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Abstract
Background Prior studies have reported conflicting results regarding the association of prenatal maternal depression 
with offspring cortisol levels. We examined associations of high levels of prenatal depressive symptoms with child 
cortisol biomarkers.

Methods In Project Viva (n = 925, Massachusetts USA), mothers reported their depressive symptoms using the 
Edinburgh Postnatal Depression Scale (EPDS) during pregnancy, cord blood glucocorticoids were measured at 
delivery, and child hair cortisol levels were measured in mid-childhood (mean (SD) age: 7.8 (0.8) years) and early 
adolescence (mean (SD) age: 13.2 (0.9) years). In the Generation R Study (n = 1644, Rotterdam, The Netherlands), 
mothers reported depressive symptoms using the Brief Symptom Inventory (BSI) during pregnancy, and child hair 
cortisol was measured at a mean (SD) age of 6.0 (0.5) years. We used cutoffs of ≥ 13 for the EPDS and > 0.75 for the 
BSI to indicate high levels of prenatal depressive symptoms. We used multivariable linear regression models adjusted 
for child sex and age (at outcome), and maternal pre-pregnancy BMI, education, social support from friends/family, 
pregnancy smoking status, marital status, and household income to assess associations separately in each cohort. We 
also meta-analyzed childhood hair cortisol results from both cohorts.

Results 8.0% and 5.1% of women respectively experienced high levels of prenatal depressive symptoms in Project 
Viva and the Generation R Study. We found no associations between high levels of maternal depressive symptoms 
during pregnancy and child cortisol biomarkers in either cohort.

Conclusions The present study does not find support for the direct link between high levels of maternal depressive 
symptoms and offspring cortisol levels.
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Background
Depression is a psychological condition characterized by 
symptoms that may include persistent sadness or a loss of 
interest in enjoyable activities [1]. In pregnancy, depres-
sive symptoms are associated with an increased risk of 
delivering a low birthweight or preterm infant [2]. Mater-
nal prenatal depressive symptoms may be associated with 
increased risks of developmental delay in infancy [3], 
internalizing and externalizing behaviors during child-
hood [4, 5], and social-emotional, cognitive, and motor 
development throughout childhood [6]. Other work has 
identified associations with maternal prenatal depres-
sive symptoms and attention problems during child-
hood [7], and maternal prenatal diurnal cortisol levels are 
associated with worsened cognitive development during 
infancy, even after accounting for the effect of maternal 
prenatal depressive symptoms [8]. The fetal program-
ming hypothesis [9], which proposes that adverse fetal 
exposures may predispose the infant to adverse health 
conditions later in life, provides a plausible explanation 
for the findings of all of these studies. Under this frame-
work, some potential mechanisms include alterations of 
levels of maternal cytokines and reactive oxygen species 
[10]. In addition, prenatal stress may downregulate the 
expression of placental 11β-hydroxysteroid dehydroge-
nase type 2 (11β-HSD2) [11, 12], which protects the fetus 
from exposure to excess maternal cortisol [13].

Physiological perturbations associated with prenatal 
depressive symptoms may alter the placenta’s protective 
mechanisms that foster healthy fetal growth and devel-
opment, potentially dysregulating the offspring’s hypo-
thalamic pituitary adrenal (HPA) axis and resulting in 
abnormal offspring cortisol [14] and cortisone [15] levels. 
Prior research in this area has suggested that the dysreg-
ulation of the HPA axis could be attributed to epigenetic 
mechanisms programmed in utero [16]. It has also been 
suggested that fetal programming of the HPA axis may 
occur via downregulation of receptors that regulate the 
functionality of the offspring’s HPA axis or via decreased 
sensitivity of the receptors [17]. Additionally, it may also 
occur by reducing the densities of the offspring’s gluco-
corticoid receptors and mineralocorticoid receptors [18]. 
Furthermore, potential mediating factors, such as mater-
nal cortisol levels [19] and birthweight [20] may play a 
role as well.

Previous studies of fetal programming of the HPA 
axis have showed contradictory results [21–27], with 
some studies identifying associations [24–26] and oth-
ers finding no association [21–23, 27]. Few studies have 
assessed longer-term outcomes during childhood [25] 
and adolescence [24]. Furthermore, most prior studies 

have used saliva to measure cortisol [21–26], which can 
be used to assess the diurnal distribution of cortisol lev-
els throughout the day [28]. Moreover, multiple studies 
have assessed associations between maternal prenatal 
depression and cortisol reactivity [29, 30], which refers to 
a spike in cortisol levels in response to a stressful event 
[31]. However, studies assessing baseline HPA axis activ-
ity, which refers to basal cortisol levels that experience 
natural diurnal variation when an individual is not expe-
riencing a stressful event [32], are scarce. Furthermore, 
few studies have assessed cord blood cortisol [27] or hair 
cortisol as outcomes, which respectively have the advan-
tage of assessing fetal HPA axis activity and chronic HPA 
axis activity during childhood.

The goal of this study was to assess associations of high 
levels of prenatal maternal depressive symptoms with 
cord blood glucocorticoids at birth and hair cortisol at 
mid-childhood and early adolescence in two prospective 
pre-birth cohorts. We hypothesized that high levels of 
prenatal depressive symptoms would be associated with 
higher levels of cortisol in exposed offspring at birth, 
mid-childhood, and early adolescence.

Methods
Study populations
The present study used data from two longitudinal pre-
birth cohorts, Project Viva and the Generation R Study.

Enrollment in Project Viva occurred from 1999 to 2002. 
We recruited women from obstetric clinics of Atrius 
Harvard Vanguard Medical Associates, a multispecialty 
group practice in eastern Massachusetts, USA, during 
their first prenatal visit. Inclusion criteria included bear-
ing a singleton pregnancy, the ability to complete study 
questionnaires in English, the desire to continue residing 
in eastern Massachusetts after delivery, and being at ≤ 22 
weeks of gestation at the time of enrollment. Of 2,128 live 
births, we excluded from the current analysis 1,189 chil-
dren who did not have cortisol at any of the time-point 
assessments (Fig. 1). A small number of families included 
2 sibling participants, thus we randomly excluded one 
sibling from each sibling pair using a random number 
generator in statistical software, which excluded an addi-
tional 14 children. Data from children of all races/eth-
nicities was included for the cord blood analyses, but due 
to the potential that variation in hair growth rates and 
textures by race/ethnicity may affect cortisol assays, only 
white children were included in the hair cortisol analyses 
[33]. Mothers reported on child race/ethnicity in early 
childhood, and we imputed missing values with maternal 
race/ethnicity. All mothers provided written informed 
consent, and the institutional review board of Harvard 
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Pilgrim Health Care approved the study. We conducted 
the study in accordance with the guidelines from the 
Declaration of Helsinki.

Secondly, we used data from the Generation R Study. 
To be eligible for enrollment, women must have been 
expected to deliver between April 2002 and January 
2006, and to have resided in Rotterdam, the Netherlands. 
The Generation R Study enrolled 6,502 eligible white 
participants, 3,877 of whom attended the study visit at 
six years of age. The present study excluded those with 
missing hair cortisol measurements (n = 2,160) in addi-
tion to twins (n = 42). Participants were missing hair cor-
tisol measurements because they either did not visit the 
research center or were not approached for hair collec-
tion [34]. Hair collection began after the six-year study 
visits had already started, and it was offered universally 
to all participants thereafter [34]. We included only 
white participants in all hair cortisol analyses involving 
this cohort. Among sibling pairs, we randomly selected 
one sibling for inclusion in the present study, and we 
excluded the other one. This excluded an additional 31 
children from the analyses. We included 1,644 children 
in the analyses (Fig.  1). The Medical Ethical Committee 
of the Erasmus Medical Center approved the study. We 
obtained written informed consent from all participants 
at enrollment, and we conducted the study in accordance 

with the ethical standards outlined in the Declaration of 
Helsinki.

Prenatal maternal depressive symptoms
In Project Viva, mothers completed the Edinburgh Post-
natal Depression Scale (EPDS) [35] at the mid-pregnancy 
visit (median 27.7 weeks gestation, IQR 26.6–28.7). The 
EPDS assesses depressive symptoms over the preceding 
seven days from when it is completed. The question-
naire has been validated for use during the pregnancy 
period [36]. The EPDS consists of 10 items, each of which 
is measured on a scale of 0–3 [35]. The EPDS is scored 
by summing up the responses to each of the 10 items; a 
higher score indicates greater levels of depressive symp-
toms. A score of ≥ 13 (on a scale of 0–30) indicates high 
levels of depressive symptoms [37]. The EPDS has been 
shown to have high validity for detecting clinical depres-
sion [35]. Cronbach’s alpha for the EPDS was 0.86 in our 
sample.

In the Generation R Study, mothers completed the Brief 
Symptom Inventory (BSI) [38] (median 13.2 weeks gesta-
tion, IQR 12.1–15.1). The BSI is a validated questionnaire 
that assesses symptoms of psychopathology over the 
past seven days. The BSI includes a subscale for assess-
ing depressive symptoms, which has been shown to have 
strong agreement with the EPDS [39]. We calculated the 
total depressive symptom score from this questionnaire 

Fig. 1 Flowchart of the Study Samples
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based on six items used to assess depressive symptoms 
[38]. The score on the survey ranges from 0 to 4 with a 
higher score denoting greater depressive symptoms. A 
score of > 0.75 indicates high levels of depressive symp-
toms [40]. For the depression subscale, Cronbach’s alpha 
was 0.80.

Cord blood glucocorticoids
Cord blood glucocorticoids were measured only in Proj-
ect Viva using umbilical cord venous blood at birth. The 
collection, processing, and storage of cord blood samples 
for the measurement of glucocorticoids in Project Viva 
have been described in detail elsewhere [41]. Briefly, 
cord blood samples were collected via syringe and needle 
from the umbilical vein by a hospital midwife or obstetri-
cian. The collection of the cord blood was done carefully 
to prevent maternal contamination. The samples were 
refrigerated immediately after collection. The time of 
refrigeration depended on the time of delivery. Following 
refrigeration, the samples were separated into aliquots 
of serum, red blood cells, and white blood cells. A small 
validation study was conducted to confirm that refrigera-
tion of the samples did not influence the glucocorticoid 
levels. Cord blood cortisol (MP Biomedicals, UK) and 
cortisone (Immunovation Ltd, Southampton, UK) were 
measured using validated radioimmunoassay techniques 
[42, 43] and radioimmunoassay kits for each glucocorti-
coid [44]. We calculated the ratio of cord blood cortisol 
to cortisone using the mean of duplicate cortisol and cor-
tisone assays. The intra-assay coefficients of variation for 
cortisol were 5.6% and for cortisone 5.2%.

Offspring hair cortisol
Offspring hair cortisol was measured at mid-childhood 
(mean (SD) age: 7.8 (0.8) years) and early adolescence 
(mean (SD) age: 13.2 (0.9) years) in Project Viva [45, 46], 
and at 6.0 (0.5) years of age in the Generation R Study 
[47]. Both studies used the same procedures for measur-
ing hair cortisol. Research staff collected hair samples 
from the posterior vertex region of the scalp as close to 
the scalp as possible. Both cohorts assayed the proximal 
3  cm of the collected hair to ensure that cortisol mea-
surements reflected HPA axis activity over approximately 
the most recent three months. A laboratory staff mem-
ber washed the hair sample with isopropanol, and then 
extracted cortisol using liquid chromatography tandem 
mass spectrometry [48]. The intra-assay coefficient of 
variation for hair cortisol was 9.6% in Project Viva, and 
the intra-individual coefficient of variation for hair corti-
sol was 14.0% in the Generation R Study.

Other variables
We assessed self-reported demographic information 
at enrollment during pregnancy using questionnaires. 

We dichotomized maternal education as college gradu-
ate yes/no. Household income was dichotomized as an 
annual income >$40,000, yes/no for Project Viva and 
≥ 1600€ per month for the Generation R Study, which is 
the approximate mean income for individuals residing in 
Rotterdam [49]. We dichotomized marital status based 
on whether the woman was married/cohabiting with her 
partner yes/no. We calculated maternal pre-pregnancy 
body mass index (BMI) based on height measured at 
enrollment and self-reported weight [50, 51]. We catego-
rized smoking status into three groups: never smoked, 
former smoker, and smoker during pregnancy. We mea-
sured social support from friends/family on the early 
pregnancy questionnaire using five questions in Project 
Viva [52]. In the Generation R Study, we used the Family 
Assessment Device [53] to measure social support from 
family. We used the measure of social support from this 
questionnaire as a proxy for social support from friends/
family.

Statistical analysis
Statistical modeling
We performed univariable and multivariable linear 
regression models to examine associations of high lev-
els of prenatal maternal depressive symptoms with cord 
blood glucocorticoids (in Project Viva) and with child 
hair cortisol (in both cohorts). We logarithmically trans-
formed skewed outcome variables prior to analysis, 
including the hair cortisol outcomes. We standardized all 
continuous covariates and outcome variables (including 
the logarithmically transformed hair cortisol outcomes) 
that were included in the models using cohort specific 
internal z-scores.

For minimally adjusted models, we included child age 
(at hair collection)/gestational age (at delivery) and sex, 
plus race/ethnicity for cord blood outcomes. Hair cortisol 
analyses included only white children. For fully adjusted 
models, we additionally adjusted for maternal pre-preg-
nancy BMI, education, friend/family social support, 
pregnancy smoking status, marital status, and household 
income. We also fit a fully adjusted longitudinal model in 
Project Viva including both hair cortisol measurements 
to account for potential correlation between the two 
measurements. Additionally, we assessed effect modi-
fication by child sex via stratified analyses and tests for 
interaction.

Meta-analyses
We performed a meta-analysis using methods as 
described elsewhere [54] to examine the association 
between high levels of prenatal depressive symptoms 
and childhood hair cortisol levels across cohorts. We 
used a random effects model under the assumption that 
the effect size may differ between the Project Viva and 
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Generation R cohorts. The meta-analyses involved com-
bining hair cortisol measurements from the Generation 
R Study at a mean (SD) age of 6.0 (0.5) years with mea-
surements taken at a mean (SD) age of 7.8 (0.8) years (in 
mid-childhood) in Project Viva.

Sensitivity analyses
We performed analyses excluding nonwhite participants 
for the cord blood outcomes in Project Viva to obtain a 
comparable sample to the hair cortisol analyses. We also 
conducted sensitivity analyses in both cohorts treating 
prenatal depressive symptoms as a continuous variable.

Missing Data
In all analyses, we used multiple imputation [55] to han-
dle missing data on prenatal depressive symptoms and on 
all covariates, with the exception of child race/ethnicity. 
We did not impute child race/ethnicity in any analyses 
of hair cortisol due to the pre-specified requirement that 
analyses include only white children. Prior to imputation, 
there was a substantial amount of missing data in both 
cohorts. The approach to imputation included filling in 
missing values for prenatal depressive symptoms on a 
continuous scale.

We performed all meta-analyses and analyses of the 
Project Viva data in SAS (version 9.4), and we created 
all figures including the Project Viva data in R (version 
3.6.1). We performed all analyses using data from the 
Generation R Study in R (version 4.0.5).

Results
Demographic characteristics of the study participants
Table  1 presents characteristics of Project Viva partici-
pants overall and according to level of prenatal depressive 
symptoms. Mean (SD) age at enrollment was 33.1 (4.5) 
years. In pregnancy, 65 (8.0%) women reported high lev-
els of prenatal depressive symptoms. Among the included 
sample, 51.4% of the children were female. Women who 
experienced high levels of prenatal depressive symp-
toms were less likely to have a college degree or higher 
(70.8% vs. 78.6%) and more likely to smoke during preg-
nancy (12.3% vs. 7.5%), compared to women who did not. 
Additionally, a smaller percentage of women who experi-
enced high levels of prenatal depressive symptoms were 
married or cohabitating with their partner (83.1% vs. 
97.6%), and a smaller percentage had an annual house-
hold income >$40,000 (81.4% vs. 94.6%). At mid-child-
hood, median (IQR) hair cortisol was 0.97 (0.48, 2.35) pg/
mg in children born to women who did not experience 
high levels of prenatal depressive symptoms and 0.92 
(0.52, 2.57) pg/mg in children born to women who did. 
At early adolescence, median (IQR) hair cortisol was 2.10 
(1.12, 4.15) and 2.89 (1.36, 6.80) pg/mg in each of these 

two respective groups (Fig. 2). The Spearman correlation 
between the two hair cortisol measurements was 0.13.

Table  2 presents characteristics of the Generation R 
Study participants overall and according to the level 
of prenatal depressive symptoms. Mean (SD) maternal 
age at enrollment was 32.0 (4.3) years. In pregnancy, 65 
(5.1%) women reported high levels of depressive symp-
toms. Half of the children in this cohort were female 
(50.3%). In this cohort, a smaller percentage of women 
who experienced high levels of prenatal depressive symp-
toms had a college degree or higher compared to those 
who did not experience them (45.9% vs. 65.7%). A greater 
percentage of women smoked during pregnancy among 
those who experienced high levels of prenatal depres-
sive symptoms compared to those who did not (32.2% vs. 
11.8%). Additionally, a smaller percentage of women who 
experienced high levels of prenatal depressive symptoms 
were married or cohabitating with their partner (76.2% 
vs. 95.8%), and a smaller percentage had an annual house-
hold income ≥ 1600€ per month (77.2% vs. 95.2%). The 
median (IQR) hair cortisol at age six was 1.36 (0.75, 2.66) 
pg/mg among children whose mothers did not experi-
ence high levels of prenatal depressive symptoms and 
1.32 (0.67, 3.66) pg/mg among those whose mothers did 
(Fig. 3). A comparison of sociodemographic characteris-
tics between the 1,644 children included in our analyses 
and the 6,502 eligible participants from the Generation R 
Study is shown in eTable 1. Mothers of children included 
in the current analyses were older, more educated, and 
less likely to smoke during pregnancy than mothers of 
children who were not included.

Univariable and multivariable regression analyses
Table 3 presents results of the analyses between high lev-
els of prenatal depressive symptoms and cord blood glu-
cocorticoids in the Project Viva data. We did not observe 
any association in the unadjusted or the fully adjusted 
models for cortisol (β = 0.01 cohort specific internal 
z-scores, 95% CI -0.42, 0.45), cortisone (β = 0.10 cohort 
specific internal z-scores, 95% CI -0.33, 0.53) or the ratio 
of cord blood cortisol to cortisone (β = 0.12 cohort spe-
cific internal z-scores, 95% CI -0.32, 0.55).

Table  3 also presents the results of the parallel analy-
ses of hair cortisol conducted separately using data from 
each study and the meta-analyses of hair cortisol. We did 
not observe any associations in the fully adjusted mod-
els in the Generation R data at six years of age (β = 0.02 
cohort specific internal z-scores, 95% CI -0.23, 0.26) 
and Project Viva data at mid-childhood (β = 0.13 cohort 
specific internal z-scores, 95% CI -0.21, 0.47). We also 
noted null associations in early adolescence in Project 
Viva (β = 0.18 cohort specific internal z-scores, 95% CI 
-0.16, 0.52). Consistent with these results, we observed 
no association in the longitudinal model for Project Viva 
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(β = 0.15 cohort-specific internal z-scores, 95% CI -0.10, 
0.39). Hair cortisol levels were similar between prenatally 
exposed and unexposed children in the fully adjusted 
meta-analysis (β = 0.06 cohort specific internal z-scores, 
95% CI -0.14, 0.26).

In sensitivity analyses including only white children for 
the cord blood outcomes (eTable 2), we did not observe 
any association in unadjusted and fully adjusted models. 
Similarly, no associations were found using the continu-
ous scores of the EPDS and the BSI as predictors in Proj-
ect Viva and the Generation R Study. Lastly, we did not 
find evidence of effect modification by child sex in either 
study for any of the outcomes at birth, childhood, or early 
adolescence.

Discussion
Principal findings
This study examined the associations of high levels of 
prenatal maternal depressive symptoms with cord blood 
glucocorticoids and offspring hair cortisol levels in child-
hood and early adolescence in Project Viva and hair cor-
tisol levels in the Generation R Study. In both studies, we 
did not observe any association between prenatal expo-
sure to maternal depressive symptoms and cortisol bio-
markers at any time point. These results suggest that high 
levels of maternal depressive symptoms may not alter 
levels of cord blood glucocorticoids or child hair cortisol.

Interpretation
The theories of fetal programming and the developmen-
tal origins of health and disease [9] posit that adverse 
fetal exposures may lead to adverse health outcomes later 
in life. Specifically, fetal programming of the HPA axis 
may occur via dysregulation of glucocorticoid and min-
eralocorticoid receptors [17, 18]. Epigenetic mechanisms 
may also play a role, since maternal prenatal antidepres-
sants have been associated with differential DNA meth-
ylation in the Project Viva and Generation R cohorts 
[56]. Additionally, prior research has implicated prenatal 
stress in the differential methylation of genes that regu-
late the functionality of the HPA axis [57]. However, a 
recent meta-analysis did not identify any associations 
between maternal prenatal anxiety and differential fetal 
DNA methylation in cord blood [58].

Our findings concur with previous work that found no 
association between high levels of prenatal depressive 
symptoms and child cortisol levels [22]. Our results also 
agree with a previous study conducted in the Generation 
R cohort, which found that maternal psychopathology 
more broadly was not associated with child hair cortisol 
[59]. However, that study found that maternal psycho-
pathology, prenatal depressive symptoms, somatization, 
interpersonal sensitivity, anxiety, hostility, phobic anxiety, 
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paranoid ideation, and psychoticism were all positively 
associated with child hair cortisone [59].

Our results run counter to prior research that identi-
fied a blunted salivary cortisol awakening response at age 
15 in children who were prenatally exposed to high levels 
of maternal prenatal depressive symptoms [24] and other 
research identifying an association between high levels 
of maternal prenatal depressive symptoms and night-
time salivary cortisol levels at ages six to nine [25]. Our 
results are also not consistent with prior work that found 
an association between high levels of maternal prenatal 
depressive symptoms and infant salivary cortisol reactiv-
ity [26].

These inconsistencies across studies may be due to dif-
ferences in the frequency and way in which cortisol was 
measured. In particular, the fact that hair cortisol mea-
sured in a 3  cm length of hair reflects long-term HPA 
axis activity over a period of about three months [60], 
whereas salivary cortisol measures acute HPA axis activ-
ity [61] may explain the discrepancies across studies.

Additionally, the discrepancies may be explained by 
differences in study size, confounding factors, and the 
socioeconomic compositions of the cohorts. For exam-
ple, prior work has accounted for additional character-
istics such as BMI during adolescence, smoking status 
during adolescence, and alcohol consumption during 
adolescence [24], but we did not adjust for these variables 
because they are post-exposure covariates that would 
likely be mediators, not confounders. Another prior 
study that identified an association included only four 
women with a university education [26], which could 
explain the discrepancies with the present study since we 
assessed two highly educated cohorts. Since our cohorts 
were highly educated, they likely included a smaller pro-
portion of women with high levels of prenatal depressive 
symptoms than the general population. For example, pre-
vious research conducted among pregnant women born 
in Southwest England reported a prevalence of high lev-
els of prenatal depressive symptoms of 17% and a preva-
lence of high levels of prenatal depressive symptoms of 
25% in their daughters [62], both of which exceed the 

Fig. 2 Distribution of Hair Cortisol in Project Viva by Levels of Prenatal Depressive Symptoms

 



Page 9 of 13Cohen et al. BMC Pediatrics          (2023) 23:540 

prevalence observed in either cohort in the present study. 
For comparison, the current study reported a prevalence 
of 8.0% in Project Viva and a prevalence of 5.1% in the 
Generation R Study. In addition, this previous study 
reported that < 50% of women in both generations had 
attained advanced level education qualifications [62], 
whereas college educated women comprised a majority 
of participants in both cohorts included in the current 
study.

Strengths of the study
The present study has several strengths. Firstly, the inclu-
sion of meta-analyses to obtain a robust estimate of 
the effect of high levels of maternal prenatal depressive 
symptoms on child hair cortisol levels is a strength, as it 
allowed us to obtain effect estimates pooled across both 
cohorts. Furthermore, the use of two data sources made 
our study more informative and allowed us to include 
two different cohorts that were enrolled in different clini-
cal settings in our analyses, and the slightly different con-
founding structures of the two cohorts make our results 
more generalizable. Using hair cortisol as an outcome 
provided us with a robust and reliable physiological mea-
sure of chronic child HPA axis activation [60]. For this 

reason, we believe that the assessment of hair cortisol as 
an outcome fills a notable gap in the literature and adds 
to a body of literature that has primarily examined diur-
nal cortisol secretion and cortisol reactivity using saliva. 
Since most prior literature has examined salivary corti-
sol metrics, we also believe that our assessment of cord 
blood cortisol as a measure of fetal HPA axis activity 
could be seen as a strength.

Limitations of the data
Despite its strengths, the present study has several limi-
tations. Prenatal depressive symptoms were assessed 
in a self-reported questionnaire in Project Viva and the 
Generation R Study and depression was not clinically 
diagnosed by a physician. We also cannot generalize the 
results of the hair cortisol analyses to nonwhite racial 
groups given that we performed analyses only in white 
children due to differences in hair protein structure and 
cortisol storage making values incomparable. Addition-
ally, we conducted our analyses in two socioeconomically 
advantaged cohorts, so our results cannot be general-
ized to more disadvantaged populations. Furthermore, 
depressive symptoms assessed at a single time point at 
mid-pregnancy may not represent the maternal mood 

Table 2 Demographic Characteristics of Pregnant Women and their Children in the Generation R Study
Overalla

n = 1644
BSI ≤ 0.75
n = 1212 (95%)

BSI > 0.75
n = 65 (5%)

Mother
Age at enrollment (years) (mean (SD)) 32.0 (4.3) 31.9 (4.1) 31.0 (5.2)

Pre-pregnancy BMI (kg/m2) (mean (SD)) 23.2 (4.1) 23.2 (4.0) 23.1 (4.9)

Education (college graduate vs. not a college graduate) (N (%))

 No 572 (35.9) 412 (34.3) 33 (54.1)

 Yes 1023 (64.1) 790 (65.7) 28 (45.9)

Pregnancy smoking status (N (%))

 Never 1165 (78.3) 873 (78.6) 32 (54.2)

 Former 146 (9.8) 106 (9.5) 8 (13.6)

 Smoked during pregnancy 177 (11.9) 131 (11.8) 19 (32.2)

Marital Status (N (%))

 Not married or cohabitating 82 (5.2) 50 (4.2) 15 (23.8)

 Married or cohabitating 1496 (94.8) 1132 (95.8) 48 (76.2)

Annual household income (N (%))

 < 1600€/month (basic needs level) 81 (5.5) 53 (4.8) 13 (22.8)

 ≥ 1600€/month (basic needs level) 1392 (94.5) 1044 (95.2) 44 (77.2)

Social support (points) (mean (SD)) 3.6 (0.4) 3.6 (0.4) 3.2 (0.5)

Child at birth
Child sex (N (%))

 Male 817 (49.7) 585 (48.3) 37 (56.9)

 Female 827 (50.3) 627 (51.7) 28 (43.1)

Gestational age (weeks) (mean (SD)) 40.0 (1.8) 40.1 (1.6) 40.0 (2.2)

Child at six-year study visit
Age at measurement of hair cortisol (years) (mean (SD)) 6.0 (0.5) 6.0 (0.5) 6.0 (0.4)

Hair cortisol at age six (pg/mg) (median (IQR)) [min, max] 1.39 (0.76, 2.86) [0.13, 218.79] 1.36 (0.75, 2.66) [0.13, 159.01] 1.32 (0.67, 3.66) [0.20, 80.61]
a The “Overall” column includes participants with missing BSI scores. For these participants, we imputed the missing BSI score using multiple imputation in all 
analyses
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throughout the entire duration of the pregnancy. How-
ever, we do not believe that levels of maternal depres-
sive symptoms would considerably differ throughout 
the course of the pregnancy, especially given that pre-
natal depression is a strong risk factor for postpartum 
depression [63]. In addition, the small number of par-
ticipants who experienced high levels of prenatal depres-
sive symptoms in both cohorts may have resulted in low 
statistical power, which could be a potential explanation 
for our null findings. Furthermore, we did not consider 
potential moderating factors that could explain a poten-
tial link between high levels of prenatal depressive symp-
toms and child cortisol levels because we did not observe 
evidence for the association in our analysis. Our use of 
self-reported data on weight made our calculations of 
maternal pre-pregnancy BMI less reliable. Furthermore, 
we were unable to assess the cord blood outcomes in the 
Generation R Study because we did not have the data 
available. Finally, the use of cord blood and hair corti-
sol did not allow us to characterize diurnal variation in 
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cortisol levels, which deserves further investigation by 
future research.

Conclusions
Using data from two prospective pre-birth studies, Proj-
ect Viva and the Generation R Study, we did not observe 
an association between high levels of prenatal maternal 
depressive symptoms and offspring cord blood cortico-
steroids at birth, and hair cortisol levels in childhood or 
adolescence. However, our results do not provide defini-
tive evidence that a true association does not exist, so 
future research is needed in other cohorts to comprehen-
sively answer the research question. Future studies would 
benefit from examining other perinatal conditions such 
as psychopathologies, stress or adverse postpartum envi-
ronment in relation to offspring cortisol levels. Moreover, 
future research should also examine these relationships 
in a more racially/ethnically diverse sample using appro-
priate measures of HPA axis activation. Conducting 
research in these areas is an essential step in develop-
ing a comprehensive understanding of whether and how 
maternal prenatal depressive symptoms may affect long-
term child health.
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