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Abstract
Objective  The current diagnosis of central precocious puberty (CPP) relies on the gonadotropin-releasing hormone 
analogue (GnRHa) stimulation test, which requires multiple invasive blood sampling procedures. The aim of this 
study was to construct machine learning models incorporating basal pubertal hormone levels, pituitary magnetic 
resonance imaging (MRI), and pelvic ultrasound parameters to predict the response of precocious girls to GnRHa 
stimulation test.

Methods  This retrospective study included 455 girls diagnosed with precocious puberty who underwent 
transabdominal pelvic ultrasound, brain MRI examinations and GnRHa stimulation testing were retrospectively 
reviewed. They were randomly assigned to the training or internal validation set in an 8:2 ratio. Four machine learning 
classifiers were developed to identify girls with CPP, including logistic regression, random forest, light gradient 
boosting (LightGBM), and eXtreme gradient boosting (XGBoost). The accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value, area under receiver operating characteristic (AUC) and F1 score of the 
models were measured.

Results  The participates were divided into an idiopathic CPP group (n = 263) and a non-CPP group (n = 192). All 
machine learning classifiers used achieved good performance in distinguishing CPP group and non-CPP group, 
with the area under the curve (AUC) ranging from 0.72 to 0.81 in validation set. XGBoost had the highest diagnostic 
efficacy, with sensitivity of 0.81, specificity of 0.72, and F1 score of 0.80. Basal pubertal hormone levels (including 
luteinizing hormone, follicle-stimulating hormone, and estradiol), averaged ovarian volume, and several uterine 
parameters were predictors in the model.

Conclusion  The machine learning prediction model we developed has good efficacy for predicting response to 
GnRHa stimulation tests which could help in the diagnosis of CPP.
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Introduction
Precocious puberty in girls is defined as the onset of sec-
ondary sexual characteristics before the age of 8 and can 
be divided into three types: central precocious puberty 
(CPP), peripheral precocious puberty and incomplete 
precocious puberty [1, 2]. CPP results from the prema-
ture activation of the hypothalamic-pituitary-gonadal 
(HPG) axis. About 90% of cases in girls are idiopathic 
without definite organic disease [3]. Idiopathic CPP 
(ICPP) may mimic other forms of precocious puberty 
and can lead to short stature in adults due to early epiph-
yseal fusion, and adverse psychosocial outcomes. Thus, it 
is very important to diagnosis ICPP in subjects with early 
symptoms of puberty [3, 4].

To date, the gonadotropin-releasing hormone analogue 
(GnRHa) stimulation test is considered the gold standard 
to distinguish between the intermediate forms of preco-
cious puberty that are not suitable for treatment with 
GnRHa and CPP [5, 6]. However, the GnRHa stimulation 
tests require multiple invasive blood sampling procedures 
which is inconvenient in paediatric patients [7, 8]. Pelvic 
ultrasound, as rapid and non-invasive tests, is currently 
routine examinations utilized in female patients with pre-
cocious puberty. Pelvic ultrasound is considered an addi-
tional tool in the diagnosis of CPP in a situation when the 
results of the GnRH stimulation test are opaque [9]. Mag-
netic resonance imaging (MRI) of the brain can be used 
to determine the presence of brain lesions causing pre-
mature pubertal development. [10, 11]. The possibility of 
replacing the GnRHa stimulation test with basal pubertal 
hormones, such as luteinizing hormone (LH) and routine 
imaging tests has been continuously reviewed [12–14]. 
Nevertheless, the consensus on its use in the case of sus-
pected ICPP has not yet been established [3].

Considering the extensive application of machine 
learning classifiers in the medical field, we aimed to 

construct models based on basal pubertal hormone lev-
els, pituitary dimensions measured by MRI, and pelvic 
ultrasound parameters using various machine learning 
classifiers to diagnose girls with ICPP.

Materials and methods
Participants
We retrospectively reviewed the medical charts of all 
pediatric female patients (age 4 − 10 years) who diag-
nosed with precocious puberty in the First Affili-
ated Hospital, Zhejiang University School of Medicine 
between January 2018 and December 2022. The inclu-
sion criteria are as follows: (a) appearance of secondary 
sexual characteristics before the age of 8 years and lasting 
more than 3 months (such as increased growth velocity, 
breast or pubic hair development), (b) Tanner stage ≥ 2, 
(c) increased ovarian and uterine size with several folli-
cles > 4 mm in diameter on pelvic ultrasound, (d) GnRHa 
stimulation testing and brain MRI were performed, (e) 
advanced bone age. The exclusion criteria were: (a) men-
arche, (b) abnormal pituitary or brain MRI scans, (c) thy-
roid and adrenal disorders, and (d) long-term hormonal 
treatment. Finally, 455 participants were enrolled in this 
study (Fig. 1).

The study was approved by the Ethics Committee of 
the First Affiliated Hospital, Zhejiang University School 
of Medicine.

GnRHa stimulation test and hormonal measurement
The basal LH, follicular-stimulating hormone (FSH) 
and estradiol levels were measured by immuno-chemi-
luminescence assay on all participants in a fasting state 
between 8:00 am and 8:30 am. The detection limits of 
basal LH and FSH were 0.01 and 0.05 IU/L, respectively. 
Triptorelin acetate was injected, with a dosage of 2.5 ug/
kg, a maximum dosage of 100 ug. About 2 mL of blood 

Fig. 1  Flowchart of the study cohort
Abbreviations: GnRHa: Gonadotropin-releasing hormone analogue; CPP: Central precocious puberty; MRI: Magnetic resonance imaging; LightGBM: light 
gradient boosting, XGBoost: eXtreme gradient boosting; SHAP: SHapley Additive exPlanations
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was collected at each time point after injection (30, 60, 
and 90  min). The concentrations of LH and FSH were 
determined in each sample. Patients with a peak LH 
value > 5.0 IU/L and peak LH/FSH ratio > 0.6 were defined 
as CPP [2], others were included in the non-CPP group.

Pelvic ultrasound
Transabdominal pelvic ultrasound scans were performed 
in all participants before the GnRHa stimulation test by 
experienced ultrasound physicians. They were obtained 
with a Philips P700 ultrasound unit, (Philips Medical Sys-
tems Inc., Bothell, WA) equipped with a 5 MHz convex-
array broadband transducer or a 7.5  MHz linear-array 
small parts transducer, depending on the patient. To cre-
ate an acoustic window, all participants were required 
to drink water to ensure a full bladder. The reported 
parameters for the uterus included the length, trans-
verse diameter, anteroposterior diameter and the pres-
ence or absence of endometrial echogenicity. The cervical 
anteroposterior diameters were measured in the standard 
midsagittal view image of the uterus by two radiologists 
independently. The ratio between the fundal and cervical 
diameters (FCR) was calculated. In ovaries, the height, 
width, and length were evaluated. Both uterine volume 
and ovarian volume were calculated based on the ellipse 
formula (0.5233 × length × height × width). The average 
of the values for both ovaries was calculated for each 
patient.

MRI acquisition and analysis
Brain MRI was performed on a 3.0 T MRI scanner with 
an eight-channel phased head coil before the GnRHa 
stimulation test. The pituitary volume of each partici-
pant was determined manually (see Fig.  2) by a trained 
radiologists using the multi-image analysis software 
MANGO (Research Imaging Centre, UTHSCSA; http://
ric.uthscsa.edu/mango). The definition and segmentation 
of the pituitary gland were based on previously published 
methods that included the posterior and anterior pitu-
itary but excluded the pituitary stalk [15, 16]. It has been 
determined that the pituitary gland is best tracked in the 
coronal plane. Inferiorly, the sphenoid sinus defined the 
pituitary margin and the diaphragma sellae marked the 
border superiorly. The cavernous sinuses were used as 
bilateral borders [15]. Pituitary volume was estimated by 
adding up all the voxels in each tracking region in mm3. 
The region of interest (ROI) profile of the pituitary gland 
was determined by two experienced neuroradiologists 
independently. Both observers were blinded to the clini-
cal data.

According to the Elster’s grade [17], we evaluated the 
pituitary morphology by observing the outline of the 
superior surface of the gland in the midsagittal plane. 
We simplified the original grade 5 (grade 1 = signifi-
cant concavity, grade 2 = mild concavity, grade 3 = flat, 
grade 4 = mild concavity, grade 5 = significant concav-
ity) to grade 3 (grade 1 = concave, grade 2 = flat, grade 
3 = convex).

Fig. 2  Sagittal (top), coronal (middle), and axial (bottom) view of the pi-
tuitary gland from a T1-weighted MR image. The pituitary is manually la-
belled in red on the right
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Statistical analysis
Normally distributed data were shown as mean ± stan-
dard deviation. An independent sample t-test or Mann-
Whitney U test was used to compare differences between 
the ICPP and non-CPP groups, as appropriate. Vari-
ables with statistical differences were included in fur-
ther analysis. To select the classifier prediction model 
with the highest discrimination between ICPP and non-
CPP group, we selected four machine learning classi-
fiers including logistic regression, random forest, light 
gradient boosting (LightGBM), and eXtreme gradient 
boosting (XGBoost). We applied the 5-fold internal 
cross-validation to explore the optimal hyperparameters. 
Subsequently, the SHapley Additive exPlanations (SHAP) 
model interpretation method was used to individually 

calculate and analyse how each feature affected the out-
put of the best classifier. All models were validated in the 
validation cohort. We plotted receiver operating charac-
teristic curve (ROC) and compared the area under curve 
(AUC); then plotted calibration curve and clinical deci-
sion curve analysis (DCA) to quantify and compare the 
differences in clinical gain between the classifiers; fur-
thermore, we calculated the classifier’s accuracy, sensitiv-
ity, specificity, positive predictive value (PPV), negative 
predictive value (NPV) and F1 score.

The interclass correlation coefficient (ICC) values of 
pituitary variables and the cervical anteroposterior diam-
eter were calculated to evaluate the strength of interob-
server agreement between the two radiologists (0.00-0.20 
poor agreement, 0.21–0.40 fair agreement, 0.41–0.60 
moderate agreement, 0.61–0.80 good agreement, and 
0.81-1.00 excellent agreement). Correlation analyses 
were conducted to assess the relationship between all 
imaging parameters and pubertal hormone levels in the 
ICPP group. Differences were considered statistically sig-
nificant when the two-tailed p value was < 0.05. All the 
statistical analyses were performed using SPSS 27.0 and 
Python software (version 3.11).

Results
Descriptive statistics
The ICPP group showed higher serum LH, FSH, LH/
FSH ratio, estradiol levels, weight, height, and Tanner 
stage for breast development than the non-CPP group 
(all P < 0.05). No significant differences were observed in 
PRL, age, BMI, and Tanner stage for pubic hair develop-
ment between the two groups.

The uterine length, transverse diameter of uterine, 
anteroposterior diameter of uterine, uterine volume, 
ratio of fundus to cervix, presence of endometrium, and 
average ovarian volume were found to be significantly 
higher in the ICPP group than in the non-CPP group 
(all P < 0.05). No significant differences were observed 
in the cervical anteroposterior diameter, ovarian height, 
length, and width, pituitary height, and pituitary vol-
ume between the two groups (see Table  1). The pitu-
itary variables and the cervical anteroposterior diameter 
showed excellent agreement (ICC>0.9). No subjects were 
excluded because of poor image quality.

Development and validation of machine learning 
classifiers
We used four machine learning algorithms, random for-
est, logistic regression, LightGBM, and XGBoost, to build 
the prediction models with the training dataset. The 
ROC, calibration curve and DCA of the prediction mod-
els based on different classifiers in the validation cohort 
were shown in Fig.  3; Table  2. All classifiers performed 

Table 1  Clinical characteristics of participants
Variables ICPP group 

(n = 263)
non-CPP 
group 
(n = 192)

P 
value

Age, years 8.15 ± 1.17 8.21 ± 1.20 0.259

BA-CA, years 1.89 ± 1.62 1.40 ± 1.03 0.243

Weight, kg 29.64 ± 5.74 28.41 ± 5.59 0.023

Height, cm 130.24 ± 7.79 132.09 ± 7.28 0.010

BMI, kg/m2 16.86 ± 2.09 16.62 ± 1.95 0.204

Tanner stage (breast) 2.56 ± 0.71 2.19 ± 0.56 < 0.001

Tanner stage (pubic hair) 1.29 ± 0.44 1.15 ± 0.43 0.824

Baseline LH, IU/L 1.04 ± 1.54 0.34 ± 0.64 < 0.001

Baseline FSH, IU/L 3.86 ± 2.48 2.86 ± 1.76 < 0.001

Baseline LH/FSH ratio 0.39 ± 1.42 0.10 ± 0.12 0.001

Baseline Estradiol, pg/mL 28.61 ± 17.80 24.84 ± 13.70 0.011

PRL, ng/mL 11.10 ± 5.74 10.83 ± 6.02 0.618

Pituitary

Height, mm 5.18 ± 1.11 4.93 ± 1.16 0.080

Volume, mm3 356.52 ± 113.41 343.92 ± 85.28 0.178

Shape grade 2.02 ± 0.60 1.96 ± 0.58 0.256

Uterine

Length, mm 22.50 ± 5.51 19.85 ± 4.35 < 0.001

Anteroposterior diameter, 
mm

14.88 ± 5.55 13.20 ± 4.95 < 0.001

Transverse diameter, mm 11.06 ± 4.60 8.81 ± 3.39 < 0.001

Uterus volume, mL 2.45 ± 2.95 1.48 ± 1.64 < 0.001

Cervical

Anteroposterior diameter, 
mm

11.09 ± 3.25 10.57 ± 3.04 0.085

FCR 1.34 ± 0.23 1.24 ± 0.23 < 0.001

Presence of endometrium, 
n (%)

180 (68.44) 101 (52.60) < 0.001

Ovary

Length, mm 24.87 ± 4.33 23.91 ± 3.38 0.215

Width, mm 12.01 ± 2.75 11.50 ± 2.31 0.286

Height, mm 14.09 ± 3.32 14.37 ± 4.21 0.653

Average volume, mL 2.31 ± 1.09 2.03 ± 0.94 0.004
ICPP: idiopathic central precocious puberty; LH: Luteinizing hormone; FSH: 
Follicular-stimulating hormone; PRL: prolactin; BA, bone age; CA, chronological 
age; BMI, body mass index; FCR, Ratio of fundus to cervix
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well in each dataset. The XGBoost shows the highest 
AUC value in the validation set.

Visualization of feature importance for the best classifier
To visually explain the features included in the XGBoost, 
we used SHAP to explain the role of these features in dif-
ferentiating ICPP and non-ICPP in the model (Fig.  4). 
The SHAP values (x-axis) are a uniform quantification of 

the impact of the features included in the model, and the 
impact on the results is plotted with two coloured dots. 
The red dots represent high-risk values, and the blue 
ones represent low-risk values. The top 10 features were 
LH levels, ratio of fundus to cervix, uterine length, LH/
FSH ratio, average ovarian volume, FSH levels, estradiol 
levels, anteroposterior diameter of uterine, height, and 
uterine volume.

Table 2  Diagnostic performance of different machine learning classifiers in validation cohort
Model AUC Accuracy Sensitivity Specificity PPV NPV F1 score
XGBoost 0.81 (0.72–0.90) 0.68 0.81 0.72 0.80 0.59 0.80

LightGBM 0.78 (0.69–0.88) 0.69 0.72 0.76 0.77 0.60 0.73

Logistic 0.72 (0.61–0.83) 0.64 0.79 0.61 0.72 0.55 0.75

RandomForest 0.74 (0.70–0.86) 0.67 0.76 0.64 0.74 0.59 0.74
AUC, area under curve; LightGBM, light gradient boosting; NPV, negative predictive value; PPV, positive predictive value; XGBoost, eXtreme Gradient Boosting

Fig. 4  Summary plot of the importance of features in LightGBM classifier. Y-axis represents the importance of the features, in descending order. x-axis 
represents the contribution, where > 0 is a positive contribution and < 0 is a negative contribution. The color of the scatter indicates whether the feature 
is high (red) or low (blue)
Abbreviations: LH: Luteinizing hormone; FSH: Follicular-stimulating hormone; TD, Transverse diameter; AD, Anteroposterior diameter; FCR, Ratio of fundus 
to cervix

 

Fig. 3  ROC curves (A), plotted calibration curves (B) and DCA curves (C) for four machine learning classifiers in the validation set
Abbreviations: LightGBM, light gradient boosting; XGBoost, eXtreme Gradient Boosting
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Correlations of pituitary volume, ultrasound parameters, 
and pubertal hormone levels
The correlation coefficient was calculated to evalu-
ate the correlation between serum hormone levels and 
pituitary, uterine or ovary maturation (Fig. 5). Basal LH 
levels were positively correlated with pituitary volume, 
pituitary height, uterine length, transverse diameter of 
uterine, anteroposterior diameter of uterine, uterine vol-
ume, cervical anteroposterior diameter, ratio of fundus 
to cervix, ovarian length, ovarian width, ovarian height, 
and ovarian volume. Basal FSH levels were positively cor-
related with uterine length, transverse diameter of uter-
ine, anteroposterior diameter of uterine, uterine volume, 
pituitary height, pituitary width, and pituitary volume. 
The estradiol levels were positively correlated with pitu-
itary volume, pituitary height, pituitary width, pituitary 
length, uterine volume, and uterine length (all P < 0.05).

Discussion
The GnRHa stimulation test is the gold standard for diag-
nosing ICPP. However, it has the disadvantages of being 
time-consuming, and causing discomfort to the patient. 

This study developed a machine-learning based diag-
nostic model using basal hormone laboratory values, 
pituitary parameters and pelvic ultrasound variables for 
predicting response to GnRHa stimulation testing. Of the 
four machine learning models, the XGBoost model had 
best diagnostic efficacy in the internal validated dataset, 
with an AUC of 0.81, a sensitivity of 81%, and a specificity 
range of 72%.

Attempts have been made to find other alternatives to 
GnRHa stimulation tests that are more acceptable and 
widely available, including serum basal gonadotropin lev-
els and imaging studies [14, 18, 19]. Some investigators 
have reported basal LH > 0.1–0.83 IU/L as a reliable diag-
nostic cut-off for CPP with 64–93% diagnostic sensitiv-
ity from ICMA sample [18, 20–22]. Previous studies have 
suggested that independent basal FSH or basal LH/FSH 
ratios have weak discriminatory power, largely due to the 
significant overlap in FSH levels between girls with and 
without CPP [18, 20, 22–24].

Several studies have employed scoring systems or 
machine learning models to diagnose ICPP. ah et al. 
incorporated clinical information and a simplified 

Fig. 5  Correlation of the pelvic ultrasound and pituitary MRI parameters with pubertal hormone levels in ICPP group. ∗Values in black font represent 
statistically significant correlations. Ovarian parameters are mean values for bilateral ovaries
Abbreviations: PRL: prolactin; LH, luteinizing hormone; FSH, follicle-stimulating hormone; TD, Transverse diameter; AD, Anteroposterior diameter; FCR, 
Ratio of fundus to cervix
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GnRHa test (hormone levels at 30  min post-stimula-
tion only) to construct a machine learning model and 
reported excellent diagnostic efficacy, with an F1 score 
of 0.976 and an AUC of 0.972. However, this still did not 
entirely obviate the need for a GnRHa test to be per-
formed [25]. A practical scoring system based on breast 
Tanner stage, basal LH and basal FSH was developed 
with a sensitivity of 76% and a specificity of 72% [26]. A 
comparable scoring system demonstrated higher efficacy 
in another study [27], however neither included com-
monly used imaging parameters in the model.

Brain MRI is usually used to detect CPP-related ana-
tomical abnormalities rather than as a diagnostic indi-
cator [28, 29]. A recent study explored the diagnostic 
efficacy of pituitary dimension for CPP girls aged 2–8 
years, and found a low sensitivity(54.10%) and speci-
ficity(72.20%) of pituitary volume at the cut-off value 
of 196.01mm3 [19]. A small sample for pituitary MRI 
radiomics study with a total of 30 individuals reported 
moderate diagnostic efficacy with an AUC of 0.76 [30]. 
However, a poor performance of pituitary imaging histol-
ogy was reported in another large-sample study (AUC < 
0.70) and MRI-related parameters were still included in 
their model ultimately [31]. Our results demonstrated a 
large overlap of pituitary MRI parameters between the 
two groups, which is consistent with previous findings. 
Considering the current controversy about the necessity 
of MRI in pubertal children, our diagnostic model ulti-
mately did not incorporate MRI-related parameters.

Pelvic ultrasonography is a rapid, non-invasive, and 
low-cost examination to assess uterine and ovarian 
development. uterine and ovarian measurements could 
help to distinguish girls with CPP and isolated premature 
thelarche [14, 32, 33]. A recent meta-analysis noted that 
uterine length and volume are important markers for dif-
ferentiating CPP from premature thelarche, e.g., a uter-
ine length of 3.2 cm had a diagnostic AUC of 0.82, with a 
sensitivity and specificity of 81.8% and 82.0%, respectively 
[11]. FCR is regarded as a crucial indicator of puberty. 
However, past investigations have yielded inconsistent 
findings [13, 34, 35]. Recently, a comprehensive meta-
analysis identified a notable disparity in FCR between the 
CPP and non-CPP groups, signifying the potential of this 
parameter in effectively discriminating CPP [11]. Our 
result further underscores its pivotal diagnostic utility. 
Therefore, we incorporated ultrasound parameters with 
clinical information into the machine learning model.

Our model shows good efficacy in the validation set 
with an AUC of 0.81 and an F1 score of 0.80. The model 
incorporates several predictors including basal LH, FSH, 
estradiol levels and LH/FSH ratio, averaged ovarian vol-
ume, and several uterine parameters. According to our 
machine learning model, basal LH, FSH, estradiol lev-
els and LH/FSH ratio are among the top ten predictors 

of feature importance in the XGBoost classifier. These 
pubertal hormones, as important products during the 
activation of the hypothalamic-pituitary-gonadal axis, 
are the endocrine basis of CPP. Among the ovarian 
parameters, only mean ovarian volume was a significant 
predictor. This may be due to the irregularity of ovarian 
morphology resulting in high variability of single radial 
values [11].

The positive correlations between pituitary, uterine and 
ovarian volumes, and pubertal hormones were found, 
while part of the correlations was relatively weak. For 
pituitary development, the influence of hormones other 
than HPG-axis hormones on the pituitary volume cannot 
be ignored [36]. For instance, enlarged pituitary glands 
has been reported to be associated with relatively high 
levels of dehydroepiandrosterone (DHEA) and its sul-
phate (DHEA-S) in children [37]. For the development 
of uterine and ovarian, besides pubertal hormones, other 
factors such as genetics and the environment also play an 
important role [38].

Our study had some limitations. First, as a cross-
sectional study, the growth velocity was not fully docu-
mented, and future studies need to focus on the impact of 
this metric on pubertal children. Second, our ultrasound 
parameters did not include indicators such as cervi-
cal length, quantity of large follicles, and maximum fol-
licular diameter. This is because some of the ultrasound 
reports had incomplete descriptions of these parameters. 
In addition, recent meta-analyses have pointed out that 
these indicators are not yet reliable predictors [9, 11]. 
Finally, our current study only focused on female patients 
with ICPP. With the increasing incidence of male preco-
cious puberty, future research should also focus on sim-
plifying the diagnosis of male precocious puberty.

Conclusions
In this study, we developed a machine learning model 
incorporating ultrasound parameters, underlying hor-
mones and clinical information applied to CPP diagno-
sis. The model had good performance in predicting the 
response to stimulation testing prior to GnRHa injection 
in girls who are suspected CPP.
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