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Abstract 

Objectives To develop a prediction model of mortality in pediatric trauma-based injuries. Our secondary objective 
was to transform this model into a translational tool for clinical use.

Study design A retrospective cohort study of children ≤ 18 years was derived from the National Trauma Data Bank 
between the years of 2007 to 2015. The goal was to identify clinical or physiologic variables that would serve as pre-
dictors for pediatric death. Data was split into a development cohort (80%) to build the model and then tested 
in an internal validation cohort (20%) and a temporal cohort. The area under the receiver operating characteristic 
curve (AUC) was assessed for the new model.

Results In 693,192 children, the mortality rate was 1.4% (n = 9,785). Most subjects were male (67%), White (65%), 
and incurred an unintentional injury (92%). The proposed model had an AUC of 96.4% (95% CI: 95.9%-96.9%). In 
contrast, the Injury Severity Score yielded an AUC of 92.9% (95% CI: 92.2%-93.6%), while the Revised Trauma Score 
resulted in an AUC of 95.0% (95% CI: 94.4%-95.6%).

Conclusion The TRAGIC + Model (Temperature, Race, Age, GCS, Injury Type, Cardiac-systolic blood pressure + Mecha-
nism of Injury and Sex) is a new pediatric mortality prediction model that leverages variables easily obtained 
upon trauma admission.

Keywords Pediatric mortality, Trauma prediction, TRAGIC+ Model

Introduction
Despite medical advances, trauma continues to be the 
leading cause of mortality and acquired disability in chil-
dren. In 2015 alone, there were more than 11,000 deaths 
and over 8 million nonfatal injuries caused by trauma to 
children between the ages of 1 and 19 [1]. Of children 

who die from traumatic injuries, most die within the first 
24 h upon hospital arrival [2]. Therefore, due to its high 
prevalence, up-to-date information regarding pediatric 
trauma is continuously being produced and brought to 
the attention of clinicians. For instance, current literature 
regarding trauma-related pediatric injury shows that fire-
arm injuries account for more than 25% of all uninten-
tional deaths among children. More alarming, this rate 
now puts firearm injuries as the number one cause of 
death for children in the United States, surpassing motor 
vehicle accidents [3, 4].

Several prediction models for pediatric mortality out-
comes have been developed and can assist in decision 
making [5–9]. Some of these scoring systems are for 
triage prior to hospital admission, while others assess 
injury severity or mortality outcomes in manners that are 
complex, performed retrospectively, or time-consuming 
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[5]. The Injury Severity Score (ISS) is a commonly used 
trauma scoring system that has been validated in the 
pediatric population. Although the ISS associates well 
with trauma-related mortality, it does have some set-
backs. For instance, it requires specialized training and 
can only be done for research purposes as the calculation 
is performed retrospectively [6]. The Revised Trauma 
Score (RTS) is another example of a well-established and 
widely used injury scoring system. This tool leverages 
respiratory rate, Glasgow Coma Scale (GCS), and sys-
tolic blood pressure into consideration, but fails to take 
into account any non-physiologic variables that may also 
be central in determining survival. Finally, the pediatric 
trauma ‘BIG’ score uses base deficit, International Nor-
malized Ratio (INR), and GCS as predictive variables. 
Despite the novelty, it was developed in a small military 
population which puts into question the generalizabil-
ity of the model, as most patients succumbed to a blast 
injury [9–11]. More importantly, many of these predic-
tion models were built before guidelines for methodo-
logic rigor were established, (e.g. TRIPOD statement).

The purpose of this study was to create a pragmatic 
mortality prediction model for children treated in a U.S. 
trauma center. We included all-cause trauma-related 
injuries and relied on using readily available clinical/
physiologic variables. Such a prediction model would 
quickly provide impactful information to clinicians who 
can better make treatment decisions and more accu-
rately inform patients’ families. Our secondary objective 
was to transform this prediction model into a web-based 
dynamic nomogram that can quantify mortality risk.

Methods
Data source
This is retrospective cohort study of patient data derived 
from the National Trauma Data Bank (NTDB) from 2007 
to 2015. The NTDB is a nationally representative sam-
ple of individuals cared for in > 900 trauma centers in the 
United States.

Details regarding the NTDB can be viewed at the 
“About Trauma” subsection of the NTDB website [12]. 
Data regarding the classification of predictors used in 
this study per the NTDB can be viewed on the NTDB’s 
data dictionary [13]. This study adhered to the guide-
lines set by the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) [14] (Supplementary File 1).The 
data is de-identified and therefore did not require institu-
tional review board approval.

Patient cohort and objectives
We selected all children (≤ 18  years) presenting to 
any trauma center irrespective of injury. We excluded 

patients that did not have information pertaining to ED 
or hospital disposition or who had missing age. Chil-
dren who died prior to ED arrival were not included. 
The primary outcome was death within the ED or during 
hospitalization.

Our objective was to identify variables that could serve 
as early markers of death in children with a traumatic 
injury. As such, the predictors included patient age, gender, 
race, Glasgow coma scale (GCS), mechanism of injury, and 
physiologic data on arrival to the ED. Categories for mech-
anisms of injury and intent in our analysis were based on 
the standard nomenclature used by the National Trauma 
Bank (NTDB). The only mechanisms of injury that had 
to be altered were ‘Hot object/substance’ and ‘Transport, 
other’. These were added to ‘Other specified and classifi-
able’ as there were so few of these mechanisms in the data-
set. The complete list can be seen in Supplementary Files 
2a, b, 3a and b. All physiologic data was obtained at the 
time of arrival to the emergency department.

Predictive mean matching and simple bootstrapping 
methods were used to impute missing data [15]. Respec-
tively, Supplementary File 2a and b represent the imputed 
and non-imputed study characteristics by death, respec-
tively while Supplementary Files 3a and b represent the 
imputed and non-imputed study characteristics by race, 
respectively. Supplementary File 4 provides specifics 
regarding percent of missing data and a comparison of 
missing data versus imputed data.

Development and internal validation cohort (2007–2014)
Individuals were randomly split into a training set (80%) 
and a test set (20%). In this way, we could evaluate the 
predictive ability of the new model in a new set of data to 
confirm validity. Figure 1 illustrates the study flow chart.

Temporal validation cohort (2015)
All pediatric patients from the year 2015 served as the 
temporal validation. Reasoning to have this year as a sec-
ond validation cohort was to determine whether predic-
tors from over a decade ago still had clinical relevance in 
a newer cohort of patients that more closely resembled 
the rapidly evolving trauma management.

Statistical analysis
Descriptive statistics were tabulated according to sur-
vivors and non-survivors. Continuous variables were 
presented as median with interquartile range (IQR) and 
analyzed by Wilcoxon rank-sum test. Categorical data 
were reported as a number with percent and analyzed by 
the Chi-square test. A p value < 5% denoted statistical sig-
nificance. All analyses were performed with R statistical 
software version 4.1.0.
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Variables found to be significant on univariate analy-
sis were included in a multivariable backward stepwise 
logistic regression model with a 0.10 revised threshold of 
test. Variable inflation factors < 4 were kept in the model 
to minimize collinearity. In the test sets (e.g. internal vali-
dation cohort and temporal 2015 cohort), we measured 
the predictive performance of our model by computing 
the area under the receiver operating characteristic curve 
(ROC) and Youden’s index to identify the optimal sen-
sitivity and specificity [16]. The ROC of the new model 
was statistically compared to the ROC of the RTS and 
ISS using DeLong’s test [17]. The numeric value of the 
ISS was reported in the NTDB and was used without any 
changes to calculate the predictive ability. To create the 
RTS model, we used the following equation:

As recommended by the TRIPOD statement, calibra-
tion curves were conducted in the test set to assess the 
accuracy between estimated and observed number of 
outcome events for the prediction model [18]. To con-
clude, we translated our prediction model into a dynamic 
nomogram. This web-based application improves the 
translation of our work into an interactive, user-friendly 
graphical interface built in RShiny [19].

Results
Patient characteristics
Table  1 summarizes the overall study cohort of 693,192 
pediatric patients. The majority of the subjects were male 

RTS = (0.9368∗GCS Value)+(0.7326∗ systolic blood pressure)+(0.2908∗ respiratory rate).

(67%), White (66%), and had an unintentional injury 
(93%). The median age for our subjects was 12 years old 
[IQR, 6,16] with a median GCS of 15 [IQR, 3,15]. The 
overall mortality rate was 1.4% (n = 9,785). Compared to 
survivors, children who died were older, had a lower GCS 
and systolic blood pressure, and were more likely to be a 
victim of an assault secondary to firearm injury. Mecha-
nisms of injury with the highest mortality rates were fire-
arm (16%), and motor vehicle trauma of occupant (45%), 
and cut/pierce (1.7%). Other overall study population 
characteristics can be seen in Supplementary Files 2a, b, 
3a, and b.

The temporal data included 85,905 children and can 
be seen in Supplementary File  5a and b. Children who 
died had a higher ISS (29 vs. 5), lower GCS (3 vs. 15), and 

more likely to have had a firearm injury (11% vs. 2.2%). 
Children had a median age of 15 compared to 11 in the 
non-survivors versus survivors, respectively. The median 
RTS was 5.76 [IQR 4.89, 5.76] in non-survivors com-
pared to survivors who had a median value of 9.52 [IQR 
9.52,9.52]. Supplementary File 5a shows the temporal 
data according to race and Supplementary File 5b shows 
the temporal data according to death.

Figure  2a shows the top mechanisms of death by age, 
with motor vehicle collisions being the top cause of death 
in all ages followed by falls, penetrative injuries, and fire-
arms respectively. Examining mortality by race (Supple-
mental File 3a), Black patients admitted to the hospital 

Fig. 1 Study outline



Page 4 of 12Evans et al. BMC Pediatrics          (2023) 23:637 

were significantly more likely to die (2.0% mortality rate). 
White patients on the other hand, were not only our larg-
est cohort, but were significantly more likely to survive 
than not with a 1.2% mortality rate.

As can be seen in Fig. 2b, Black children not only had 
a substantially higher percentage of deaths from firearms 
than any other race, but firearms were the top cause of 
mortality in this group, whereas death as a motor vehicle 

Table 1 NTDB patient characteristics in the development cohort

MVT Motor Vehicle Trauma, RR Respiratory rate, SBP Systolic blood pressure

Variable Overall Train data (80%) Test data (20%)

N = 693,192 Survivors
N = 546,726

Non- Survivors
N = 7,828

Survivors
N = 136,684

Non- Survivors
N = 1,957

Age

 0-4y 138,881 109,426 (20%) 1,463 (19%) 27,388 (20%) 361 (18%)

 5-9y 148,144 118,164 (22%) 721 (9.2%) 29,448 (22%) 183 (9.4%)

 10-14y 157,377 124,823 (23%) 1,169 (15%) 31,071 (23%) 297 (15%)

 15-18y 248,790 194,313 (36%) 4,475 (57%) 48,777 (36%) 1,116 (57%)

Gender

 Female 228,179 180,075 (33%) 2,327 (30%) 45,129 (33%) 585 (30%)

 Male 465,013 366,651 (67%) 5,501 (70%) 91,555 (67%) 1,372 (70%)

Glasgow coma scale

 Mild (13–15) 638,090 509,687 (93%) 585 (7.5%) 127,559 (93%) 180 (9.2%)

 Moderate (9–12) 13,845 10,965 (2.0%) 174 (2.2%) 2,682 (2.0%) 45 (2.3%)

 Severe (3–8) 41,257 26,074 (4.8%) 7,069 (90%) 6,443 (4.7%) 1,732 (89%)

Physiologic Measures

 SBP 123 (112, 135) 123 (112, 135) 108 (78, 133) 123 (112, 135) 110 (81, 136)

 Pulse 100 (85, 116) 100 (85, 116) 107 (75, 134) 100 (85, 116) 108 (74, 136)

 RR 20 (18, 24) 20 (18, 24) 16 (0, 21) 20 (18, 24) 16 (0, 21)

 Temp (C) 36.7 (36.3, 37) 36.7 (36.3, 37) 36 (35, 36.7) 36.3 (36.3, 37) 36 (35, 36.7)

Race

 White 453,239 358,319 (66%) 4,359 (56%) 89,415 (65%) 1,146 (59%)

 Black/ African American 123,332 96,763 (18%) 2,052 (26%) 24,029 (18%) 488 (25%)

 Asian 12,191 9,612 (1.8%) 130 (1.7%) 2,423 (1.8%) 26 (1.3%)

 Other 104,445 82,044 (15%) 1,287 (16%) 20,817 (15%) 297 (15%)

Mechanism

 Fall 174,992 139,533 (26%) 311 (4.0%) 35,070 (26%) 78 (4.0%)

 Natural/ environmental 5,800 4,594 (0.9%) 21 (0.3%) 1,179 (0.9%) 6 (0.4%)

 Cut/Pierce 22,627 17,991 (3.3%) 135 (1.7%) 4,469 (3.2%) 32 (1.6%)

 Fire/Flame 5,662 4,438 (0.8%) 87 (1.1%) 1,114 (0.8%) 23 (1.2%)

 Firearm 21,311 15,615 (2.9%) 1,357 (17%) 4,025 (2.9%) 314 (16%)

 Hot object/ Substance 9,433 7,568 (1.4%) 8 (< 0.1%) 1,855 (1.4%) 2 (0.1%)

 Machinery 2,335 1,848 (0.3%) 6 (< 0.1%) 478 (0.3%) 3 (0.2%)

 MVT Motorcyclist 9,549 7,535 (1.4%) 139 (1.8%) 1,842 (1.3%) 33 (1.7%)

 MVT Occupant 244,295 191,853 (35%) 3,460 (44%) 48,111 (35%) 871 (45%)

 MVT Pedal Cyclist 10,859 8,505 (1.6%) 176 (2.2%) 2,130 (1.6%) 48 (2.5%)

 MVT Pedestrian 33,574 26,141 (4.8%) 797 (10%) 6,429 (4.7%) 207 (11%)

 Overexertion 1,553 1,256 (0.2%) 0 (0%) 297 (0.2%) 0 (0%)

 Pedal cyclist, Other 28,949 23,242 (4.3%) 34 (0.4%) 5,660 (4.1%) 13 (0.7%)

 Pedestrian, Other 3,248 2,543 (0.5%) 57 (0.7%) 632 (0.5%) 16 (0.8%)

 Struck by, Against 52,151 41,402 (7.6%) 219 (2.8%) 10,471 (7.7%) 59 (3.0%)

 Transport, Other 40,169 31,950 (5.8%) 267 (3.4%) 7,878 (5.8%) 74 (3.8%)

 Injury Severity Score (ISS) 5 (4,9) 5 (4,9) 29 (25, 38) 5 (4,9) 29 (25, 38)

 Revised Trauma Score (RTS) 9.52 (9.52, 9.52) 9.52 (9.52, 9.52) 5.47 (4.45, 5.76) 9.52 (9.52, 9.52) 5.76 (4.89, 5.76)
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occupant was the top cause of death in every other race. 
Mortality due to firearm injuries was the lowest in Asian 
children compared to other groups, as illustrated by the 
top 5 mechanisms depicted in the figure.

Derivation of prediction model
In sum, 10 predictive variables (candidate predic-
tors) were placed into the model. After backward logis-
tic regression, eight variables remained significant: 
temperature, race, age, GCS, injury type, and systolic 

blood pressure (cardiac measure) + mechanism of injury 
and sex. For short, we will refer to the new model as 
‘TRAGIC + ’ using the first initial of each predictor. The 
variance inflation factor for the eight variables ranged 
from 1.0 to 2.5.

AUC of model
Randomly allocating 80% (n = 554,554) of pediatric 
NTDB patients with a trauma-related injury were used 
to create the TRAGIC + prediction model, while the 

Fig. 2 a Mechanisms of Mortality by Age. b Mechanisms of Mortality by Race
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remaining 20% (n = 138,638) were used for internal 
validation (Fig.  1). The training and test cohorts were 
similar (Table 1). The TRAGIC + model yielded an AUC 
of 96.4% (95% CI: 95.9%-96.9%) with a sensitivity and 
specificity score of 92.2% and 94.4%, respectively (see 
Fig. 3 and Table 2). All of the AUCs from Fig. 3 are from 
internal validation. Calibration plots for the temporal 
validation as well as a tabulated summary of the Brier’s 
scores can be viewed in Supplementary File 6. We com-
pared our prediction model to the ISS and RTS. The 

ISS yielded an AUC of 92.9% (95% CI: 92.2%-93.6%) 
while the RTS resulted in an AUC of 95.0% (95% CI: 
94.4%-95.6%). DeLong’s test demonstrated differences 
between the TRAGIC + and ISS (p < 0.01),as well as the 
TRAGIC + and RTS (p = 0.004). Other performance 
metrics can be seen in Table 2. Figure 4a, b, and c dis-
play the calibration plots of all three models for com-
parison and shows that the TRAGIC + model is closest 
to the ideal. Detailed model discriminatory abilities can 
be viewed in Supplementary File 7.

Fig. 3 Discriminatory ability of Injury Severity Score (ISS), Revised Trauma Score (RTS), and TRAGIC + model for pediatric mortality

Table 2 Detailed Metrics of ISS, RTS, and TRAGIC + Models

Model AUC Sensitivity Specificity NPV PPV Accuracy AIC Youden’s (sens, spec) Brier Score

ISS 92.9% (92.2%-93.6%) 51.1% 98.7% 99.9% 8.1% 98.6% 54,093 86.2%, 90.4% 0.012

RTS 95.0% (94.4%-95.6%) 78.8% 98.9% 99.9% 15.2% 98.7% 40,392 94.3%, 91.9% 0.010

TRAGIC + 96.4% (95.9%-96.9%) 76.1% 98.8% 99.2% 16.7% 98.8% 37,318 94.4%, 92.2% 0.009
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Misclassified patients
Despite the high specificity and NPV of the 
TRAGIC + model, there were inevitably some instances 
in which the model did not accurately predict mortality. 
This occurred in 1,732 patients, which was approximately 
1% of all patients included in the test data. The majority 
of these subjects were male (68%), White (61%), and had 
a blunt injury (78%). Overall this cohort is highly repre-
sentative of the study population as a whole including 
patients who were not misclassified. Other characteris-
tics of this cohort can be seen in Supplementary File 4.

Dynamic nomogram
The TRAGIC + prediction model was also used to 
develop a web-based application. In this dynamic nomo-
gram providers can use a series of drop-down menus or a 
radio button to predict the probability of mortality with a 
95% confidence interval. The numerical summary tabu-
lates the predictions and the model summary tab sum-
marizes the model with odds ratios and 95% confidence 
intervals for transparency. For example, an Asian 9-year-
old female who received a blunt trauma after a motor 
vehicle trauma in which she was a pedestrian who pre-
sents with a temperature of 37 degree Celsius, a systolic 
blood pressure of 8, and a GCS of 7 has a mortality prob-
ability of 10.8% with a 95% confidence interval between 
8.7% and 13.2%. The dynamic nomogram can be found 
at: https:// agmor eir. shiny apps. io/ TRAGIC/ (see Fig.  5). 
The web application provides the predicted probability 
for mortality with ranges of the 95% confidence interval. 
See Table 3 for logistic regression output values.

Discussion
Pediatric trauma is the number one leading cause of mor-
tality in children in the United States and most deaths 
occur within 24 h of injury [20]. Therefore, in this study 
we opted to accurately predict mortality after hospi-
tal admission in pediatric patients suffering a traumatic 
injury. Age, GCS, systolic blood pressure, mechanism of 
injury, injury type, sex, temperature, and race were found 
to be the best predictors of mortality and were signifi-
cant enough to generate a prediction-based web appli-
cation. This study highlighted several important trends 
in mortality rates for pediatric trauma patients. Some 
of the most notable trends include: black patients faced 
significantly higher mortality rates than their white coun-
terparts, raising the question of what role race plays in 
pediatric mortality, and firearm and motor vehicle inju-
ries accounted for most of the traumatic injuries analyzed 
in this study. These trends are discussed in further detail 
below. The model used in this study, TRAGIC + , demon-
strated higher discrimination, calibration, specificity, and 

Fig. 4 a TRAGIC + Calibration Plot. b Injury Severity Score (ISS) 
Calibration Plot. c Revised Trauma Score (RTS) Calibration Plot

https://agmoreir.shinyapps.io/TRAGIC/
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sensitivity when compared to already established models 
such as the ISS and RTS.

Significant sociodemographic discrepancies among dif-
ferent races were observed in this analysis. Specifically, 
Black patients admitted to the hospital had a significantly 
higher mortality rate than that of White patients. Previ-
ous studies have also demonstrated the remarkable differ-
ence between the mortality outcomes of different races. 
For example, Haider et  al. found not only that minority 
patients experience less favorable outcomes after a trau-
matic injury than their White counterparts, but that they 
also tend to live near trauma centers that have overall 
worse than expected overall mortality rates, which they 
argue may explain the racial disparities in trauma related 
outcomes. This was conducted by analyzing over 500,000 
patients with an Injury Severity Score greater than or 
equal to 9 at Level I and II trauma centers in the National 
Trauma Bank between 2007–2010 [21]. Another study 
also concluded that relative to White patients, Black 
and Asian patients had a higher risk of death after injury 
using data from the Healthcare Cost and Utilization 
Project from 1998 to 2002 while controlling for various 
variables such as race and gender [22].

Firearm injuries and motor vehicle collisions have 
been among the top causes of traumatic injuries for 

years and as expected, this trend was also detected in 
our study. Other studies have also observed this pat-
tern including McGough et al. who use data from CDC 
Wonder 2020 Underlying Cause of Death database and 
the IHME Global Burden of Disease 2019 study. They 
not only found that firearms and motor vehicle inju-
ries were the number one and two causes of death in 
children in the United States respectively, but they 
also concluded that no other similarly wealthy or large 
country in the world has firearm deaths even in their 
top four causes of mortality, let alone the number one 
cause of death in children [23]. In additional findings 
from the Global Burden of Disease and Injuries study, 
it was found that motor vehicle accidents were respon-
sible for 1.3 million deaths in 2010, making it the lead-
ing cause of death. This was about 50% more than 
what it was two decades earlier [24]. Most studies have 
also concluded that firearm and motor vehicle injuries 
are the most common causes of trauma- related mor-
tality, but those that have looked at too broad or too 
specific of a population. For instance, Krug et al. con-
ducted an epidemiologic analysis of emergency- based 
surveillance data for 990 infants less than 12  months 
old from 1994 to 2000 and found that falls were the 
leading cause of injury [25]. Due to the relatively small 

Fig. 5 Dynamic Nomogram of TRAGIC + 
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sample size and specific population, this is not gener-
alizable to all children.

Age, GCS, systolic blood pressure, sex, intent of injury, 
race and mechanism of injury were found to be the 
best determinants of mortality in our prediction model 
tool. Many published and established studies have also 

incorporated these variables into their prediction mod-
els. The Prehospital Injury Mortality Score (PIMS) devel-
oped a tool to predict blunt trauma mortality using only 
prehospital variables such as age, mechanism of injury, 
sex, and trauma activation criterion. Their validation and 
derivation groups each consisted of over 160,000 patients 

Table 3 Predictors and coefficients of the TRAGIC + model

MVT Motor Vehicle Trauma, RR Respiratory rate, SBP Systolic blood pressure

Variable Beta Coefficient 95% Confidence Interval p-value

Intercept 2.866 2.578, 3.155  < 0.01

Glasgow coma scale -0.453 -0.460, -0.446  < 0.01

Systolic blood pressure -0.020 -0.021, -0.020  < 0.01

Temperature -0.035 -0.042, -0.029  < 0.01

Sex 0.086 0.043, 0.129  < 0.01

Mechanism
 Fall -0.507 -0.686, -0.327  < 0.01

 Cut/Pierce 10.202 -737.676, 758.081 0.97

 Fire/Flame 1.446 0.692, 2.201  < 0.01

 Firearm 12.045 -735.833, 759.924 0.98

 Hot Object/Substance - - -

 Machinery -0.390 -1.267, 0.488 0.38

 MVT Unspecified -0.454 -2.782, 1.874 <0.01

 MVT Motorcyclist 0.485 0.245, 0.725  < 0.01

 MVT Occupant 0.618 0.479, 0.757  < 0.01

 MVT Pedal Cyclist 0.646 0.426, 0.867  < 0.01

 MVT Pedestrian 0.837 0.677, 0.997  < 0.01

 MVT Other 0.636 0.282, 0.989  < 0.01

 Natural/Environmental
Bites and Stings

-1.724 -4.292, 0.844 -<0.01

 Natural/environmental, other -1.773 -4.143, 0.597 <0.01

 Overexertion -11.466 -131.160, 108.228 0.84

 Pedal cyclist, other -0.915 -1.286, -0.543  < 0.01

 Pedestrian, other -0.757 0.412, 1.103  < 0.01

 Struck by, against 0.096 -0.103, 0.295 0.34

 Poisoning -1.313 -3.821, 1.196 -<0.01

 Suffocation 0.753 -1.600, 3.106 0.04

 Drowning/submersion 0.204 -2.131, 2.538 0.68

 Adverse effects, medical care -13.212 -517.522, 491.098 0.96

Other specified 0.275 -2.043, 2.593 >0.05

Race
 White - - -

 Asian 0.238 0.018, 0.457  < 0.01

 Black or African American 0.314 0.241, 0.386  < 0.01

 Other 0.103 0.025, 0.182  < 0.01

Age 0.030 0.025, 0.035  < 0.01

Injury type
 Blunt - - -

 Burn -0.880 -1.605, -0.155  < 0.05

 Penetrating -9.853 -757.732, 738.025 -

 Other/Unspecified 1.242 -1.076, 3.560 -
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and they displayed good discrimination with AUC of 
0.79 in both groups [26]. Driessen et al. also developed a 
mortality prediction model in all age groups after trauma 
using variables such as systolic blood pressure, GCS, 
age, best motor response (BMR), etc. using over 300,000 
patients. Therefore, this model and the PIMS model are 
both well calibrated and demonstrated good discrimi-
nation using variables similar to that of our prediction 
model including age, GCS, mechanism of injury, and sys-
tolic blood pressure [27].

Finally, race proved to be a significant determinant 
of mortality among pediatric trauma patients and 
was used in the TRAGIC + prediction model. This is 
seen in many other studies, one such example being a 
study conducted by Haider et al. in which a systematic 
review and meta-analysis including thirty-five studies  
demonstrated that black race is associated with a 
higher odds of death in trauma when compared with 
white race [28].

We found that firearm injuries and motor vehicle col-
lisions were the leading causes of traumatic injuries, 
consistent with findings from other studies. Our predic-
tion model incorporated variables that have been widely 
established in previous models, such as age, GCS, systolic 
blood pressure, sex, intent of injury, race, and mechanism 
of injury. The TRAGIC + model demonstrated higher 
discrimination, calibration, specificity, and sensitivity 
compared to established models like the ISS and RTS. By 
outperforming these widely used models, our prediction 
model presents a significant advancement in risk stratifi-
cation and prognostication for pediatric trauma patients. 
Furthermore, the development of a live web application 
for the model enhances its accessibility and usability for 
healthcare providers, facilitating its potential adoption in 
clinical practice. Overall, the unique combination of eas-
ily accessible variables, superior predictive performance, 
and user-friendly implementation distinguishes our pre-
diction model as a potentially valuable tool in improving 
outcomes for pediatric trauma patients.

Strengths of our project include that the TRAGIC +  
prediction model was created using a large sample size 
from a large national data bank, while adhering to all 
22 of the TRIPOD guidelines (Supplemental File 1). 
This model was also successfully internally validated. 
Temporal validation is also a strength of the study, the 
participants of this cohort were not part of the deri-
vation cohort, meaning the temporal validation is an  
external validation. As was seen in the results, compar-
ing the TRAGIC + prediction model to the ISS and the 
RTS demonstrated that our model had higher discrimi-
nation, calibration, specificity, and sensitivity than even 

these published and well-known models. The derived 
model exhibited reasonable calibration, while both the 
ISS model and the RTS model display varying degrees 
of underfitting and overfitting, which renders their esti-
mations unstable and less suitable for application in 
the NTDB. In addition to being statistically superior to 
these widely used models, we have also created a live web 
application in order to make our TRAGIC + model an 
easily usable and accessible tool that will further encour-
age healthcare providers to adopt this model.

Despite the fact that our model has a lot of potential, 
limitations to our study were inevitable. We were unable 
to validate PMIS and BMR because of the low granular-
ity of the NTDB data (e.g., predictors not available). The 
TRAGIC + model also needs to be validated in other 
populations to increase its generalizability. TRAGIC + is 
also a retrospective, rather than prospective study, which 
can be seen both as an advantage and disadvantage. 
Clinicians should use their best judgment to make the 
decisions that are in the best interest of the patient and 
provide the best treatments possible.

Overall, we were able to develop a prediction model 
for pediatric mortality following a traumatic injury uti-
lizing easily assessable and universally applicable clini-
cal variables. This prediction model not only proved to 
be more accurate than already established models, but 
it was also developed into a user-friendly web appli-
cation for clinical use: https:// agmor eir. shiny apps. io/ 
TRAGIC/. Future research includes validation of the 
model in more current NTDB databases and external 
validation. Conducting prospective studies to vali-
date the prediction model in real-time clinical settings 
would be the ultimate goal as this can help determine 
the feasibility and clinical utility of the model and 
potential implementation process.
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