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Abstract 

Background  Respiratory support is crucial for newborns with underdeveloped lung. The clinical outcomes 
of patients depend on the clinician’s ability to recognize the status underlying the presented symptoms and signs. 
With the increasing number of high-risk infants, artificial intelligence (AI) should be considered as a tool for personal‑
ized neonatal care. Continuous monitoring of vital signs is essential in cardiorespiratory care. In this study, we devel‑
oped deep learning (DL) prediction models for rapid and accurate detection of mechanical ventilation requirements 
in neonates using electronic health records (EHR).

Methods  We utilized data from the neonatal intensive care unit in a single center, collected between March 3, 2012, 
and March 4, 2022, including 1,394 patient records used for model development, consisting of 505 and 889 patients 
with and without invasive mechanical ventilation (IMV) support, respectively. The proposed model architecture 
includes feature embedding using feature-wise fully connected (FC) layers, followed by three bidirectional long short-
term memory (LSTM) layers.

Results  A mean gestational age (GA) was 36.61 ± 3.25 weeks, and the mean birth weight was 2,734.01 ± 784.98 g. 
The IMV group had lower GA, birth weight, and longer hospitalization duration than the non-IMV group (P < 0.05). Our 
proposed model, tested on a dataset from March 4, 2019, to March 4, 2022. The mean AUROC of our proposed model 
for IMV support prediction performance demonstrated 0.861 (95%CI, 0.853–0.869). It is superior to conventional 
approaches, such as newborn early warning score systems (NEWS), Random Forest, and eXtreme gradient boosting 
(XGBoost) with 0.611 (95%CI, 0.600–0.622), 0.837 (95%CI, 0.828–0.845), and 0.0.831 (95%CI, 0.821–0.845), respectively. 
The highest AUPRC value is shown in the proposed model at 0.327 (95%CI, 0.308–0.347). The proposed model per‑
formed more accurate predictions as gestational age decreased. Additionally, the model exhibited the lowest alarm 
rate while maintaining the same sensitivity level.
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Conclusion  Deep learning approaches can help accurately standardize the prediction of invasive mechanical ventila‑
tion for neonatal patients and facilitate advanced neonatal care. The results of predictive, recall, and alarm perfor‑
mances of the proposed model outperformed the other models.
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Background
Adaptation to the extra-uterine environment is critical for 
the survival of neonates, and respiratory support is crucial 
in the neonatal intensive care unit (NICU). Particularly 
in preterm infants, lung immaturity can cause respira-
tory failure (RF) [1]. Every patient has various etiologies, 
symptoms, and progression of lung disease and differ-
ent types of respiratory support devices used for treat-
ment [2]. In the case of severe RF in neonates, invasive 
mechanical ventilation has been considered a life-saving 
treatment [1, 2]. The administration of therapies such as 
surfactant replacement or corticosteroids differs between 
NICUs depending on the physician’s experience [3]. Simi-
larly, decisions regarding invasive mechanical ventilation 
(IMV) use also differ. The clinical outcomes of patients 
depend on the clinician’s ability to recognize the underly-
ing status of the presented symptoms and signs. Multiple 
factors influence RF; therefore, accurately identifying neo-
nates at risk for developing RF is a significant challenge 
for clinicians. Despite clinical advances, newborn morbid-
ity and mortality remain high globally [4].

NICUs continuously monitor the physiological param-
eters of neonates, and physicians are confronted with 
plenty of data from many patients stored in electronic 
health records (EHR). Identifying the most important 
information required to make care decisions has become 
increasingly difficult. Furthermore, false-positive alarms 
can occasionally lead to alarm fatigue, negatively influ-
encing clinicians [5]. The limited ability of humans to 
process such an enormous amount of data can lead to 
information overload. Thus, Artificial intelligence (AI) 
has begun to penetrate the healthcare systems in the 
NICU [6–10]. AI techniques have been developed over 
the past few decades [11]. These techniques range from 
traditional machine learning (ML) classifiers, such as 
eXtreme gradient boosting (XGBoost), Random For-
est, support vector machine (SVM), and linear discri-
minant analysis (LDA), to deep learning (DL) models, 
such as artificial neural networks (ANN), convolutional 
neural networks (CNN), and long short-term models 
(LSTM) [12]. DL techniques help analyze complex sig-
nals with vast amounts of information [13]. Establishing 
high-quality, valuable, and multidimensional neonatal 
datasets can provide accurate prediction models. With 

the increasing number of high-risk infants, AI should 
be considered as a tool for personalized neonatal care; 
however, it is not widely used for newborns, and there 
are only a few DL studies related to neonatal lung dis-
ease [10]. Recent studies have investigated the potential 
of ML in predicting a wide range of neonatal outcomes, 
including sepsis, morbidity, retinopathy of preterm 
birth, and neural development [14–17].

This study sought to develop DL prediction models for 
the swift and precise detection of mechanical ventilation 
requirements in neonates using EHR. Moreover, our goal 
was to create a DL model that can be applied across all 
hospital tiers using data obtained non-invasively.

Materials and methods
Study design and participants
As shown in Fig.  1, the data used in this study were 
collected from the NICU of Pusan National Univer-
sity Yangsan Hospital in Korea from March 3, 2012, 
to March 4, 2022. During this period, data from 1,495 
patient data were collected. Three patients discharged 
before admission and 59 patients with a data record of 
less than 8 h were excluded from the dataset. In addi-
tion, 27 patients who were intubated at admission and 
12 patients who had no record for 8 h prior to its occur-
rence were excluded from the experiment because the 
model predicted the timing of intubation 8 h in advance. 
Finally, the data used for the model development con-
sisted of 1,394 patients, including 505 patients in the 
IMV group and 889 patients who were not.

Risk factor selection
The factors learned by this model are widely used 
risk factors important for predicting IMV support in 
neonates [1, 18, 19]. These factors are mainly composed 
of demographic characteristics and vital data, which can 
be obtained in a non-invasive manner and are essential 
for measurement in most NICUs from primary to tertiary 
hospitals, including gestational age (GA), birth weight, 
height, head and chest circumference, sex, delivery mode, 
maternal history, blood pressure (BP), heart rate (HR), 
pulse rate (PR), respiratory rate (RR), body temperature 
(BT), and total input and output.
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Annotation process
In this study, IMV was defined as occurring in the 
following two situations based on patient data:

Insertion or reinsertion of an endotracheal tube
Use of a ventilator

Additionally, because the purpose of this model was 
to predict intubation 8 h in advance, events up to 8 h 
prior to the occurrence of intubation were labeled 
as events in the dataset. We directly annotated the 
intubation date and time based on the text-type nursing 
records. Referring to the nursing record, “Intubation 
was performed,” preprocessing was performed to 
determine what text meant the application of IMV.

The proposed approach
Data preprocessing
Figure  2 illustrates several data preprocessing tech-
niques, such as artifact removal, forward filling, and 
data normalization, used in the study. Experimen-
tal sciences utilize a theoretical model to represent 
real-world phenomena, and within particle physics, 
applying a “5 sigma” criterion is conventional when 
announcing a discovery. Therefore, any data points not 
included within the 5-sigma range were deemed anom-
alies and treated as artifacts, and were thus excluded 
from the analysis. EHR data often contain missing 
values that can interfere with the development of AI 
models. To address this issue, data imputation is com-
monly used and can effectively improve the quality of 

the data and enhance the performance of the model 
[20]. This study used the forward-fill method as the 
primary imputation method. If no previous data were 
available, the global median values of the features were 
inserted. Lastly, data normalization was performed for 
each feature.

Sequence windowing
Incorporating information from adjacent records can 
be beneficial and is commonly employed when training 
with EHR data and learning from records. Therefore, 
in this experiment, we used a window of 60 records 
for training. We also considered additional factors, 
such as the measurement time of each record, the time 
difference between consecutive measurements, and the 
variation in values between the previous measurement 
factors (Additional file 1: Fig. 1).

Data resampling
The class imbalance problem is widely recognized as 
a significant challenge when training AI models; our 
NICU data is no exception in this regard. The number of 
EHRs of 1,394 patients used in the model development 
was 216,490. Of these, EHRs for IMV accounted for 
only approximately 3.39% (7,329). We used a data 
resampling technique to address the problem [21]. 
Ideally, there would be a 1:1 ratio between event data 
and normal data. However, in such cases, the number 
of normal data instances involved in the training 
process might decrease, leading to potential trade-offs. 
In our optimization experiments, we introduced the 
normal-event ratio as a hyperparameter and compared 
the results to address this issue. The search space for 

Fig. 1  Flow chart of the study design
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the normal-event ratio was set to 1:1, 2:1, and 4:1. 
Upon evaluation, the 4:1 ratio demonstrated the best 
performance; thus, the 4:1 ratio was used.

Model training and validation
Model development
The training, validation, and test datasets were set 
from March 4, 2012 to March 3, 2016, from March 4, 

Fig. 2  Overall methodology of data preparation, pre-processing, DeepRF, and evaluation in neonatal respiratory failure prediction model
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2016 to March 3, 2019, from March 4, 2019 to March 
3, 2022, respectively. Considering the data distribu-
tion shift, we validated data from a time close to the 
test set rather than using cross-validation. The pro-
posed model architecture is as follows (Additional 
file 1: Table 2). First, feature embedding based on fea-
ture-wise fully connected (FC) layers was performed, 
which was then input into three bidirectional LSTM 
layers [22]. After passing through the five FC layers, 
the final RF risk score was obtained using softmax. 
The detailed model architecture has been described in 
the Additional file  1: Table  2. Hyperparameter tuning 
was performed using the random-search method, with 
experiments conducted over 100 times [23]. For regu-
larization, dropout was applied. The hyperparameter 
tuning results indicated that the optimal dropout ratio 
was 0.6 for the FC layer and 0.3 for the LSTM layer 
without regularizers. The AdamW optimizer was used 
during model training, and binary cross-entropy was 
used as the loss function [24, 25].

Comparison with existing methods
In this study, we compared the proposed model with 
the following methods: First, we used the newborn 
early warning score system (NEWS), which has been 
used in clinical settings, and an ML algorithm-based 
method that has been widely used because of its good 
performance [26, 27]. For the ML-based method, we 
used Random Forest for the decision tree series and 
XGBoost for the boosting series using the same input 
feature as the proposed model [28, 29]. Additionally, 
the definition of RF depends on the availability of PaO2 
and FiO2. Continuous monitoring of pulse oximetry-
derived hemoglobin oxygen saturation (SpO2) can be 
utilized in the clinical setting to estimate the present 
value of PaO2 [30, 31]. From this perspective, RF can 
be predicted solely by using SpO2 and FiO2. Therefore, 
we compared XGBoost using only two features: SpO2 
and FiO2 [32].

Evaluation methods
To compare predictive performance, we used the area 
under the receiver operating characteristic (AUROC) 
and the area under the precision-recall curve (AUPRC) 
metrics and compared the sensitivity, positive predictive 
value (PPV), negative predictive value (NPV), positive 
likelihood ratio (LHR)+, and negative likelihood ratio 
(LHR-) at the same specificity as the NEWS value. To 
compare the alarm performance, we calculated the 
mean alarm count per day (MACPD) per 100 beds 
and calculated MACPD at the same sensitivity for all 
methods.

Software
EHR entries were extracted and pre-processed using the 
NumPy (version 1.20.3) and Pandas (version 1.5.2) librar-
ies of the Python programming language, specifically ver-
sion 3.8.13 (Python Software Foundation, Fredericksburg, 
VA, USA). Statistical analyses between groups were per-
formed using the SciPy package version 1.10.0. Random 
Forest was implemented during model training using 
Scikit-learn (Scikit-learn Contributors, version 1.2.0). 
The XGB algorithm was applied using the XGBoost pack-
age (version 1.7.3). The evaluation was conducted using 
the Scikit-learn package along with the Shapley Additive 
exPlanations (SHAP) values (version 0.41.0).

Results
Baseline characteristics
A total of 1,394 neonatal patients were included in this 
study, with a mean GA of 36.61±3.25 weeks (Table 1). The 
mean birth weight and height were 2,734.01 ± 784.98  g 
and 46.93±4.33  cm, respectively. Intrauterine growth 
restriction (IUGR) in the 10th percentile was 12.3%, and 
that in the 3rd percentile was 5.6%. Vaginal delivery was 
performed in 67.0% of the patients, and 59.7% were male. 
The IMV group was more likely to have a lower GA, birth 
weight, and height and a higher clinical risk index for 
babies (CRIP II) score than the non-IMV group (P <0.05). 
The duration of hospitalization was notably longer in the 
IMV group (32.06±31.93 vs. 8.98±7.91 days) than in the 
non-IMV group. Respiratory distress syndrome (RDS), 
patent ductus arteriosus (PDA), bronchopulmonary dys-
plasia (BPD), premature retinopathy of prematurity (ROP), 
and necrotizing enterocolitis (NEC) were more frequently 
observed in the IMV group (P<0.05). The overall mortality 
rate was 3.1%.

Predictive performance
Our first experiment compared the predictive perfor-
mances of various approaches. Fig. 3a shows the receiver 
operating characteristic (ROC) curves for different mod-
els. The proposed model achieved the highest AUROC 
(0.861) compared with the other models. Random Forest 
and XGBoost had similar performances, with AUROCs 
of 0.837 and 0.831, respectively. The XGBoost model, 
which utilized only two features (SpO2 and FiO2), also 
demonstrated an AUROC of 0.742. Although this value 
was lower than the AUROC achieved by the model incor-
porating all the selected features, it outperformed NEWS 
(AUROC: 0.611). In Fig.  3b, the precision-recall curves 
are compared. The developed model exhibited the high-
est AUPRC (0.327). Unlike the AUROC results, XGBoost 
had a better AUPRC than Random Forest (0.257 vs. 
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0.176). The XGBoost model, which utilized only two fea-
tures, had a lower performance (AUPRC: 0.090) than the 
model that incorporated all selected features; it outper-
formed NEWS (AUPRC: 0.019).

Significant differences were observed in the terms of 
GA and birth weight between the IMV and non-IMV 
groups (Table 1). Based on these factors, we performed a 
subgroup analysis. In Additional file 1: Fig. 2 (a), We com-
pared the AUROC of all models for each group according 
to the GA. The proposed model performed better for all 
groups and provided more accurate predictions as GA 
decreased. However, the proposed model and Random 
Forest showed similar performances in the group with a 
gestation period of 35 weeks. Additionally, as shown in 
Additional file  1: Fig.  2 (b), we analyzed group-specific 
AUROC according to birth weight. In this case, the pro-
posed model also showed the highest performance, and 
we found that it had a strong performance regardless 
of the group. The proposed model showed similar per-
formance to Random Forest and XGBoost in the group 
with birth weight ≤1.75  kg and ≥4.25  kg, respectively. 

However, the p-values are 0.295 and 0.014, respectively, 
indicating that the results are not significant.

In Table  2, of the 5 parameters in the widely used 
NEWS, comparisons were made using 2, 3, 4, and 5 or 
more parameters to assess the performance of all mod-
els corresponding to the same specificity. The proposed 
model stands out as it achieved the highest sensitivity, 
LHR+, and the lowest LHR-. Specificity relates to the 
number of alarms; when the number of alarms is consist-
ent, the proposed model delivers the best performance.

Alarming performance
We compared MACPD using the same sensitivity level 
for all methods. From Fig.  4a and Table  3, it can be 
observed that the proposed method has the lowest alarm 
rate compared to all other methods at the same sensitiv-
ity level. This result indicates that the proposed method 
can detect the same number of high-risk patients with 
fewer alarms, significantly reducing the burden on the 
medical staff. In addition, the calibration level of the 
model is crucial when setting a threshold for the alarms 

Table 1  Comparison of the demographic data of neonatal patients

Abbreviations: BPD Bronchopulmonary dysplasia, CRIP Clinical Risk Index for Babies, GDM Gestational diabetes mellitus, NEC Necrotizing enterocolitis, IMV Invasive 
mechanical ventilation, IUGR​ Intrauterine growth restriction, RDS Respiratory distress syndrome, ROP Retinopathy of prematurity, SD Standard deviation, PDA Patent 
ductus arteriosus

IMV patient
(n = 505)

Non-IMV patient
(n = 889)

All patient
(N = 1,394)

P value

Maternal characteristics
  Maternal hypertension, n (%) 10 (2.0) 17 (1.9) 27 (1.9) 0.9299

  GDM, n (%) 21 (4.2) 37 (4.2) 58 (4.2) 0.9974

  Antenatal steroid, n (%) 0(0.0) 2(0.2) 2(0.1) 0.1574

Delivery mode

  Vaginal delivery, n (%) 341 (67.5) 593 (66.7) 934 (67.0) 0.7540

  Cesarean section, n (%) 164 (32.48) 296 (33.3) 460 (33.0) 0.7540

Patient characteristics
  Gestational age (week) 35.16 ± 4.17 37.44 ± 2.18 36.61 ± 3.25  < 0.001

  Birth weight (g) 2,446.33 ± 903.33 2,897.44 ± 655.50 2,734.01 ± 784.98  < 0.001

  Birth height (cm) 45.49 ± 5.11 47.72 ± 3.60 46.93 ± 4.33  < 0.001

  IUGR, n (%) 58 (11.5) 113 (12.7) 171 (12.3) 0.4978

    < 3 percentile, n (%) 28 (5.5) 50 (5.6) 78 (5.6) 0.9503

  Male, n (%) 314 (62.2) 518 (58.3) 832 (59.7) 0.1510

  CRIB II score 1.79 ± 2.18 1.43 ± 1.50 1.43 ± 1.50  < 0.001

  Surfactant administration, n (%) 0 (0.0) 89 (10.0) 89 (6.4)  < 0.001

Underlying comorbidities, n (%)

  RDS 260 (51.5) 4(0.5) 264 (18.9)  < 0.001

  PDA 90 (17.9) 20 (2.2) 110 (7.9)  < 0.001

  BPD 21 (4.2) 2 (0.2) 23 (1.7)  < 0.001

  ROP 7 (1.4) 2 (0.2) 9 (0.7) 0.0334

  NEC 16 (3.2) 3 (0.3) 19 (1.4)  < 0.001

  Duration of hospitalization, mean ± SD (day) 32.06 ± 31.93 8.98 ± 7.91 17.34 ± 23.06  < 0.001

  Mortality, n (%) 38 (7.5) 5 (0.6) 43 (3.1) 0.0000
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Fig. 3  Predictive performance based on the proposed method, Random Forest, XGBoost, XGBoost (SpO2, FiO2), and NEWS. a Receiver operating 
characteristic (ROC) curves, b Precision-recall curves. Abbreviations: AUROC, area under the receiver operating characteristic; AUPRC, area 
under the precision-recall curve; NEWS, Newborn early warning score system; ROC, receiver operating characteristic; XGBoost, extreme gradient 
boosting

Table 2  Comparison of performance for invasive mechanical ventilation prediction models in NICU with a consistent specificity 
threshold

Abbreviations: LHR Likelihood ratio, NEWS Newborn early warning score system, NICU Neonatal intensive care unit, NPV Negative predictive value, PPV Positive 
predictive value, XGBoost Extreme gradient boosting

Models (≥ threshold) Specificity Sensitivity PPV NPV LHR +  LHR-

NEWS ≥ 2 0.8492 0.3248 0.0209 0.9921 2.1545 0.7950

XGBoost(SpO2,FiO2) (≥ 0.3383) 0.8535 0.5150 0.0336 0.9944 3.5165 0.5681

XGBoost (≥ 0.2487) 0.8492 0.6845 0.0430 0.9963 4.5401 0.3714

Random forest (≥ 0.4018) 0.8492 0.6774 0.0426 0.9962 4.4948 0.3797

Proposed (≥ 0.5207) 0.8493 0.7250 0.0455 0.9968 4.8116 0.3237

NEWS ≥ 3 0.9608 0.1812 0.0438 0.9916 4.6334 0.8520

XGBoost(SpO2,FiO2) (≥ 0.5187) 0.9552 0.3121 0.0646 0.9929 6.9723 0.7200

XGBoost (≥ 0.4932) 0.9608 0.5108 0.1145 0.9949 13.0595 0.5090

Random forest (≥ 0.4960) 0.9608 0.4868 0.1097 0.9947 12.4397 0.5340

Proposed (≥ 0.6554) 0.9608 0.5739 0.1268 0.9956 14.6601 0.4434

NEWS ≥ 4 0.9848 0.0838 0.0520 0.9908 5.5429 0.9302

XGBoost(SpO2,FiO2) (≥ 0.6668) 0.9845 0.1440 0.0843 0.9914 9.3021 0.8693

XGBoost (≥ 0.6669) 0.9848 0.3992 0.2067 0.9939 26.3014 0.6100

Random forest (≥ 0.5283) 0.9848 0.3248 0.1749 0.9932 21.3943 0.6855

Proposed (≥ 0.7303) 0.9848 0.4825 0.2403 0.9948 31.9286 0.5253

NEWS ≥ 5 0.9954 0.0225 0.0467 0.9903 4.9483 0.9818

XGBoost(SpO2,FiO2) (≥ 0.7207) 0.9931 0.0880 0.1131 0.9909 12.8826 0.9182

XGBoost (≥ 0.7887) 0.9954 0.2622 0.3638 0.9927 57.7161 0.7411

Random forest (≥ 0.5829) 0.9954 0.1836 0.2869 0.9919 40.6202 0.8200

Proposed (≥ 0.8065) 0.9954 0.3455 0.4289 0.9935 75.8233 0.6574
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for each model. We analyzed the reliability, as shown in 
Fig. 4b, and found that the proposed method had the best 
calibration level.

Inspection of model features
The overall importance of the predictor variables of the 
proposed model showed SpO2 as the most important 
feature, and the second most important feature was the 
total output, including urine and feces (Fig. 5). Heart and 
respiratory rates per minute were the third- and fourth-
most important features, respectively.

Discussion
In this study, we demonstrated DL to support clinical 
decision-making concerning applying IMV among neo-
nates using non-invasive methods such as monitoring 
vital signs and demographic information. RF is a criti-
cal condition commonly observed in newborns admit-
ted to the NICU, leading to an increased mortality rate 
[33]. Repeated or prolonged episodes of desaturation 
and tachypnea, including hypoxia, neurodevelopmen-
tal impairment, persistent pulmonary hypertension, and 
cardiac arrest, may worsen the prognosis. The rapid and 
accurate decision of intubation is vital to increase sur-
vival [1, 32].

Among the articles published to date, an accurate 
tool for predicting intubation has yet to be established. 

Fig. 4  Alarming performance and Reliability diagram. a Comparison of the mean alarm count per day per 100 beds at the same sensitivity point 
for predicting respiratory failure in NICU. MACPD indicates the mean alarm count per day per 100 beds, and NEWS indicates the newborn early 
warning score. b Comparison of the calibration level for each model based on the reliability diagram. Abbreviations: MAE, mean absolute error; 
NEWS, Newborn Early Warning Score System; XGBoost, extreme gradient boosting

Table 3  Comparison of MACPD per 100 beds according to same 
sensitivity

Abbreviations: MACPD Mean alarm count per day, NEWS Newborn early warning 
score system, NICU Neonatal intensive care unit, XGBoost Extreme gradient 
boosting

Models (≥ threshold) Sensitivity MACPD

NEWS ≥ 1 0.6798 1382

XGBoost(SpO2,FiO2) (≥ 0.2145) 0.6614 757

XGBoost (≥ 0.2569) 0.6798 374

Random forest (≥ 0.3943) 0.6798 406

Proposed (≥ 0.5588) 0.6798 226

NEWS ≥ 2 0.3248 383

XGBoost(SpO2,FiO2) (≥ 0.4885) 0.3276 125

XGBoost (≥ 0.7409) 0.3243 28

Random forest (≥ 0.5283) 0.3248 45

Proposed (≥ 0.8447) 0.3248 14

NEWS ≥ 3 0.1812 101

XGBoost(SpO2,FiO2) (≥ 0.6669) 0.1817 38

XGBoost (≥ 0.8494) 0.1826 8

Random forest (≥ 0.5836) 0.1812 15

Proposed (≥ 0.9126) 0.1812 6

NEWS ≥ 4 0.0838 39

XGBoost(SpO2,FiO2) (≥ 0.8099) 0.0828 5

XGBoost (≥ 0.9132) 0.0819 2

Random forest (≥ 0.6340) 0.0838 3

Proposed (≥ 0.9520) 0.0838 2
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Several neonatal severity scoring systems have been 
developed to predict the prognosis of critically ill neo-
nates, including the Clinical Risk Index for Babies II 
(CRIB II), Neonatal Therapeutic Intervention Scoring 
System (NTISS), Score for Neonatal Acute Physiol-
ogy II (SNAP II), Score for Neonatal Acute Physiology 
with Perinatal Extension II (SNAPPE-II), and Modi-
fied Sick Neonatal Score (MSNS). These scores accu-
rately predicted mortality in the NICU, and the AUCs 
were approximately 0.86–0.91 [34, 35]. However, these 
scores were originally designed to assess the worst clin-
ical status found in the first 24 h after admission [36]. 
The proposed model achieved the highest predictive 
accuracy for respiratory deterioration requiring IMV. 

Both Random Forest and XGBoost exhibited similar 
performances. The XGBoost model that utilized only 
two features (SpO2 and FiO2) had a lower AUROC 
compare to the model that incorporated all selected 
features. We also found that the proposed model per-
formed better for all groups and tended to make more 
accurate predictions for lower GA.

We also compared MACPD using the same sensitivity 
level for all methods. Poncette et  al. [37] described 
that in one of the most digitized hospitals with an 
increasing number of novel medical devices with their 
own alarms, the sheer number of alarms frequently 
overwhelms clinicians. Kierra Jones [38] documented 
that Johns Hopkins reported an average of 350 alerts 

Fig. 5  Feature importance according to SHapley Additive explanation (SHAP) value. Abbreviations: ABP, arterial blood pressure; BT, body 
temperature; DBP, diastolic blood pressure; HR, heart rate; IO, input and output; PR, pulse rate; SBP, systolic blood pressure
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per bed per day, and one intensive care unit’s (ICU) 
average was 771 daily. This can cause alarm fatigue, 
and caregivers are more likely to ignore or have 
trouble distinguishing between the alarms. In this 
study, the proposed method had the lowest alarm rate 
compared to all other methods at the same sensitivity 
level. This result indicates that the proposed method 
can detect the same number of high-risk patients with 
fewer alarms, which can help reduce alarm fatigue 
and workload. It also improves the selection of alarms 
requiring immediate intervention, provides earlier 
recognition of treatment, and directs care toward more 
efficient and individualized situations.

The strengths of our study were two-fold. First, there 
were no restrictions on the equipment or human resources 
required to use the proposed model. We developed a 
model that makes accurate predictions with minimal key 
features: GA, birth weight, corrected age, gravida, head 
circumference, body weight, height, chest circumference 
at birth, sex, FiO2, SpO2, BT, systolic, diastolic, and mean 
BP, HR, PR, and RR, which can be obtained non-invasively. 
The model is versatile and can be used in primary to ter-
tiary hospitals, even in  situations with limited laboratory 
equipment or a shortage of specialists. If the risk of IMV 
application in a primary hospital is high, a transfer to a ter-
tiary hospital can be promptly considered. Secondly, the 
proposed model is valuable for determining whether IMV 
is necessary for a patient hospitalized for several hours or 
days. Immediately after birth, the need for IMV support 
becomes conspicuously evident within the framework 
of the neonatal resuscitation program. This encompasses 
indicators such as apnea, gasping, desaturation, and brady-
cardia. Attention may wane several hours or days into hos-
pitalization, even though close monitoring and accurate 
judgment by medical staff remain necessary throughout 
the hospitalization period. By developing the proposed 
model, intubation and mechanical ventilation support can 
be initiated without delay due to early detection with a 
reduced alarm burden.

The current study has some limitations that should 
be addressed in future studies. First, it was limited to 
a single hospital, which could have affected the gener-
alizability of the model. This is because clinicians use 
different criteria to determine the necessity for intuba-
tion. The application of the proposed model requires 
further external validation in other institutions, and 
a bias in therapeutic strategies is inevitable. Second, 
patients who were intubated before admission were 
excluded, and most of them were extremely low birth 
weight infants (ELBWI). Data pertaining to the appli-
cation of IMV in cases of extreme immaturity are cru-
cial. The ELBWI exhibited insufficient self-respiration 
and decreased physical activity immediately after birth. 

Moreover, ELBWI generally received prophylactic sur-
factants via an endotracheal tube. In the future, we aim 
to monitor and evaluate each patient from the delivery 
room to the NICU. Third, outborn patients did not have 
sufficient information regarding their maternal history, 
such as prenatal ultrasound or laboratory test results, 
which are critical factors affecting neonatal lung dis-
ease. This prospective study aimed to collect various 
types of maternal data.

Conclusion
Using non-invasive data, we demonstrated the perfor-
mance of a DL-based approach in predicting the need 
for mechanical ventilation in neonates in the NICU. The 
results of the predictive and alarm performances were 
superior for the proposed model compared to the other 
models. DL approaches offer an accurate and standard-
ized way to predict applying IMV in neonatal patients, 
enabling advanced bedside neonatal care and the utiliza-
tion of more sophisticated techniques.
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