUC values for each gene 
shown in Fig. 4C. Neural networks were also constructed 
using the six potential marker genes, which showed that 
neonatal sepsis samples could be distinguished from 
control samples with an accuracy of 79.7% in the train-
ing group (Fig. 4E, G) and 100% in the validation group 
(Fig.  4F, H). Consensus clustering analysis of the six 
PCD-related gene models was conducted, and the results 
showed that neonatal sepsis samples could be distin-
guished from control samples when k = 2 (Fig. 4I, J).

Fig. 4 Analysis of the diagnostic value of marker genes. (A) ROC curve for each marker genes in training group. (B) ROC curve for diagnostic model in 
training group. (C) ROC curve for each marker genes in testing group. (D) ROC curve for diagnostic model in testing group. (E, G) Validation of the artifi-
cial neural network of the training group. (F,H ) Validation of the artificial neural network of the testing group. (I, J) consensus clustering analysis of the 
diagnostic model
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A nomogram model constructed and assessed for 
diagnosing neonatal sepsis
We employed the rms package in R to develop a nomo-
gram model for diagnosing neonatal sepsis using six 
PCD-related genes (AP3B2, STAT3, TSPO, S100A9, GNS, 
CX3CR1) (Fig. 5A, Table S5. The model was constructed 
through multivariable logistic regression analysis. The 
nomogram model’s ability to predict the occurrence of 
neonatal sepsis was evaluated using a calibration curve, 
which revealed a negligible discrepancy between the pre-
dicted and actual incidence rates (Fig. 5B). The decision 
curve analysis (DCA) demonstrated the model’s poten-
tial clinical usefulness, suggesting that patients with 
neonatal sepsis could benefit from the model (Fig.  5C). 

Additionally, the clinical impact curve indicated that the 
model’s predictive ability was significant (Fig. 5D).

The landscape of immune infiltration
To examine differences in immune cell composi-
tion between neonatal sepsis and control samples, we 
employed the CIBERSORT algorithm. The infiltration of 
22 distinct immune cell subpopulations was evaluated, 
and the abundance ratios of these cells in the 149 samples 
were depicted in Fig. 6A. Additionally, the interaction of 
innate immune cells was illustrated in Fig. 6B. Compared 
to control samples, neonatal sepsis samples had a greater 
proportion of Tregs, macrophages M0, and neutrophils, 
while showing lower proportions of T cells CD8, T cells 

Fig. 5 Validation and assessment of a nomogram model for neonatal sepsis diagnosis. (A) Nomogram model. (B) Calibration curve to assess the predic-
tive value. (C) DCA curve to evaluate the clinical value. (D) Clinical impact of the nomogram model as assessed by the clinical impact curve
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CD4 naive, T cells CD4 memory resting, and activated 
NK cells (Fig. 6C).

Analysis of potential marker genes and immune infiltration
Upon examining the relationship between potential 
marker genes and immune cells, it was observed that the 
expression of AP3B2, GNS, S100A9, STAT3, and TSPO 
was positively correlated with neutrophils, macrophage 
M0, and T cells regulatory (Tregs). On the other hand, 
CX3CR1 was found to be positively correlated with 
monocytes, T cells CD4 memory resting, and B cells 
memory (Fig. 7A-E).

GSEA analysis of potential marker genes
The six potential marker genes (AP3B2, STAT3, TSPO, 
S100A9, GNS, CX3CR1) were subjected to GSEA analy-
sis to investigate their activities and pathways. The highly 
expressed genes (AP3B2, STAT3, TSPO, S100A9, and 

GNS) were primarily enriched in “fatty acid biosynthesis”, 
“glycosaminoglycan degradation”, “legionellosis”, “neutro-
phil extracellular trap formation”, “lysosome”, “homolo-
gous recombination”, “mismatch repair”, “ferroptosis”, 
and “leishmaniasis”. In addition, samples with low expres-
sion of CX3CR1 were mainly enriched in “fatty acid bio-
synthesis”, “maturity onset diabetes of the young”, and 
“mitophagy” (Fig. 8A-E). These results suggest that these 
genes are involved in various biological functions that 
may contribute to the progression of neonatal sepsis.

A ceRNA networks based on marker genes
We constructed a ceRNA network by utilizing the star-
Base and miranda databases, which was centered on 
six marker genes. The network consisted of 282 nodes 
including 6 marker genes, 142 lncRNAs, and 134 miR-
NAs, with 311 edges (Fig.  9). Further analysis revealed 
that 18 lncRNAs could bind competitively to 4 miRNAs 

Fig. 6 The landscape of immune infiltration between neonatal sepsis and control samples. (A) The boxplot diagram indicating the abundance ratio of 
immune cells neonatal sepsis and control samples. (B) The difference in immune infiltrating between neonatal sepsis and control samples. (C) The cor-
heatmap shows the relationship between the abundance ratios of immune cells
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Fig. 7 The association between the marker genes and the infiltrating immune cells level. (A) AP3B2. (B) CX3CR1. (C) GNS. (D) S100A9. (E) STAT3. (F) TSPO
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Fig. 8 Single-gene GSEA-KEGG pathway analysis of marker genes. (A) AP3B2. (B) CX3CR1. (C) GNS. (D) S100A9. (E) STAT3. (F) TSPO 
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to regulate CX3CR1. Additionally, 50 lncRNAs could reg-
ulate the expression of GNS through competitive bind-
ing with 13 miRNAs. Moreover, in the ceRNA network 
of S100A9, we identified 5 lncRNAs that could combine 
with 4 miRNAs to regulate the gene. Lastly, 83 lncRNAs 
were found to be competitively bound with 14 miRNAs 
to affect the expression of STAT3.

Discussion
Neonatal sepsis is a critical medical condition that can 
cause disruptions in microcirculation, immune func-
tion, and tissue and organ activity, leading to an increas-
ing number of neonatal deaths worldwide. Thus, the 
diagnosis of neonatal sepsis and the prevention of its 
related complications and mortality is a major concern 
in global health. To address this issue, extensive research 

Fig. 9 A ceRNA networks based on marker genes. The network included 311 nodes (6 marker genes, 134 miRNAs and 142 lncRNAs)
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has been conducted to identify biomarkers and facilitate 
early intervention to minimize the risk of death. Neona-
tal sepsis can display an elevated inflammatory response 
pattern followed by an immunosuppressive phase, lead-
ing to multiple organ dysfunction. The identification of a 
single or group of biomarkers can be crucial in predict-
ing, detecting and treating neonatal sepsis.

Recently, the use of machine learning techniques and 
public gene expression data have opened up new ave-
nues for discovering biomarkers for disease detection. 
Our study focused on utilizing bioinformatics analy-
sis and machine learning to investigate neonatal sepsis 
by analyzing two datasets from the GEO database. Our 
approach allowed us to identify different predictors com-
pared to previous studies. Employing various algorithms 
to identify critical genes or biomarkers is an emerging 
trend, and we anticipate that it holds significant potential 
[28, 29]. Nevertheless, detecting prognostic indicators for 
disease outcomes in blood remains a challenging task, 
and additional laboratory and clinical investigations are 
necessary to validate our findings.

In this study, a set of six potential marker genes 
(AP3B2, STAT3, TSPO, S100A9, GNS, CX3CR1) associ-
ated with PCD were identified using LASSO, SVM-RFE, 
and RF algorithms. The CIBERSORT algorithm was 
employed to explore the immune microenvironment in 
neonatal sepsis and quantify the proportions of immune 
cells. The relationship between the marker genes and 
other immunomodulators was also examined. GSEA was 
used to identify the expression profiles of the six marker 
genes. Finally, a nomogram based on the six PCD-related 
marker genes was constructed, which demonstrated good 
predictive performance.

AP3B2 is a gene that encodes a subunit of the Adap-
tor Protein Complex 3 (AP-3) complex. The main role of 
the AP-3 complex is to mediate the formation of clath-
rin-coated vesicles in intracellular trafficking pathways 
and to sort and transport membrane proteins within 
the endosomal-lysosomal system. The AP-3 complex 
is composed of four subunits, including delta, beta-2, 
mu-3, and sigma-3 [30]. Mutations in the AP3B2 gene 
have been linked to various neurological disorders, such 
as seizures, intellectual disability, and neurodevelop-
mental abnormalities [31]. Recent research has focused 
on understanding the molecular and cellular functions 
of AP3B2, as well as its involvement in different cellu-
lar processes and pathological conditions. Studies have 
shown that AP3B2 plays a crucial role in the regulation of 
synaptic vesicle trafficking in neurons, which is essential 
for proper nervous system function [32]. Despite ongoing 
research on AP3B2, further investigations are necessary 
to understand its specific functions and involvement in 
different pathological conditions.

The STAT family is a cohort of transcription factors 
that possess the capability to bind to DNA, leading to 
the activation of specific signal transduction pathways 
and controlling gene expression. Thus, they play a vital 
role in cellular functions such as proliferation, differen-
tiation, migration, maturation, and apoptosis. Recent 
research has emphasized the crucial role of STAT3 in 
sepsis pathophysiology [33, 34]. While decreasing STAT3 
activity can mitigate organ inflammatory responses in 
LPS-induced sepsis models, conditional knockout of the 
STAT3 gene in macrophages and neutrophils in mice 
leads to an overabundance of systemic inflammation and 
heightened mortality rates, underscoring the critical role 
of STAT3 in the pathogenesis of sepsis [35].

TSPO is abundantly expressed in different tissues, 
including immune cells like macrophages and microg-
lia, as well as steroidogenic tissues. TSPO is involved in 
several cellular processes such as cholesterol transport, 
steroidogenesis, porphyrin transport, regulation of mito-
chondrial respiration, apoptosis, and immune response 
modulation [36, 37]. Due to its role in immune response, 
TSPO has been of great interest as a potential therapeutic 
target in inflammatory conditions such as sepsis. During 
inflammation, TSPO expression is upregulated in acti-
vated immune cells, which contributes to the produc-
tion of pro-inflammatory cytokines, ROS, and NO that 
play a significant role in the pathogenesis of sepsis [38]. 
Recently, studies have shown that TSPO ligands have the 
potential to modulate the immune response by reducing 
the production of pro-inflammatory mediators, promot-
ing inflammation resolution, and exerting neuroprotec-
tive effects [39].

S100A9 belongs to a family of calcium-binding pro-
teins known as the S100 protein family. It is encoded by 
the S100A9 gene and is primarily expressed in neutro-
phils and monocytes. S100A9 can form a heterodimer 
with another S100 family member, S100A8, which is also 
known as calgranulin A or MRP-8 [40]. The S100A8/
S100A9 heterodimer, also known as calprotectin, has a 
variety of biological functions, including roles in inflam-
mation, immune response, and regulation of cell prolif-
eration and differentiation [41]. S100A9 is involved in the 
activation and migration of immune cells and modula-
tion of inflammatory responses by interacting with cellu-
lar receptors such as TLR4 and RAGE [42]. S100A9 has 
been proposed as a potential biomarker and therapeutic 
target due to its involvement in sepsis. Gao et al. inves-
tigated the potential of the S100A8/S100A9 heterodimer 
as a biomarker for early diagnosis and prognosis of sep-
sis, and their results suggest that it may have clinical util-
ity in this regard [43].

The GNS gene, which codes for the enzyme N-acetyl-
glucosamine-6-sulfatase, plays a crucial role in lysosomal 
degradation of glycosaminoglycans (GAGs) like heparan 
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sulfate and keratan sulfate. Specifically, GNS catalyzes 
the hydrolysis of the 6-sulfate groups of the N-acetylglu-
cosamine residues present in these complex sugar chains. 
Although uncommon, abnormalities in the GNS gene 
can result in a rare condition known as lysosomal storage 
disorder. Sanfilippo syndrome type D or mucopolysac-
charidosis IIID (MPS IIID), characterized by the accu-
mulation of GAGs in cells [44]. This results in progressive 
neurological and systemic symptoms such as develop-
mental delay, behavioral issues, and physical abnormali-
ties. Although there is limited information available on 
the association between GNS and sepsis in the literature.

CX3CR1 is a gene that encodes the fractalkine recep-
tor, a chemokine receptor mainly found on the surface 
of monocytes, macrophages, dendritic cells, certain T 
cells and natural killer (NK) cells. The main ligand for 
CX3CR1 is fractalkine (CX3CL1), a unique chemokine 
that exists in both soluble and membrane-bound forms. 
The interaction between CX3CL1 and CX3CR1 is crucial 
for leukocyte adhesion, activation, and migration, as well 
as the regulation of immune cell trafficking during both 
inflammation and homeostasis [45, 46]. CX3CR1 is a crit-
ical component in regulating the host immune response 
and the progression of organ dysfunction. Current 
research suggests that decreased CX3CR1 expression on 
circulating monocytes may represent a novel feature of 
immunosuppression caused by sepsis [47]. Additionally, 
TLR4-dependent internalization of CX3CR1 may exacer-
bate sepsis-induced immunoparalysis [48].

We conducted an analysis to investigate the correlation 
between the expression of marker genes associated with 
programmed cell death (PCD) and the infiltration of vari-
ous immune cell types. Through GSEA analysis, we found 
that these marker genes were mainly involved in biologi-
cal processes related to fatty acid biosynthesis, galactose 
metabolism, legionellosis, neutrophil extracellular trap 
formation, and leishmaniasis. These biological processes 
are believed to play a significant role in the progression of 
neonatal sepsis.

The marker genes identified in our study have poten-
tial applications in early diagnosis and prognostication of 
the disease. Early detection using these markers can aid 
in timely therapeutic intervention, possibly reducing the 
morbidity and mortality associated with late diagnosis. 
Furthermore, these markers can be used in tandem with 
existing diagnostic methods to enhance accuracy and 
reduce false-positive rates. The identified biomarkers can 
be utilized in: Rapid diagnostic tests for early detection; 
Stratifying patients based on the severity of the disease; 
Monitoring the efficacy of therapeutic interventions by 
tracking the expression levels of these markers. The iden-
tification of specific biomarkers for sepsis via our model 
can pave the way for more targeted interventions. While 
initial costs associated with gene expression analysis 

might be higher than conventional methods, the down-
stream benefits in terms of quicker diagnosis, precise 
treatment modalities, and potentially reduced hospital-
ization durations could be more cost-effective in the long 
run. Moreover, a reduction in the empirical use of broad-
spectrum antibiotics could potentially mitigate antibiotic 
resistance, an escalating concern in modern medicine. 
We envision our model not as a replacement but as a 
complementary tool alongside blood cultures. While our 
model offers rapid insights, blood cultures remain invalu-
able for their definitive evidence of bacterial presence 
and for guiding antibiotic choices based on sensitivities. 
But there are still possible drawbacks or difficulties: (a) 
While the AUC values are high, it’s essential to consider 
the sensitivity and specificity in diverse patient popula-
tions. (b) There might be a need for specialized equip-
ment or training to detect and quantify these markers. 
(c) Cost implications associated with introducing a new 
diagnostic tool. (d) Interpatient variability and the influ-
ence of comorbidities on the expression of these markers.

In the future work, a: One immediate strategy would 
be to expand model validation to datasets from various 
geographical regions and different demographics. This 
would account for genetic, lifestyle, and environmental 
variabilities that may impact neonatal sepsis outcomes; 
b: Collaborating with clinical institutions will be pivotal. 
Through such collaborations, we can acquire real-time 
patient data, which would help in refining and validat-
ing our model in near-real-world conditions. c: Exploring 
the integration of other relevant data types (like imaging 
or clinical notes) with gene expression data can enhance 
the model’s accuracy and robustness. d: Partnering with 
medical economy experts to perform in-depth cost-
benefit analyses will provide a clearer understanding of 
the economic implications of implementing our model. 
e: Before full-scale clinical deployment, introducing the 
model to a small group of clinicians for feedback can be 
invaluable. This will also help in identifying any training 
needs for the broader medical community.

Limitation
Dataset limitation: Our initial model development 
relied on datasets available from the GEO database. The 
absence of larger and more diverse datasets in this data-
base has constrained the generalizability of our findings.
Future validation challenges: We aspire to validate our 
model using a broader clinical sample. However, the 
collection of such samples involves a complex, time-
intensive process requiring ethical clearances, making it 
challenging to incorporate within the timeframe of this 
current study.
Cost-effectiveness and clinical value: We acknowledge 
the criticality of assessing the cost-effectiveness and 
clinical value of our model. A comprehensive evaluation, 
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especially when it entails collaboration with experts in 
medical economics, is intricate and yet to be conducted.
Collaborative implications: Pursuing a comprehensive 
cost-effectiveness analysis and understanding the model’s 
true clinical value may require interdisciplinary collabo-
rations. This could introduce additional complexities to 
our research.
In vivo and in vitro validation: Our findings also 
necessitate validation through both in vivo and in vitro 
experiments.

Conclusions
In summary, our study has identified six PCD-related 
genes in neonatal sepsis and proposed a model for assess-
ing this condition. Using bioinformatics techniques, 
we conducted an analysis to examine the correlation 
between the identified marker genes and the infiltration 
of immune cells. Additionally, we explored the relation-
ships between different subpopulations of immune cells. 
GSEA analysis provided additional insights into the 
underlying mechanisms. These identified genes have the 
potential to serve as predictive markers and therapeutic 
targets for neonatal sepsis, although further research is 
necessary to fully elucidate the mechanisms underlying 
PCD-related genes and the immune microenvironment 
involved in neonatal sepsis.
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