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Abstract
Background Subchromosomal deletions and duplications are the leading cause of congenital malformations 
and mental retardation in children. With the recent clinical application of genomic microarrays in the evaluation 
of patients with developmental delays and congenital malformations, it has led to the discovery of several new 
microdeletion and microduplication syndromes. However, there are no published reports involving patients with both 
microduplications in the 9p21.1-p24.3 region and microdeletions in the 7p22.1-p22.3 region.

Case presentation We report an infant with an autosomal abnormality confirmed by conventional karyotype 
combined with copy number variations sequencing (CNV-seq), showing the patient with an unbalanced 
translocation. The karyotype of the patient was 46, XX, der (7)t (7;9) (p22; p21) and CNV-seq results showed an 
approximately 32.34-Mb duplication in 9p21.1-p24.3 (200000-32540000) and an approximately 3.3-Mb deletion in 
7p22.2-p22.3 (40000-3340000).

Conclusions The patient carried an unbalanced translocation 46, XX, der (7)t (7;9) (p22; p21) derived from 
her mother. The clinical presentation is closely related to the size and position of the missing and duplicated 
chromosomes. To our knowledge, the simultaneous occurrence of de novo partial trisomy 9p(9p21.1-p24.3) and 
partial monosomy 7p (7p22.2-p22.3) has not previously been reported up until now. The present study additionally 
demonstrated that CNV-seq combined with karyotype is able to reliably detect unbalanced submicroscopic 
chromosomal aberrations.
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Background
Trisomy 9p syndrome is a rare disorder, first reported 
by Rethoré et al. [1] in 1970. Most reported cases of tri-
somy 9p are accompanied by partial deletions of other 
chromosomes. It is characterized by multi-organ sys-
tem involvement, including craniofacial anomalies, car-
diac, genitourinary, skeletal and central nervous system 
(CNS) abnormalities [2]. Karyotype analysis is the “gold 
standard” for diagnosing chromosomal aberrations. It 
usually detects abnormal chromosome numbers and 
structural abnormalities such as deletions, duplica-
tions, translocations and inversions of large segments 
of 5–10 Mb or more, but not deletions and duplications 
of small chromosomal segments [3, 4]. With the devel-
opment of molecular genetic techniques, the CNV-seq 
technique can detect micro-repeats and micro-deletions 
as small as tens of kilobases, and can determine the size 
of duplicated or missing fragments and their location 
on chromosomes, which is a powerful complement to 
the traditional karyotype analysis. In this study, we com-
bined karyotype analysis of chromosome G and CNV-seq 
to perform cytogenetic and molecular genetic tests in a 
patient with growth retardation and mental retardation 
with congenital multiple malformations. in order to iden-
tify the origin of chromosomal abnormalities and analyze 
the relationship between chromosomal structural abnor-
malities and clinical phenotypes, thus providing a strong 
basis for clinical diagnosis and genetic counseling.

Case presentation
The proband was a 4-month-old female born to a 
29-year-old father and a 27-year-old mother via vaginal 
delivery at 38 gestational weeks. During pregnancy, no 
specific problems were identified. The patient was hospi-
talized in a local hospital for 7 days after birth for “respi-
ratory distress syndrome”. She was found to have slow 
weight gain since birth, with a birth weight of 2.5 kg and 
a current weight of 3.5  kg, accompanied by poor feed-
ing, dry vomiting, minor crying, and bruised lips while 
crying. In order to seek further medical treatment, the 
patient was admitted to Children’s Hospital Affiliated to 
Zhengzhou University (Zhengzhou, China) at 4-months-
old for “malnutrition”. Since the onset of the disease, the 
patient had poor mental response, poor appetite, and 
slightly dilute stool. The examination showed a stunted 
development, malnutrition, and thin subcutaneous fat. 
There were peculiar facial features including wide eye 
spacing, small jaw, high palatal arch, left eyelid pto-
sis, hawkish nose and low ear position. The left thumb 
was attached on top of the palm, and the little fingers 
on both hands were flexed and deformed. The breath 
sounds of both lungs were coarse and a grade 3/6 mur-
mur could be heard in the precordial region. Congenital 
heart disease was suspected. This diagnosis was followed 

by transthoracic atrial septal defect closure and arterial 
catheterization for treatment.

Peripheral blood samples were obtained from the 
patient, her sister and the parents for examination of 
chromosomes by metaphase G-banding and CNV-
seq.  The Children’s Hospital Affiliated to Zhengzhou 
University Ethics Committee approved the sample col-
lection procedures and the family gave written informed 
consent. Chromosome karyotype analyses under ster-
ile conditions was conducted on cultured lymphocytes 
according to standard protocols. Colchicine was added 
after 72  h of culture and cells were harvested after 1  h, 
after which they were filmed, G-banded for color devel-
opment, photographed with a GSL120 fully automated 
scanner. 20 cells were counted and 5 karyotypes were 
analyzed by applying karyotype analysis software. Chro-
mosomal karyotypes were determined according to the 
International System of Human Cytogenetics Nomen-
clature ISCN (2020). CNV-seq assays standard proce-
dures were used isolate the genomic DNA of the proband 
and the parents from whole blood using PerkinElmer 
Chemagic 360 fully automated nucleic acid extractor. The 
library was constructed using the “Rapid PCR-free library 
construction technology” (Berrygenomics, Inc., Beijing, 
China). Detection of copy number variations (CNVs) 
was conducted by NextSeq CN500 (Illumina, Inc., USA) 
high-throughput sequencer. The sequencing type was 
single-end 36-base sequencing. The measured sequence 
fragments were compared to the known human reference 
genome (hg19). Analysis was performed using Konoan 
data analysis software (Berrygenomics Genetic Diagnos-
tics, Inc., Hangzhou, China), and CNVs were detected 
with a resolution of 100  kb or more. The copy number 
variations were compared with the Database of Genomic 
Variants (DGV), the Database of Genomic Variantion 
and Phenotype in Humans using Ensembl Resources 
(DECIPHER), Online Mendelian Inheritance in Man 
(OMIM), and The Clinical Genome Resource (ClinGen) 
to annotate the reported disease-causing genes by com-
parison and analysis. According to the American College 
of Medical Genetics and Genomics (ACMG) guidelines 
and the CNVs diagnostic guidelines, CNVs are rated as 
5 levels of risk: pathogenic, possibly pathogenic, benign, 
probably benign, and of unknown significance [5, 6].

The karyotype of the patient was 46, XX, der (7) t (7;9) 
(p22; p21) mat (Fig.  1A). The karyotype of the patient’s 
mother indicated a balanced translocation karyotype: 
46, XX, t (7;9) (p22; p21) (Fig. 1B). Her sister and father 
exhibited a normal karyotype. The CNV-seq analy-
sis revealed a 32.34  Mb duplication in the 9p21.1p24.3 
(200000-32540000) (hg19) region, involving 100 OMIM 
genes, and a 3.30 Mb deletion in the 7p22.2p22.3 (40000-
3340000) (hg19) region, involving 30 OMIM genes 
(Fig. 2A and B). By searching databases such as Decipher, 
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Fig. 2 The results of CNV-seq analysis. (A)The whole genome view. (B)The CNV-seq results of the patient showed a 3.30-Mb deletion (40000-3340000) in 
7p22.3-p22.2 and a 32.34-Mb duplication (200000-32540000) on the chromosome in 9p21.1-p24.3. The arrows indicate the breakpoints

 

Fig. 1 The results of karyotype analysis of chromosomes. (A)Karyotype of the patient. The karyotype of the patient indicated an abnormal karyotype: 46, 
XX, der (7)t(7;9) (p22; p21) mat. The arrow indicates the derived chromosome 7. (B)Karyotype of the mother of the patient. The karyotype of the mother of 
the patient indicated an abnormal karyotype: 46, XX, der (7)t(7;9) (p22; p21). The arrows indicated chromosomes with balanced translocation
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OMIM, DGV, and ClinGen, clinical phenotype matching 
and interpretation of genetic patterns were performed for 
cases that had been reported in the databases. The results 
showed that the two CNVS of the child were reported 
in various databases and involved many genes. Finally, 
according to the ACMG guidelines and the guidelines 
for the diagnosis of CNVs, they were both classified as 
pathogenic CNVs.

Discussion and conclusions
The present case report demonstrated that the patient 
carried an unbalanced translocation inherited from the 
mother who was a balanced translocation carrier, which 
resulted in partial trisomy for 9p (spanning ~ 32.34  Mb) 
and partial monosomy for 7p (spanning ~ 3.30  Mb). To 
the best of our knowledge, the present study is the first 
report of an unbalanced translocation involving chromo-
somes 7p and 9p.

9p trisomy is often caused by heterozygous segregation 
of familial chromosomal translocations. Most reports 
include deletions of other chromosomes. Common phe-
notypes of trisomy 9p include growth and language intel-
lectual disability, abnormal ear position, hypertelorism, 
bulbous nose, low mouth angle, and abnormal hand and 
foot finger development[2]. The severity of the partial 
trisomy 9p phenotype was correlated with the length of 
the repeat in the short arm of chromosome 9 and the 
repeat region. Duplications in the 9p13-p21 region have 
less effect on mental development whereas some genes 
associated with mental development (DOCK8, FOXD4, 
VLDLR, etc.) are present in the 9p22-9p24 region where 
the very low density lipoprotein receptor gene (VLDLR) 
transduces a variety of extracellular signals across the 
neural cell membrane into the CNS, regulates synap-
tic plasticity and is important for specific learning and 
memory functions in the hippocampus [7]. The dupli-
cations in p21.1-p24.3 of chromosome 9 in the patient 
involved“trisomy 9 syndrome, which contains 100 OMIM 
genes. There are multiple patients in the Decipher data-
base carrying pathogenic or potentially pathogenic vari-
ants that partially overlap with this CNV interval. It has 
been reported in the literature that the main clinical man-
ifestations of patients with 9p22-p24 duplication include 
short stature, microcephaly, peculiar facial features, and 
congenital heart disease [8–10]. The clinical phenotype 
of this patient was generally consistent with the pheno-
types reported in the literature, with the addition of other 
typical phenotypic features, such as a hawkish nose and 
presence of unilocular ptosis. This discrepancy may be 
due to the fact that it carries a 9p repeat fragment that 
is less consistent with the above literature. Another pos-
sibility may be due to its coexistence with a heterozygous 
deletion of approximately 3.30  Mb in the 7p22.2p22.3 
region, which contains 30 OMIM genes including 11 

morbidity-associated genes (BRAT1, FAM20C, EIP3B, 
LFNG, INTS1, etc.). INTS1 and BRAT1 genes are located 
at 7p22.3 and are associated with uniform neurodevel-
opmental disorders [11]. It has been reported in the lit-
erature [12] that the main clinical phenotype of patients 
with 7p22.2p22.3 deletion is a peculiar facial appear-
ance, with developmental delay in speech, etc. Both 
chromosomal copy number variants in this patient have 
been reported frequently in patient databases, with the 
involvement of additional genes, and all were determined 
to be pathogenic CNVs according to ACMG guidelines. 
The reported phenotypes correlate with the patient’s phe-
notype, but the reported phenotypes were more variable 
and our patient was comparatively younger. Many pheno-
types require further clinical excavation, verification and 
follow-up observations. Whether haploinsufficiency of 
any OMIM gene necessarily leads to a clinical phenotype 
requires further summary and follow-up of additional 
cases. In this case, the patient had both trisomy 9p and 
monosomy 7p. It is possible that abnormal alterations 
in these two chromosomes interact to form a specific 
phenotype.

Phenotypic outcomes such as recurrent spontaneous 
abortion, embryonic arrest and multiple neonatal mal-
formations tend to manifest in carriers of chromosomal 
balanced translocation. The results of karyotype analysis 
suggested that the mother of the patient was a 46, XX, 
t (7; 9) (p22; p21) balanced translocation carrier, which 
was the direct cause of the microdeletion of segment 
7p22.2p22.3 and the duplication of segment 9p21.1p24.3 
in the patient. The reason for this is that the probability 
for a balanced translocation carrier to produce normal 
gametes is extremely low, with a theoretical probability 
of obtaining phenotypically normal offspring of only 1/9 
[13, 14] and an actual probability of about 1/3. The mech-
anism of CNV formation in this patient may be due to 
the instability of the parental translocation chromosome 
break sites. For such children, prenatal diagnosis and 
preimplantation genetic diagnosis (PGD) are the main 
ways to reduce birth defects, so that children with genetic 
defects and various congenital anomalies can be detected 
early, and intrauterine treatment can be performed at 
the right time for those who are eligible and can be cor-
rected, and those who cannot be corrected can have their 
pregnancies terminated in time to reduce the birth of 
defective children. In addition, prenatal diagnosis allows 
the chromosomes of both parents to be known in order 
to obtain the karyotype, breakpoints, and mode of inheri-
tance of the translocation, providing a basis for genetic 
counseling and prenatal diagnosis for the incidence of 
translocation chromosome carriers and pregnancy out-
come as well as revealing the genetic etiology of the clini-
cal manifestations of the affected children. During the 
genetic counseling process, a comprehensive analysis 
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should be performed in conjunction with several factors 
such as the type of translocation in the translocation car-
rier, the chromosomes involved in the translocation, and 
the location of the breakpoint of the translocation.

In conclusion, the occurrence of concurrent partial 
trisomy 9q (9p21.1p24.3) and partial monosomy 7p 
(7p22.2p22.3) has not previously been reported up to 
now. This study combined the application of karyotype 
analysis and CNV-seq to finally confirm the diagnosis 
for the patient. The use of CNV-seq and karyotype may 
facilitate a sensitive and powerful approach towards the 
diagnosis of submicroscopic unbalanced genomic rear-
rangements. This study clarified the origin and formation 
mechanism of CNV in children, and analyzed the rela-
tionship between chromosomal structure abnormalities 
and patient phenotype. Due to the clear mechanism of its 
occurrence and high risk of recurrence, clinical genetic 
counseling was presented to the patient’s mother where 
she was advised to undergo prenatal examination and 
diagnosis in the event of future pregnancies.
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