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Abstract 

Introduction AIDS continues to be a serious global public health issue. It targets CD4 cells and immunological 
cells, which are in charge of the body’s resistance against pathogenic pathogens. In situations with limited resources, 
CD4 cell measurement is essential for assessing treatment responses and clinical judgments in HIV-infected children 
receiving Anti-Retroviral Therapy (ART). The volatility of CD4 cells during ART follow-up is still largely uncharacterized, 
and there are few new datasets on CD4 cell changes over time. Therefore, the purpose of this analysis was to identify 
the factors that were predictive of CD4 cell count changes over time in children who started ART at Mekelle General 
Hospital in northern Ethiopia.

Methods A retrospective follow-up study was done. 437 patients in Mekelle general hospital, northern Ethiopia, 
from 2014–2016 were involved. All patients who have started anti-retrieval treatment (ART) and measured their CD4 
cell count at least twice, including the baseline and those who initiated ART treatment, were included in the study 
population. An exploratory data analysis and linear mixed model analysis were used to explore the predictors of CD4 
cell count change in patients and consider variability within and between patients.

Results This study found the correlation variation explained in cells accounted for between patients was 61.3%, 
and the remaining 38.7% variation existed within. This indicates that there is a substantial change in random slope 
and intercept between and within patients. WHO clinical stage IV (β = -1.30, 95% CI: -2.37, -0.23), co-infection HIV/TB 
(β = -1.78, 95% CI: -2.58, -0.98), children aged 2–5 (β = -0.43; 95% CI: -0.82, -0.04), and 6–14 years (β = -1.02; 95% CI: -1.47, 
-0.56), non-opportunistic infection (β = 1.33, 95% CI: 0.51, 2.14), and bedridden functional status (β = -1.74, 95% CI: 
-2.81, -0.68) were predictors of cell changes over time.

Conclusions This study found that patients receiving ART experienced a significant change in CD4 cells over time. 
Because 61.3% of the variation in CD4 cells explained between patients and the remaining 38.7% within patients, 
such nested data structures are often strong correlation evidence. Co-infection of HIV/TB, functional status, age cat-
egory of children, WHO clinical stage, and opportunistic infections are potential predictors of CD4 cells count change.
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Hence, special guidance and attention is also required, especially for those patients who have an opportunistic infec-
tions, higher WHO clinical stages, co-infections with HIV and TB, and bedridden functional status.

Keywords CD4 cell count, ART , Children, S-I linear mixed model, Predictors

Introduction
Acquired Immune Deficiency Syndrome (AIDS) is 
caused by the Human Immunodeficiency Virus (HIV), 
which decreases a person’s ability to fight infection by 
reducing CD4 cell count and attacking an immune cell 
that is responsible for the body’s immune response to 
infectious agents [1–3]. HIV/AIDS remains a major 
global public health problem [2, 4, 5]. In the world, 
approximately 37 million people were living with HIV/
AIDS in 2017 [6]. More than two-thirds (67%) of people 
were living with AIDS, and close to three-fourths (75%) 
of all AIDS-related mortalities happened in Sub-Saharan 
Africa (SSA) countries [6]. In 2010, SSA was one of the 
most affected parts of the world, with an estimated 22.9 
million people living with HIV and 1.2 million deaths 
associated with AIDS among children and adults [2]. HIV 
has emerged as one of the leading causes of child mortal-
ity and morbidity in SSA countries, including Ethiopia. In 
SSA, approximately 1.5 million people overall are living 
with HIV, which has become the leading cause of mortal-
ity among children under 15 years of age, accounting for 
about 12.7% of all children who died of AIDS-related ill-
nesses in 2013 [7].

Ethiopia is one of the SSA countries most affected 
by HIV/AIDS in all its manifestations [8]. There were 
an estimated 793,700 people living with HIV in 2013, 
including 200,300 children [7]. The Cluster of Difference 
4 (CD4) cell count is one of the most important mark-
ers of HIV disease progression and a strong predictor 
of health status in HIV-infected children, similar to the 
plasma viral load [3, 7, 9].

Treatment of HIV-infected children with ART leads to 
immune cell reconstitution, as shown by the increase in 
CD4 cell counts, decreased risk of opportunistic infec-
tion, and improved survival [7]. Moreover, evidence has 
indicated that sufficient CD4 cell count in most patients 
with ART is considered when there is a rise in the 
range of 50–150 cells/mm3 per year with an accelerated 
response in the first 3 months of treatment before a sta-
ble state level is reached [10].

There are many factors that anti-retrieval therapy will 
affect that act as related predictors of changes in CD4 
cell count. Investigations were conducted in Ethiopia 
to find predictors of changes in CD4 cell count among 
children receiving ART [4, 11–13]. These studies were 
conducted utilizing multiple regression and logistic 
regression, which are both common regression models. 

The repeated or longitudinal CD4 cell measurements 
were not included in the standard multiple regression or 
logistic regression model; only the cross-sectional CD4 
cell data were. However, the longitudinal or linked char-
acter of the dataset restricts its utility in many real-world 
applications due to its underlying presumption that 
each individual observation must be independent of the 
others. This means that the results of a simple multiple 
regression or logistic regression model may not be useful 
for drawing conclusions about standard errors, parame-
ter estimates, tests, and confidence intervals. Strong hier-
archies generally result from such nested organizations 
since there is a significant disparity between people on 
average compared to circumstance. The study’s patients’ 
heterogeneity may be the cause of the discrepancy in the 
potential risk variables for a change in CD4 count. We 
suggested a linear mixed model analysis for children’s 
data [14–16] to close this gap.

For the analysis of patient responses to therapy and 
clinical decision-making in resource-constrained loca-
tions, it is strongly advised to monitor clinical and diag-
nostic progression as well as analyze CD4 cell counts 
of patients on ART over time follow-up [10]. However, 
there is little evidence that ART follow-up in Ethiopia is 
improving CD4 cell counts and related variables in chil-
dren. After the start of ART, the variation in CD4 cell 
counts between patients has remained largely uncharac-
terized, and the majority of published studies have failed 
to identify the factors that might contribute to this varia-
tion with prolonged ART usage in the nation.

Therefore, the objective of this analysis was to iden-
tify the factors that were predictive of CD4 cell count 
changes over time in children who began ART at Mekelle 
General Hospital in northern Ethiopia.

Materials and methods
Study design and period
An institutional-based retrospective follow-up study 
design was carried out among HIV-infected children 
(1–14 years of age) who started ART follow-up over time 
from 2014–2016.

Study setting
The study was carried out in Mekelle General Hospital, 
Tigray Regional State, northern Ethiopia. Mekelle is the 
capital city of the Tigray national Regional State, which is 
783 km away from Addis Ababa, the capital of Ethiopia. 
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Besides, Mekelle General Hospital has initiated ART ser-
vice delivery since September 2004, and until now, more 
than 10,000 HIV-infected participants have been fol-
lowed-up over time with their ART services.

Study population
The study population included HIV-positive children 
(1–14 years) who initiated anti-retrieval treatment in the 
Mekelle general hospital ART clinic.

Inclusion criteria and exclusion criteria
Patients whose age was 1–14 years old who are attending a 
minimum of two visits of ART treatment in the ART clinic 
for refilling their prescription and who were started on 
ART from January 1, 2014, to January 30, 2016 at Mekelle 
General Hospital would be included in the study. How-
ever, patients who initiated ART and whose information is 
incomplete, unreadable, or their manual record is lost, as 
well as patients who have not had at least two follow-up 
CD4 cell count measures, were excluded from the study.

Sample size and sampling procedure
All HIV-positive children who started ART follow-up 
over time in the General Hospital from January 1, 2014, 
to January 30, 2016 were included in the study. In this 
study, 437 HIV-infected children who had two or more 
CD4 cell count measurements were used in the linear 
mixed model analysis. Using the pediatric ART regis-
tration book, we have created a sampling frame for the 
general hospital using the list of all children on ART fol-
low-up and aged 1–14 years in order to select the sam-
ples using a systematic random sampling procedure.

Data collection tools and procedures
Data were extracted using a structured checklist built 
according to it, which was developed and adapted from 

studying different relevant literature [4, 11]. A few ques-
tionnaires, including language clarity and information, 
were revised, and the questionnaire was finalized for the 
study. The questionnaire includes socio-demographic 
and clinical predictor factors for children and partici-
pants and changes in CD4 cell counts over time.

Data quality assurance and control
Four health professional nurses working at the ART clinic 
were employed as data collectors and extracted the data-
set after they had been trained for 2 days. The data col-
lection process was supervised by two supervisors. The 
data processing was carried out in private rooms. The 
collected data set was checked for completeness and con-
sistency and corrected daily by the supervisors and the 
principal investigator.

Variable of the study
Response variable
CD4 cell count measurements were the response variable 
for this study.

Independent variables
The independent variables were selected based on a 
review of previous literature [1, 7, 17]. The independ-
ent variables that were used in this study are shown in 
Table 1 with their respective categories.

Operational definition of variables
Base line data: refers to the data before antiretroviral 
therapy started [8].

Co‑infection HIV/TB Refers to patients living with HIV 
and also developing coexistent TB infection [2].

Good Adherence level to medications: Children living 
with HIV/AIDS on antiretroviral therapy recorded to 

Table 1 Independent variables

Variables Categorizations of independent variables

WHO clinical stage Baseline WHO clinical stage level of children (stage-I, stage-II, stage-III, stage-IV)

Sex Sex of child (male, female)

Co-infection HIV/TB Co-infection HIV with TB (yes, no)

Education level Education level of child (elementary and below, secondary and above)

Residence Residence place (urban, rural)

Functional status Baseline functional status (working, ambulatory, bedridden)

Opportunistic infection Opportunistic infection at ART start (yes, no)

Adverse drug events Adverse drug events (yes, no)

Age category Age category of child (< 2 years, 2–5 years, 6–14 years)

Adherence level Adherence level of medication (good, fair, poor)

Time Follow up time points at which CD4 cells count was recorded (in months)
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have taken 95% or higher of their prescribed antiretrovi-
ral therapy medication or missed <  = 3 doses as to their 
agreement with health care provider [8, 11].

Poor adherence level to medications: level of adherence 
below 95% of their prescribed antiretroviral therapy 
medication or missed > 3 doses as to their agreement 
with health care provider [8, 11].

Opportunistic infections HIV-infected child on antiret-
roviral therapy developed one or more recorded history 
of opportunistic infections within follow up time.

Advanced WHO clinical stage: are clinical stage III and 
IV baseline stages of HIV-infected children throughout 
registration to antiretroviral therapy [13].

Mild WHO clinical stages Are clinical stage I and II 
baseline clinical stages of HIV-infected children within 
antiretroviral therapy registration [13].

CD4 cell count change Refers to the CD4 cell count 
change within follow-up time of patients.

Data processing and statistical analysis
Data were extracted, entered, cleaned, decoded, and ana-
lyzed using the statistical software R version 3.6.3. Descrip-
tive statistics such as frequency, percentages, and figures 
were used to describe children’s characteristics. A square 
root transformation was implemented to get rid of skew-
ness in the CD4 cell count data set, and all analyses were 
performed using the transformed result data. Moreover, 
to determine the model that best fits the data set, explora-
tory data analysis was employed first, especially by assess-
ing individual CD4 cell counts over time using individual 
profile plots and average profile plots. Therefore, individ-
ual profile plots of patients were constructed for the first 
50 patients to provide a rough image of how patients 
changed and to provide explanations for variation within 
and between subjects. Similarly, the average profile plots 
were constructed to explain the overall mean shift in CD4 
cell count for HIV-infected children. To assess the predic-
tors associated with CD4 cell count changes, all predictors 
were considered in the multivariable linear mixed regres-
sion model analysis with a random effect. Variables with a 
p-value < 0.05 were found to be statistically significant in a 
multivariable random S-I of LMM analysis. Moreover, the 
maximum likelihood parameter estimation approach was 
used.

Selection of covariance structure
The most common types of covariance structures in 
repeated measures are unstructured, independent, com-
pound symmetry, and identity, and the magnitude of 
residual errors was also considered in model selection. 
The covariance structure model was employed to deter-
mine the predictors associated with CD4 cell count over 
time. As a result, a model with the least within-individ-
ual variation when compared to other models’ residual 
variability was selected. Moreover, these covariance 
structures will reduce the probability of model misspeci-
fication [18].

Linear mixed effects model analysis
In this study, these longitudinal models were fitted 
based on either of the following three model mecha-
nisms [14–16].

I. Random slopes and random intercepts model

This model analysis used both random intercepts and 
random slopes, in which both random intercepts and 
slopes are allowed to vary. So, the scores on the outcome 
variable for each repeated measurement are predicted 
by the random intercepts and random slopes that vary 
across individual patients. These models were performed 
to measure covariates and predict the random effect at the 
same time. Besides, we identify the variations explained by 
within-subjects and between-subjects random intercept 
and random slope model analysis. The general structure for 
LMM is expressed as;

where yi = (yi1, yi2, yi3, . . . . . . ..yin).
T is the dependent 

variable,Xij is the vector of indicator variables for the 
study predictors, bi ∼ Nq(0,ϕ) , εi ∼ Nni(0,δ2I)
β = Fixed effects, bi = Random effect for unit i , ϕ = 

Between-subjects covariance matrix, δ2I  = Within-
subjects covariance matrix, bi and ∈i is assumed to 
be independent. Xi is an ni ∗ j matrix with jth column, 
matrix Zi is an  ni ∗ k matrix. Both Xi and Zi depend on 
i through ti.

Now, the Intra-Class Correlation coefficient (ICC) is 
defined as a set of coefficients representing the relation-
ship between variables of the same individuals that decom-
pose into two independent components. Thus, the ICC 
explained by the individuals in the population is given by 
this formula:

(1)

yij =
β0+β1∗Xij

f ixed ef f ects
+

bi,0 + bi,1∗zi

random ef f ects .
+

∈i

random error
,

i = 1, . . . . . . . . . . . .mandj = 1, 2, . . . . . .ni.



Page 5 of 12Gebrerufael  BMC Pediatrics          (2023) 23:628  

Where,  ei is the error terms and  bi is a random inter-
cept are assumed to be mutually independent and 
 ICCmeasures = 1 −  ICCindividual [1, 16].

 II. Random intercept only model

This is the simplest example of hierarchical model 
analysis, in which intercepts are allowed to vary and 
there are no predictor variables at all. It has only an 
intercept term and variances at the measurement and 
individual levels. Since the model doesn’t contain a ran-
dom slope, the true individual change is a horizontal 
line with y-intercept  b0.

The model can be expressed as: -

β0 Is the intercept of fixed effect that is a con-
stant over time, b0i is the random effect representing 
between-subjects variation, ∈ij is the error [16].

 III. Random slope model

A random slopes model is a longitudinal model analy-
sis in which slopes are allowed to vary. Thus, the scores 
on the response variable for each repeated measure-
ment are predicted by the slope that varies between 
patients and subjects. The previous models are some-
times called unconditional (intercept only) models 
because there are no measured covariates to predict 
the random effect. Now, when occasions vary, we have 
different sets of measurements taken at different points 
over time for different individuals [14–16]. Such mod-
els are often interested in assessing how a longitudinal 
outcome variable is associated with a covariate whose 
value changes over time. Such covariates are called 
time-varying covariates Xi.

Model selection and comparison
In order to select the best and final model that appro-
priately fits the given longitudinal data set, it is essen-
tial to compare the different linear mixed models using 
different techniques and methods. Therefore, Akaki 
Information Criteria (AIC) and Bayesian Information 

(2)ICC− CD4() =
Variance between[Var(bi)]

Variance between[Var(bi)]+ Variancewithin[(Var(ei)]

(3)yij =
β0+β1∗Xij

f ixed ef f ects
+

bi,0

random ef f ects ,
+

∈ij

random error
, i = 1, . . . . . . . . .m

(4)yij =
β0+β1∗Xij

f ixed ef f ects
+

bi,1∗zi

random ef f ects ,
+

∈i

random errors
, i = 1, . . . . . . . . .m

Criteria (BIC) that are calculated from deviance based 
on the number of estimated parameters k are also most 
convenient at a 5% level of significance. Accordingly, a 
model with a smaller value of AIC/BIC was selected as 
the preferable model [16, 19, 20].

Results
Socio‑demographic and clinical characteristics 
of participants
Out of a total of 437 HIV-infected children chosen for 
the study, 284 (64.99%) were male participants. The 
estimated mean change in CD4 cell count of the par-
ticipants was 340.9 (95% CI: 334.4, 347.5) cells/mm3 

for every 6  months of follow-up after ART start. On 
the subject of WHO clinical stages, 16.7%, 38.22%, 
29.52%, and 15.56% of HIV-infected children were 
in stages I, II, III, and IV, respectively. Of the chil-
dren’s patients, 204 (46.68%) were at a good adher-
ence level; 291 (66.59%) had working functional status; 
and 160 (36.61%) had opportunistic infections during 
ART start. Regarding co-infection with HIV and TB, 
33.64% of HIV-infected children were TB positive (see 
Table 2).

Exploratory data analysis of changes in 
√
CD4 cell count 

after starting ART 
Individual profile plot of progression curve analysis
The visualized pattern of 

√
CD4 cell count measure-

ments of the patient’s overtime and the first 50 indi-
vidual profile plots of subjects were considered. This 
figure indicated that the variability within and between 
patients had a slightly decreasing trend for each 

respondent throughout the follow-up over time. For 
responses, the majority (but not all) of observations 
were slightly turned down throughout the follow-up 
period. Therefore, the variation within and between the 
patients throughout the time of follow-up decreased 
each response from a visit time to a visit time (see Fig. 1).
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Mean profile plot stratified by co‑infection HIV/TB
To sum up, the overall smooth average profile plot 
in 

√
CD4 cell count changes on the first 50 subjects 

showed signs of variation within and between patients 
in both categories. The patients had more variation in √
CD4 cell values at the end and adjustments over time 

at the beginning of ART. Besides, the average change 
in 

√
CD4 cell counts over time for those who were co-

infected with TB indicated that they remained constant 
in the first 5 months, followed by a modest decrease of 
up to 10 months. In the end, it was a dramatic decrease 
from the  10th to the last month. It is evident that the 
total mean 

√
CD4 cell count decreased over time and 

remained constant over time (see Fig. 2).
The upper triangle Fig.  3 shows that the correlation 

structure values depend on the individual heterogeneity 
of patients. This indicates that the time progression and 
strength of association with the change in CD4 count 
are decreasing. Thus, as time gets closer, we have a 

higher correlation over time. That means, as time moves 
on, the correlation is reducing. Therefore, correlation 
gets weaker over time because CD4 count depends on 
time (see Fig. 3).

Predictors associated with 
√
CD4 cell count changes 

over time
Model and covariance structure selection
The study used the AIC, BIC, and Log-lik criterion to 
compare different models. For each model, the value 
is computed as AIC =  − 2*ln(likelihood) + 2(p + k) and 
BIC = -2*ln(likelihood) + ln(N)*k. where, k is the num-
ber of parameters estimated and N is the number of 
observations.

Based on the following statistical values of the AIC, 
BIC, and Log-Lik criteria, a linear mixed effect model 
with a random S-I model was preferable for modelling 
since the lowest value is preferable. In this study, the 
modeling analysis of a linear mixed model with random 
S-I was assumed to compensate for individual variations 
in 

√
CD4 cell count at baseline and over time, respec-

tively. The adequacy of the model fitted could also be 
affected by the error covariance structure selected. 
This is because the distribution of errors requires that 
an error covariance structure be employed. As a result, 
four different variance–covariance structures were com-
pared for each candidate model. Moreover, the random 
and fixed effects were calculated by comparing various 
covariance structures. Because the unstructured struc-
ture gave the lowest information criterion in all possible 
combinations, it was selected to determine the random 
effect (see S1 and S2 Tables).

After adjusting for possible confounding predictors 
using the multivariable LMM with random slope and 
random intercept analysis, it was found that covariates 
such as WHO clinical stage, co-infection HIV/TB, func-
tional status, opportunistic infections, and age were sig-
nificantly associated with 

√
CD4 cell count changes over 

time. While sex, education level, residence, adverse drug 
events, adherence level, and time of follow-up did not 
significantly affect in 

√
CD4 cell count changes over time.

In children who are HIV-positive, an increase in the pre-
dictor variable causes an increase in CD4 cell count, while 
an increase in the independent variable causes a decrease in 
CD4 cell count, as shown by the positive (+ ve) sign of the 
assessed value of parameters ( value in Table  3). The cat-
egory with the positive sign of estimate had a higher CD4 
cell count than its counterpart for categorical variables 
like opportunistic infection patients and TB co-infected 
patients, and the category with the negative sign of assess-
ment had a lower CD4 cell count than its counterpart.

Table 2 Socio-demographic and clinical characteristic of 
patients who were on ART in Mekelle general hospital, from 
2014–2016 (n = 437)

Variable Category Frequency Percentage

WHO clinical stage Stage-I 73 16.7

Stage-II 167 38.22

Stage-III 129 29.52

Stage-IV 68 15.56

Sex Male 284 64.99

Female 153 35.01

Co-infection HIV/TB No 292 66.82

Yes 147 33.64

Education level Elementary 
and below

143 32.72

Secondary and above 294 67.28

Residence Urban 286 65.45

Rural 151 34.55

Functional status Working 291 66.59

Ambulatory 98 22.43

Bedridden 48 10.98

Opportunistic infec-
tion

No 160 36.61

Yes 277 63.39

Adverse drug events No 269 61.56

Yes 168 38.44

Age category  < 2 years 43 9.84

2–5 years 374 85.58

6–14 years 20 4.577

Adherence level Good 204 46.68

Fair 135 30.89

Poor 98 22.43
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Children in bedridden functional status have lower √
CD4 cell counts compared to ambulatory children. The 

mean change in 
√
CD4 cell count for bedridden patients 

was 1.74 (β = -1.74, 95% CI: -2.81, -0.68) times lower 
compared to ambulatory patients, controlling for the 
other variable.

Similarly, the average change in 
√
CD4 cell count for 

HIV-infected children who lived in TB was about 1.78 
(β = -1.78, 95% CI: -2.58, -0.98) times lower than that for 
those patients who were negative.

Patients who started ART at WHO clinical stage IV 
reported smaller increases in CD4 cell counts relative to 
those who started ART at the stage I. Besides, the mean 
change of the CD4 cell count for patients with WHO 
clinical stage IV was 1.30 (β = -1.30, 95% CI: -2.37, -0.23) 
times lower than that of those patients who with WHO 
clinical stage I.

Age was closely associated with CD4 cell count 
changes, suggesting that the average 

√
CD4 cell count 

of children ages 2–5 and 6–14 years was 0.43 (β = -0.43; 
95% Cl: -0.82, -0.04) and 1.02 (β = -1.02; 95% Cl: -1.47, 
-0.56) times significantly lower than the reference group, 
respectively. At baseline, the mean 

√
CD4 cell count 

among children who hadn’t had an opportunistic infec-
tion was 1.33 (β = 1.33, 95% CI: 0.51, 2.14) times higher 
than the mean 

√
CD4 cell count among children who had 

an opportunistic infection (see Table 3).

The standard deviation estimated values for the ran-
dom slope and intercept were found to be 0.13 and 2.98, 
respectively. This indicates that there is substantial vari-
ability in random slopes and intercepts between and 
within patients and that the mean change in 

√
CD4 cell 

count varies across HIV-infected children.
Moreover, Table S2 results show that ICC gives strong 

correlation evidence that variability existed between 
the HIV patients. Therefore, the ICC of this study was: 
ρ = 8.86

8.86+5.6
= 8.86
14.45

  = 0.613. Therefore, 61.3% of the 
explained variation in 

√
CD4 cell count existed between 

patients, and the remaining 38.7% of variation existing 
within patients.

Discussion
Patients with HIV are now living longer and dying less 
due to highly active ART. Effective ART had a major 
impact on people with HIV infection’s longevity and 
ability to avoid opportunistic infections. According to 
research from the past and the current study, ART is a 
useful treatment for HIV that can reduce viral load to 
undetectable levels.

The aim of this study was to identify the rate of CD4 
cell count change over time and determine its asso-
ciated predictors among HIV-infected children who 
started antiretroviral therapy. The individual profile 
plots indicated the presence of variation in 

√
CD4 cell 

Fig. 1 Individual profile plots in 
√
CD4 cell count of the first 50 ART followers over time
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counts between and within subjects. The separated 
mean profile plot also showed that, on average, 

√
CD4 

cell counts appeared to change rapidly over time on 
ART follow-up.

The results of LMM for random effects indicated that 
there was a significant variation in the change in 

√
CD4 

cell count across the patients. In the multivariable LMM 
with variability between and within patients accounted 
for, about 61.3% and 38.7% of the variations were 
observed for the change in 

√
CD4 cell count, respec-

tively. It was in agreement with a study in Ethiopia [1]. 
As a result, the degree of suppression of viral replication 
increases, even though it should be recognized that such 
plots are mean plots that may be different from individual 
profile plots, which may show that certain HIV-infected 
children respond better than others.

According to this study, children’s age and CD4 cell 
count changes had negative associations. The CD4 cell 
count square root odds were 0.43 and 1.02 times lower 
than the reference group. This finding is consistent with 
those of studies carried out in northwest Ethiopia [10, 21]. 

It is well known that as age increases, thymic activity low-
ers, which will reduce CD4 cell counts as the thymus is 
the primary site of CD4 cell count progression [10].

Children with opportunistic infections had major nega-
tive impacts on CD4 cell count changes over time. This 
indicated that children with no opportunistic infections 
had higher 

√
CD4 cell counts over time. This is consist-

ent with studies done in northwest Ethiopia [10, 22]. The 
possible reason may be that opportunistic infections 
recover HIV pathogenesis and further reinforce the value 
of prophylaxis.

Children with advanced HIV stages have poorer immu-
nological recovery than those with early HIV stages 
because opportunistic infections are more common in 
patients with advanced HIV stages [4].

The present CD4 cell count of patients who had oppor-
tunistic infections was lower than that of their coun-
terparts. This study is in line with a study conducted in 
Ethiopia [4, 23]. This may be because a reduction in CD4 
cell counts leads to cellular and, consequently, humeral 
deficiencies.

Fig. 2 Smoothing mean profile in 
√
CD4 cell on ART follow-up stratified by co-infection HIV/TB
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Co-infection HIV and TB are also highly associated 
with a decrease in CD4 cell count over time. The find-
ing is consistent with previous studies in Ethiopia [2, 19], 
which indicated that patients with TB comorbidity are 
associated with decreased 

√
CD4 cell counts, reduced 

immune repair, and reduced survival, resulting in faster 
disease progression.

Functional status since the initiation of ART in patients 
was also found to be a statistically significant predictor of 
CD4 cell count change over time. Therefore, bedridden 

patients have a low rate of recovery of CD4 cell count 
changes. Otherwise, children patients who are in work-
ing functional status can take the prescribed medication 
by themselves at the time given by the health profession-
als, which leads to a good recovery of CD4 cell count. This 
result is consistent with another study done in Ethiopia, 
which also reported a significant association between func-
tional status and changes in CD4 cell count over time [24].

However, there are additional variables besides HIV 
that can affect CD4 cell numbers. Rural living [22] and 

Fig. 3 Exploring correlation structures on individual heterogeneity of HIV-infected children
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lack of education [4] among patients are predictors 
of reduced CD4 cell count responses to anti-retrieval 
therapy, but not in the context of these recent investiga-
tions. The probable explanation is that educated HIV/
AIDS patients and urban residents have a better aware-
ness of the disease status and are more likely to under-
stand instructions on medicine consumption than rural 
residents.

Finally, the shift in CD4 cell count was significantly 
impacted negatively by WHO clinical stage-IV. As a 
result, when compared to patients in stage I, the CD4 
squared root chances for patients in stage IV reduced 
by 1.30. This conclusion is in line with research done in 
Ethiopia [17, 25].

Strengths and limitation of the study
To account for the patients with/between variations in 
children, this study used the most appropriate statistical 
linear mixed model analysis (longitudinal model tech-
nique). Additionally, this research will help policymakers 
create a better plan for managing HIV-positive people. 
Additionally, the investigation will serve as a starting 
point for future scholars. The final drawback of this study 
is that, due to the retrospective follow-up nature of the 
results, which did not include all the crucial predictor 
variables like viral load, additional clinical parameters 
due to a lack of materials, or technical issues, the causal 
association cannot be precisely well-defined. Addition-
ally, the impact of CD4 cell count can differ due to a lack 

Table 3 Multivariable LMM analyses of predictors associated with change of CD4 cell counts overtime who were on ART follow-up 
among HIV-infected children in Mekelle general hospital (2014–2016)

Reff Reference for category variables

N.B: LR test: chi2(3) = 618.0, p-value = 0.0000

Wald: chi2 (15) = 106.2, p-value = 0.0000
* Significant at 5% level of significance

Covariate Coefficient (95% CI) P‑value

Lower Upper

Intercept 19.1 17.9 20.18 0.000*

Time 0.022 -0.005 0.048 0.113

WHO clinical stage (reff. = stage-I) 1.00

 Stage-II -1.088 -2.20 0.022 0.056

 Stage-III -0.59 -1.91 0.732 0.385

 Stage-IV -1.30 -2.37 -0.23 0.018*

Sex (reff. = male) 1.00

 Female -0.46 -1.16 0.241 0.200

Co-infection HIV/TB (reff. = no) 1.00

 Yes -1.78 -2.58 -0.98 0.000*

Education level (reff. = secondary and above) 1.00

 Elementary and below -0.56 -1.29 0.163 0.130

Residence (reff. = urban) 1.00

 Rural 0.079 -0.55 0.708 0.808

Functional status (reff. = ambulatory) 1.00

 Working 0.602 -0.151 1.357 0.119

 Bedridden -1.74 -2.81 -0.68 0.002*

Opportunistic infection (reff. = yes) 1.00

 No 1.33 0.51 2.14 0.002*

Adverse drug events (reff. = no) 1.00

 Yes 0.068 -0.99 1.12 0.899

Age category (reff. =  < 2 years) 1.00

 2–5 years -0.43 -0.82 -0.04 0.033*

 6–14 years -1.02 -1.47 -0.56 0.000*

Adherence level (reff. = good) 1.00

 Fair 0.211 -0.75 1.17 0.667

 Poor 0.115 -0.52 0.75 0.725
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of high-quality and accessible datasets. These could be 
regarded as study gaps.

Conclusions
This study found that patients receiving ART experienced 
a significant change in CD4 cells over time. Because 
61.3% of the variation in CD4 cells explained between 
patients and the remaining 38.7% within patients, such 
nested data structures are often strong correlation evi-
dence. Co-infection of HIV/TB, functional status, age 
category of children, WHO clinical stage, and oppor-
tunistic infections are potential predictors of CD4 cells 
count change.

Therefore, special guidance and attention is also 
required, especially for those patients who have an 
opportunistic infections, higher WHO clinical stages, 
co-infections with HIV and TB, and bedridden func-
tional status.
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