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Abstract
Background  To identify radiomic features that can predict the pathological type of neuroblastic tumor in children.

Methods  Data on neuroblastic tumors in 104 children were retrospectively analyzed. There were 14 cases of 
ganglioneuroma, 24 cases of ganglioneuroblastoma, and 65 cases of neuroblastoma. Stratified sampling was used to 
randomly allocate the cases into the training and validation sets in a ratio of 3:1. The maximum relevance–minimum 
redundancy algorithm was used to identify the top 10 of two clinical features and 851 radiomic features in portal 
venous–phase contrast-enhanced computed tomography images. Least absolute shrinkage and selection operator 
regression was used to classify tumors in two binary steps: first as ganglioneuroma compared to the other two types, 
then as ganglioneuroblastoma compared to neuroblastoma.

Results  Based on 10 clinical-radiomic features, the classifier identified ganglioneuroma compared to the other two 
tumor types in the validation dataset with sensitivity of 100.0%, specificity of 81.8%, and an area under the receiver 
operating characteristic curve (AUC) of 0.875. The classifier identified ganglioneuroblastoma versus neuroblastoma 
with a sensitivity of 83.3%, a specificity of 87.5%, and an AUC of 0.854. The overall accuracy of the classifier across all 
three types of tumors was 80.8%.

Conclusion  Radiomic features can help predict the pathological type of neuroblastic tumors in children.

Keywords  Neuroblastic tumors, Radiomics, Computed tomography, Ganglioneuroma, Ganglioneuroblastoma, 
Neuroblastoma
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Introduction
Neuroblastic tumors, which originate from sympathetic 
natural crest cells in the early stage of neural develop-
ment [1], are the most frequent type of extracranial solid 
tumors in children [2]. Although such tumors can occur 
in any part of the sympathetic nervous system, most 
often they include the abdominal spinal sympathetic gan-
glia (in 60% of cases) and adrenal gland (in 30% of cases) 
[3].

Three types of neuroblastic tumors have been 
described, which differ significantly in the course of their 
disease and in optimal treatment [4]: ganglioneuroma, 
ganglioneuroblastoma, and neuroblastoma. Neuroblas-
toma, which is highly malignant, contains undifferenti-
ated neuroblasts [5]. This tumor type accounts for 10% of 
malignant tumors and 15% of tumor-related mortality in 
children. Ganglioneuroblastoma, which is considerably 
less malignant than neuroblastoma, contains neuroblasts, 
glial fibers, proliferative nerve sheath cells, and ganglion 
cells in different degrees of differentiation. Ganglioneu-
roma is benign.

To optimize treatment, it is necessary to accurately 
determine the type of neuroblastic tumors in children 
[6]. At present, tumors are assigned to one of the three 
types based on pathological examination of the biopsies, 
which is invasive and carries a risk of complications [7]. 
Moreover, such typing depends on the experience of the 
clinician and the exact location of the biopsy in the het-
erogeneous tumor tissue. A more objective and noninva-
sive approach could avoid these shortcomings.

With the constant development and cross-integra-
tion of medical imaging, computer science, informatics, 
and other disciplines, traditional image diagnostics is 
undergoing a new round of change. Radiomics realizes 
high-throughput feature extraction, analysis, and quan-
tification of image data using automated algorithms, 
thus providing new interpretations of the potential fea-
tures of the images. Radiomics can extract microscopic 
details of a large number of tumor lesions that are diffi-
cult to identify with human eyes and may quantify their 
internal subtle structures to obtain a set of image mark-
ers related to the disease. It has been proven that many 
radiomic features are useful for predicting the stage of 
an abdominal tumor, evaluation of effectiveness, and 
prognosis [8]. Computed tomography (CT) is widely 
used to detect and diagnose neuroblastic tumors in the 
clinical environment, and certain radiomic features from 
images obtained using CT or other methods are useful in 
the diagnosis and typing of various diseases [9–12]. CT 
is noninvasive and effectively records the heterogene-
ity of the tumor [13, 14], so it is important to determine 
whether we could identify CT-based radiomic features 
for typing neuroblastic tumors in children. Based on this 
idea, such features have proven useful in predicting the 

proliferation of MYCN in neuroblastoma and ganglio-
neuroblastoma [15].

Therefore, here we have defined and validated a 
radiomic classifier based on contrast-enhanced CT to 
distinguish the three types of neuroblastic tumors.

Methods and materials
Patients
Data were analyzed retrospectively for all patients who 
had been treated for pathology-confirmed neuroblastic 
tumors of any type at the Children’s Hospital of Soochow 
University (Suzhou, China) between January 2015 and 
December 2021. This study was approved by the insti-
tutional review board of the Children’s Hospital of 
Soochow University. Written informed consent was pro-
vided by the parents or legal guardians of the children.

CT and image segmentation
Contrast-enhanced CT was conducted using a 64-slice 
system (GE Optima CT660, GE Healthcare, Optima 660; 
GE Medical System, Milwaukee, WI, USA). The scanning 
parameters were as follows: tube voltage, 70–120 kVp; 
tube current, 10–1041 mA; rotation time, 0.35–4.53  s; 
pixel spacing, 0.32–0.73 mm; slice thickness, 5 mm; and 
slice interval, 5 mm.

Patients who could not cooperate were sedated with 
10% chloral hydrate (0.5 ml/kg) for a total of no more 
than 10ml. Subjects whose CT image motion artifacts 
were too large and could influence clinical diagnosis were 
again given an enhanced CT scan at the scheduled time.

Using the 3D Slicer software (https://www.slicer.org/), a 
radiologist with 5 years of experience manually described 
all the tumors in the CT images of the portal vein phase 
(Fig. 1a). Segmentation was supervised and confirmed by 
a radiologist with 10 years of experience.

Image preprocessing and feature extraction
Portal venous–phase contrast-enhanced CT images, 
which were resampled to a voxel size of 0.5 mm ⋅ 0.5 mm 
⋅ 5  mm to reduce inter-subject variation in the recon-
struction parameters, were re-binned using a bin width 
of 20 to minimize bias due to sparsely populated matrices 
[16–18].

The following four types of radiomic features were 
extracted from the images using the Pyradiomics pack-
age (https://pyradiomics.readthedocs.io/en/latest/index.
html) in Python 3.6: shape features, first-order features, 
texture features, and wavelet features (Fig.  1b) [9, 19]. 
Shape features, such as sphericity and compactness, 
describe the three-dimensional shape and size of the 
tumor. First-order features, such as kurtosis and median, 
are first-order statistics that quantify the distribution of 
voxel intensities. Texture features, which characterize the 
spatial distribution of voxel intensities in a neighborhood, 

https://www.slicer.org/
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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are calculated based on the gray level co-occurrence 
matrix (“glcm”), gray level dependence matrix (“gldm”), 
gray level run length matrix (“glrlm”), gray level size zone 
matrix (“glszm”), and neighboring gray tone difference 
matrix (“ngtdm”). Wavelet features are the first-order 
and texture features that emerge after the wavelet filter 
is applied to the images. Finally, the extracted features 
were normalized using a robust method that scaled the 
measured parameters and excluded outliers based on the 
observed means and standard deviations [20].

Feature selection
Stratified sampling was used to randomly distribute the 
data into training and validation sets in a 3:1 ratio while 
achieving a similar distribution of the three tumor types 
between the two sets.

Next, the potentially diagnostic radiomic features 
were selected from all of the features in the training 
set (Fig.  1c). In the selection process, the radiomic fea-
tures were compared among the three tumor types 
using one-way analysis of variance (ANOVA) for nor-
mally distributed variables, or the Kruskal–Wallis test 
for variables with a skewed distribution. The radiomics 
features associated with P < 0.05 and two clinical fea-
tures (age and gender) were ranked using the maximum 

relevance–minimum redundancy algorithm [13, 14, 21], 
and the top 10 features were selected to create a classifier.

Derivation of the classifier
The final classifier was defined using least absolute 
shrinkage and selection operator (LASSO) regression 
(Fig.  1c) [14, 21, 22]. LASSO regularization of linear 
models of the input variables (radiomic features) and the 
response variable (tumor type) generated least-squares 
regression coefficients, which were then used to build the 
LASSO classifier. The model was optimized based on the 
minimum five-fold cross-validated mean squared error 
(MSE).

The final model for classifying the tumors into one of 
the three types proceeded through two binary classifi-
cations: first, ganglioneuroma compared to the other 
two types of tumors, followed by ganglioneuroblastoma 
compared to neuroblastoma. To compare the classifi-
cation performance of conventional clinical features 
and radiomics features, two models were developed, 
one based solely on clinical data (clinical model) and 
the other on the same clinical data together with the 
top radiomic features mentioned in Sect.  2.4 (clinical-
radiomics model).

Fig. 1  Workflow in this study. Tumors in portal venous–phase contrast-enhanced computed tomography images were manually contoured by an expe-
rienced radiologist, and radiomic features were analyzed within the tumor region. Variance analysis and the maximum relevance–minimum redundancy 
(MRMR) algorithm were used to selected the top 10 diagnostic features. These features were then used to develop a classifier based on least absolute 
shrinkage and selection operator (LASSO) regression

 



Page 4 of 9Zhao et al. BMC Pediatrics          (2023) 23:262 

Assessment of the classifier’s performance
The performance of the model in classifying the tumors 
into one type compared to the other two types was evalu-
ated in terms of sensitivity, specificity, and the area under 
the receiver operating characteristic curve (AUC). To 
assess the overall accuracy, the number of correctly clas-
sified subjects with any tumor type was divided by the 
total number of subjects. To evaluate the accuracy for 
each type of tumor, the number of correctly classified 
subjects with that tumor type was divided by the total 
number of subjects with that type of tumor.

Results
Patient characteristics
The analysis included 103 subjects, of whom 65 had neu-
roblastoma, 24 had ganglioneuroblastoma, and 14 had 
ganglioneuroma based on pathological data (Table 1).

Feature selection
For each subject, data were extracted for 851 shape, 
first-order, texture, and wavelet features and two clini-
cal features (age and gender), and the following top 10 
features emerged from the maximum relevance–mini-
mum redundancy algorithm: “age,” “original_glcm_Cor-
relation,” “wavelet-HLH_glszm_SmallAreaEmphasis,” 
“wavelet-LHL_glcm_Imc1,” “wavelet-LLH_glszm_Low-
GrayLevelZoneEmphasis,” “wavelet-LLL_glcm_Imc2,” 
“original_glcm_Imc1,” “original_glcm_Imc2,” “wavelet-
LLL_glcm_Correlation,” and “wavelet-HLH_glszm_Size-
ZoneNonUniformityNormalized” (Fig.  2). In this way, 
three of the top 10 features were texture features, while 
six were wavelets.

Model performance
By combining radiomic features and clinical data, the 
classifier showed a balanced accuracy of 80.8% in the 
validation set (Table 2), compared to only 46.2% for the 
classifier that included only clinical data (Table 3). In the 
training set, the radiomic-clinical classifier distinguished 
ganglioneuroma from the other two tumor types with a 
sensitivity of 90.0%, a specificity of 94.0%, and an AUC 
of 0.969 (Table 2; Fig. 3). The corresponding values in the 
validation set were 100.0%, 81.8%, and 0.875. In the train-
ing set, the radiomic-clinical classifier distinguished gan-
glioneuroblastoma from neuroblastoma with a sensitivity 
of 83.3%, a specificity of 91.8%, and an AUC of 0.931. The 
corresponding values in the validation set were 83.3%, 
87.5%, and 0.854.

The overall accuracy of the radiomic-clinical classifier 
was 85.7% in the training set and 80.8% in the validation 
set (Fig. 4).

Discussion
Although the three types of neuroblastic tumors occur in 
similar locations and cause similar symptoms in children, 
they differ substantially in prognosis and optimal treat-
ment [6]. Currently, the tumors are typed on the basis of 
pathological examination of biopsies, but this is invasive 
and carries the risk of complications [7]. Here, we pro-
vide evidence that noninvasive tumor assessment based 
on clinical data and preoperative CT can predict the type 
of tumor and therefore help guide treatment.

The overall accuracy of our radiomic-clinical clas-
sifier was 80.8% in the validation set, suggesting the 
need for further optimization. Nevertheless, the model 

Table 1  Clinicodemographic and prognostic characteristics of the 103 pediatric patients with neuroblastic tumors in this study
Characteristic Type of neuroblastic tumor*

Ganglioneuroma Ganglioneuroblastoma Neuroblastoma
Sex

Male 8 13 38

Female 6 11 27

Age, months 7.36 (± 3.77) 4.38 (± 2.61) 2.38 (± 2.49)

International neuroblastoma stage**

I 14 12 6

II 0 3 3

III 0 3 13

IV 0 6 36

IVs 0 0 6

Event-free survival

Yes 14 21 43

No 0 3 22

Overall survival

Yes 14 23 52

No 0 1 13
Values are n or mean (SD).

* Based on the International Neuroblastoma Pathology Classification (INPC system)

** Based on the International Neuroblastoma Staging System (INSS)
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Table 2  Performance of the radiomic-clinical classifier for distinguishing the three types of neuroblastic tumor
Classification step Tumor Type Training set Validation set

Accuracy Sensitivity Specificity AUC Sensitivity Specificity AUC
Individual binary classifications GN vs.

non-GN
93.5% 90.0% 94.0% 0.969 100% 81.8% 0.875

GNB vs. NB 89.6% 83.3% 91.8% 0.931 83.3% 87.5% 0.854

GN GNB NB Overall accuracy GNB NB Overall 
accuracy

Three-way classification GN vs. GNB vs. NB 90.0% 66.7% 91.8% 85.7% 50% 87.5% 80.8%
AUC, area under the receiver operating characteristic curve; GN, ganglioneuroma; GNB, ganglioneuroblastoma; NB, neuroblastoma

Table 3  The performance of the clinical model for classifying three tumors
Classi-
fication 
models

Tumor Type Training set Validation set

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
Binary 
classifi-
cation 
model

Ganglioneuroma vs.
non-Ganglioneuroma

75.3% 90.0% 73.1% 0.901 73.1% 75% 72.7% 0.682

Ganglioneuroblastoma 
vs. Neuroblastoma

73.1% 55.6% 79.6% 0.760 59.1% 66.7% 56.3% 0.708

Ganglioneuroma Ganglioneu-
roblastoma

Neuroblas-
toma

Over-
all 
accu-
racy

Ganglio-
neuroma

Ganglioneu-
roblastoma

Neuro-
blas-
toma

Over-
all 
accu-
racy

Three clas-
sification 
model

Ganglioneuroma vs. 
Ganglioneuroblastoma 
vs. Neuroblastoma

90.0% 11.1% 79.6% 64.9% 75.0% 0% 56.3% 46.2%

Fig. 2  The importance scores of the top 10 features chosen by the maximum relevance-minimum redundancy algorithm. F1, original_glcm_Correlation; F2, 
wavelet-HLH_glszm_SmallAreaEmphasis; F3, wavelet-LHL_glcm_Imc1; F4, wavelet-LLH_glszm_LowGrayLevelZoneEmphasis; F5, wavelet-LLL_glcm_Imc2; 
F6, age; F7: original_glcm_Imc1; F8, original_glcm_Imc2; F9, wavelet-LLL_glcm_Correlation; F10, wavelet-HLH_glszm_SizeZoneNonUniformityNormalized.
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was reasonably accurate at identifying ganglioneu-
roma, showing sensitivity of 100.0% and specificity of 
81.8%. Model performance can be improved by using 
large samples from multiple centers and by exploring 
machine learning algorithms other than LASSO. Tak-
ing into account our small, single-center sample, the 

radiomic-clinical model should be tested for generaliz-
ability and further optimized on the basis of larger sam-
ples from multiple centers.

We selected the radiomic features for our classifier 
using the maximum relevance–minimum redundancy 
algorithm, which has increasingly been used in radiomic 

Fig. 3  Receiver operating characteristic curves showing the performance of the classifiers based only on clinical data and on the combination of clinical 
data and radiomic features at each binary classification step: (a) ganglioneuroma compared to non-ganglioneuroma, (b) ganglioneuroblastoma com-
pared to neuroblastoma. Results are shown separately for the training set (left) and the validation set (right). AUC, area under the curve
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studies since its first description in 2005 [23]. Unlike ear-
lier methods for feature selection, this algorithm takes 
into account the correlation between features, thereby 
reducing the risk of false positives and improving the 
generalizability of the model [24, 25].

Our results emphasize the usefulness of texture fea-
tures in differentiating the types of neuroblastic tumors, 
most likely reflecting that such features can capture the 
heterogeneity of the tumor structure [26]. Among the 
three tumor types, 10 features were distinguished, the 
overall accuracy of which was 85.7% in the training set 

Fig. 4  Confusion matrices showing the performance of the classifiers based on (a) only clinical data and (b) the combination of clinical data with ra-
diomic features. Columns indicate the number of subjects who actually belong to the class, while rows indicate the number of subjects predicted to 
belong to the class. The percentages around the edge of the matrices refer to the accuracy (green text) and error rates (red text) of each column, each 
row, and the whole matrices (lower right corner)
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and 80.8% in the validation set, and the performance 
was even better in the two binary classifications within 
the model. Thus, the ability to distinguish between neu-
roblastoma, ganglioneuroma, and ganglioneuroblastoma 
depends on the identification of differences in the struc-
ture of tissues.

Six of the 10 features extracted in the present study 
belong to spatial gray level co-occurrence matrix 
(GLCM) features. Previous studies have shown that 
GLCM features are helpful in the pretreatment predic-
tion of pathological complete response to no special 
type(NST) in breast cancer [27]. GLSZM texture features 
have been useful in differentiating between two different 
tumors in studies using CT imaging omics to distinguish 
between pelvic rhabdomyosarcoma and yolk cystoma in 
children [28]. In the present study, GLCM and GLSMZ 
were useful in predicting the pathological type of neu-
roblastic tumors in children, suggesting that the texture 
characteristics of different tumor types differ. At the same 
time, most of the valuable features in the present study 
were based on wavelet and LoG. Both the wavelet and the 
LoG are high-order statistical methods for placing filter 
grids on the image to extract repetitive or nonrepetitive 
patterns, both of which help reveal more valuable infor-
mation that is not visible in the lesion [8].

The present study determines the feasibility of using 
contrast-enhanced CT to diagnose neuroblastic tumors 
before surgery. Further validation and optimization stud-
ies may help develop an accurate, noninvasive tool that 
can guide treatment.
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