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Abstract 

Background Escherichia coli serogroup O25b-sequence type 131 (E. coli O25‑B2‑ST131) is considered as multidrug‑
resistant and hypervirulent organism. There is lack of data about involvement of this pathogen in the children’s infec‑
tion. In this study, the prevalence, and clonality, virulence capacity, and antibiotic resistance phenotype and genotype 
of E. coli O25‑B2‑ST131 compared with non‑O25‑B2‑ST131 isolates were investigated in children with urinary tract 
infection in Tehran, Iran.

Methods The E. coli isolates from urine samples were identified using conventional microbiological methods. Char‑
acterization of E. coli O25‑B2‑ST131 clone, antibiotic susceptibility, biofilm formation, ESBLs phenotype and genotype, 
serum resistance, hemolysis, hydrophobicity, and formation of curli fimbriae were done using conventional microbio‑
logical and molecular methods. Clonality of the isolates was done by rep‑PCR typing.

Results Among 120 E. coli isolates, the highest and lowest antibiotic resistance was detected against ampicillin (92, 
76.6%) and imipenem 5, (4.1%), respectively. Sixty‑eight (56.6%) isolates were ESBL‑producing and 58 (48.3%) isolates 
were considered as multi‑drug resistance (MDR). The prevalence of ESBL‑producing and MDR isolates in O25‑B2‑ST131 
strains was higher compared with the non‑O25‑B2‑ST131 strains (p value < 0.05). O25‑B2‑ST131 strains showed 
significant correlation with serum resistance and biofilm formation. Amongst the resistance and virulence genes, the 
prevalence of iucD, kpsMTII, cnf1, vat, blaCTX‑M‑15, and blaSHV were significantly higher among O25‑B2‑ST131 isolates in 
comparison with non‑O25‑B2‑ST131 isolates (p value < 0.05). Considering a ≥ 80% homology cut‑off, fifteen different 
clusters of the isolates were shown with the same rep‑PCR pattern.

Conclusions Our results confirmed the involvement of MDR‑ESBLs producing E. coli strain O25‑B2‑ST131 in the 
occurrence of UTIs among children. Source tracking and control measures seem to be necessary for containment of 
the spread of hypervirulent and resistance variants in children.
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Background
Escherichia coli is an extremely variable Gram-negative 
bacterium with the potential to colonize in different 
animals and humans. However, E. coli is categorized as 
a nonpathogenic microorganism and is part of the nor-
mal intestinal flora of animals and humans [1]. Some 
pathogenic E. coli can cause gastrointestinal and extra-
intestinal infections. Extra-intestinal pathogenic E. 
coli possesses an intricate phylogeny and a substantial 
genome plasticity. Moreover, infection with this bacte-
rium leads to various diseases such as uncomplicated uri-
nary tract infections (UTIs), septicemia, life-threatening 
blood stream infections and peritonitis [2]. Uropatho-
genic E. coli (UPEC) is considered as a highly uropatho-
gen causing acute community-acquired urinary tract 
infection (UTI), and is responsible for 80 to 90% of UTIs 
in children [1, 3]. UPEC strains have specific virulence 
factors that account for the progression and develop-
ment of the disease. Recurrent infection and antibiotic 
resistance make E. coli an interesting subject for micro-
biological investigations [4]. It has been emphasized that 
different E. coli phylogenetic groups significantly affect 
the bacterial pathogenicity. Extraintestinal pathogenic 
strains mainly belong to group B2 and to a lesser extent 
to group D, which are often clonal [5]. The presence of 
blaCTX-M-15 as a common type of ESBLs was responsible 
for the global outbreak of ESBL-producing E. coli, and 
notably, this type often belongs to a sequence type (ST) 
called ST131. Studies focusing on children showed that 
this sequence type (ST) of E. coli  is also responsible for 
infections in humans. It is accounted for 8% of urinary 
non-ESBL-producing isolates in children from Australia 
and 10.2% of urinary CTX-M-producing  E. coli  isolates 
from children in Texas Children’s Hospital (USA) [6]. 
The epidemic clones of E. coli ST131 carry a high num-
ber of virulence and resistance genes. Not only resistance 
to routine antibiotics was reported in E. coli ST131, but 
also resistance to carbapenems and colistin were a mat-
ter of great concern in this strain (de la Tabla et al., 2017, 
Ripabelli et  al., 2020, [7]. Therefore, the O25-B2-ST131 
clonal group is considered as an international multi-
drug resistance (MDR) high-risk clone. The clone type is 
associated with a broad spectrum of infections, such as 
intra-abdominal, bloodstream, and soft tissue infections, 
as well as septic shock, epididymo-orchitis, and menin-
gitis [8]. However, the recently emerged E. coli ST131 
clone plays a significant role in community- and hospital-
acquired UTIs [9]. UTIs are considered as a severe public 
health problem, approximately seven times more among 
the females compared to the males [1, 10]. Community-
acquired UTIs (CA-UTIs) are considered as public health 
issue. Depending on the microbial etiologies, the disease 
could vary from asymptomatic to debilitating, which 

necessitates its early diagnosis and treatment. Among 
common pathogens associated with CA-UTI, the role of 
E. coli O25-B2-ST131 as a hypervirulent variant is not 
fully known. On the other hand, the level of antibiotic 
resistance, virulence factors, colonization, and spread 
in a variety of niches of this bacterium varies in differ-
ent parts of the world and there is a need for detailed 
studies [2, 11]. To understand involvement of the E. coli 
O25-B2-ST131 in the occurrence of UTIs in children, 
this study was aimed to investigate prevalence of this 
clonal group among among children with UTI. Moreo-
ver, homology of the isolates, their virulence capacity, 
resistance to antimicrobials and carriage of genes related 
to ESBLs phenotype were investigated in these isolates 
compared with non-O25-B2-ST131 E. coli isolates.

Methods
Bacterial isolates
A total of 120 non-duplicate clinical isolates of E.coli 
were collected from outpatients (children aged 2 to 
7 years) with UTI who referred to Mofid Hospital from 
May to September 2019. All samples were transferred to 
the microbiology laboratory and clinical E.coli isolates 
were identified using conventional biochemical tests. The 
E.coli isolates were stored in a TSB medium containing 
10% glycerol at -20 °C for further examinations [12].

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was performed using 
the BD (New Jersey, USA) and Mast (Liverpool, UK) 
antibiotic disks according to the Clinical and Labora-
tory Standards Institute (CLSI, 2019). The antibiotics 
used for disk diffusion method were included azitromy-
cin, ampicillin, cefazolin, cefoxitin, cefotaxime, ceftazi-
dime, cefepime, ciprofloxacin, imipenem, nalidixic acid, 
gentamicin, amikacin, aztreonam, tetracycline, ampicil-
lin sulbactam, amoxicillin-clavulanic acid, piperacillin 
tazobactam, meropenem, nitrofurantoin, and trimetho-
prim + sulfamethoxazole [13]. On the other hand, based 
on the antibiotic resistance pattern, we examined the 
prevalence of MDR isolates according to Magiorakos 
et al. [14, 15].

Minimum inhibitory concentration (MIC) of colistin
The lyophilized powder of colistin sulfate salt was pur-
chased from Sigma-Aldrich (Merck, Germany) and was 
re-suspended in distilled sterile water. A final concentra-
tion of colistin vials (1,024 μg/ml) was stored at − 80  °C 
for further tests. In addition, Mueller–Hinton broth 
was prepared in separate tubes for different concen-
trations of colistin, ranging from 0.5 to 16  mg/L with 
two-fold dilutions according to the recommendations 
by CLSI/EUCAST guidelines. The E. coli isolates with 
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MIC ≥ 4 mg/mL of colistin were determined as resistant. 
For each isolate tested, a positive and negative control 
were included in the first and second wells of the plate, 
respectively. E. coli ATCC 25,922 was used as a standard 
control [16].

Screening of ESBL phenotype
ESBL-producing E. coli isolates were characterized by 
double-disk synergy test, which was carried out using 
cefotaxime-clavulanic acid and ceftazidime-clavulanic 
acid as a two-disc synergism versus ceftazidime and 
cefotaxime alone. The increased inhibition zone ≥ 5 mm 
around the discs with clavulanic acid assigned the bacte-
rium as ESBL-producing. Furthermore, Klebsiella pneu-
moniae ATCC 700,603 and E. coli ATCC 25,922 were 
considered as positive and negative controls, respectively 
[17].

Serum resistance and hemolysin production
The resistance of E. coli isolates to killing by pooled 
serum and production of hemolysin was assessed by the 
method defined by Montenegro et al., with few modifica-
tions [18]. In the serum resistance test, equal volumes of 
serum and bacterial suspension were blended to obtain 
an ultimate serum concentration of 50% (v/v). The mix-
ture was incubated for 120 min.

Surface hydrophobicity and curli fimbriae production
Surface hydrophobicity was assessed using the salt aggre-
gation test (SAT) [19] and the production of curli fim-
briae by E. coli isolates was determined via culture on a 
salt-free LB agar plate containing congo red and brilliant 
blue dyes. Finally, the presence or absence of fimbriae 
was determined based on morphotypes [20].

In vitro biofilm formation assay
Microtitre plate method was performed as the gold 
standard quantitative method for characterizing biofilm-
forming E. coli isolates. Briefly, overnight culture of E. 
coli isolates was inoculated into trypticase soy broth 
(3  mL, Merck, Germany), supplemented with 1% glu-
cose, and incubated at 37 °C for 24 h. Afterward, the cul-
ture was diluted at 1:100 by adding sterile trypticase soy 
broth and 200 mL of dilution was added to each well of 
a sterile 96-well polystyrene microtiter plate. Three wells 
for each isolate were assessed in each microtiter plate. 
This pattern was repeated in three microtiter plates. The 
plates were covered and incubated aerobically for 24 h at 
37 °C, and subsequently, washing (250 μL of sterile saline 
solution), fixing (200 μL of methanol), staining (200 μL 
2% Hucker crystal violet per well), and drying were per-
formed. Finally, a micro-enzyme-linked immunosorb-
ent assay (ELISA) reader determined the absorbance of 

biofilm formation at 570 nm. Then, 200 mL of sterile TSB 
was inoculated in wells as negative control. Biofilm-form-
ing isolates were categorized in four groups, including 
strongly adherent bacteria (4 × ODc < OD), moderately 
adherent bacteria (2 × ODc < OD ≤ 4 × ODc), weakly 
adherent bacteria (ODc < OD ≤ 2 × ODc), and non-
adherent bacteria (OD ≤ ODc) [21, 22].

Genomic DNA preparation
To extract the genomic DNA of E. coli, each isolate was 
grown overnight in Luria–Bertani broth (Merck, Ger-
many) medium at 37  °C, and 1  ml broth culture was 
harvested by centrifugation at 8000  rpm for 10  min. 
Total bacterial DNA from each sample was extracted 
by the boiling and freezing methods. The quality of the 
extracted DNA was confirmed by measuring absorbance 
 (A260/A280) by a NanoDrop (Thermo Scientific, Roskilde, 
Denmark). The  A260/A280 ratio of ≥ 1.8 was considered 
as a good quality DNA. The extracted DNA was kept 
at − 20 °C [23].

Molecular characterization by Polymerase Chain Reaction 
(PCR) and DNA sequencing
Carriage of β-lactamase genes associated with ESBL 
phenotype (blaCTXM-15, blaCTXM-27, blaTEM, and blaSHV), 
and genes linked to colistin resistance (mcr-1), the E. 
coli O25-B2-ST131 clone (pabB), siderophore (iucD), 
protection proteins (traT), capsule (kpsMTII), adhesins 
(afa, fos and, csgA), and toxins (vat, hlyA, and, cnf1) were 
detected by specific primers [24–35]. The PCR product 
of a positive isolate containing the pabB was subjected to 
sequencing (Macrogen, Korea) to verify the authenticity 
of the amplicons. The result of the sequence was aligned 
with corresponding sequences in the GenBank database 
used at the national center for biotechnology informa-
tion (NCBI) BLAST program (http:// blast. ncbi. nlm. nih. 
gov/ Blast. cgi? program = blastn and PAGE-TYPE = blast 
search and LINK-LOC = blasthome). PCR was per-
formed according to the method provided by Moradi and 
Moghaddam et al. [36, 37].

Genotyping by Repetitive Extragenic Palindromic‑PCR 
(rep‑PCR)
A total of 120 isolates were chosen for rep-PCR typing 
based on differences in adhesins, antibiotic resistance 
pattern, toxins, protection proteins, siderophore, and 
capsule genes using REP primer. The rep-PCR was per-
formed according to the protocol of Arabestani el al. [38]. 
Phylogenetic group analysis for all isolates was accom-
plished based on electrophoresis results and isolates were 
classified into different groups.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Statistical analysis
The REP band patterns were compared by Dice and 
unweight paired group (UPGMA) method and clustered 
using the inslico.ehu.es online databases. We determined 
the differences of rep-PCR profiles with the adhesins, 
toxins, antibiotic resistance pattern, siderophore, capsule, 
and protection proteins of the isolates after fingerprinting 
by rep-PCR. The information of each isolate was assessed 
in SPSS-22 software and interpretation of the results was 
based on the frequencies. A p value < 0.05 was considered 
statistically significant for the associations between stud-
ied variables using the Chi-square test  (X2).

Results
A total of 120 E. coli strains was isolated from urine sam-
ples of 2 to 7 years old children (102 girls and 18 boys). 
The isolates belonged to O25-B2-ST131 (31, 25.83%) 
and non-O25-B2-ST131 (89, 74.16%) and E. coli strains. 
Resistance to at least one antibiotic class was detected 
in 97.5% of these isolates, while three isolates were sus-
ceptible to all the antibiotics. Results of disk diffusion 
showed the highest resistance and the lowest resistance 
to ampicillin (92, 76.6%) and imipenem (5, 4.1%), respec-
tively. Resistance to ceftazidime, cefepime, cefotaxime, 
cefoxitin, cefazolin, tetracycline, and trimethoprim + sul-
famethoxazole was over 50% (Table  1). Statistical 

analysis showed that resistance to some antibiotics, such 
as ampicillin, cefazolin, cefoxitin, cefotaxime, ceftazi-
dime, cefepime, ciprofloxacin, imipenem, nalidixic acid, 
gentamicin, aztreonam, tetracycline, amoxicillin-clavu-
lanic acid, and trimethoprim + sulfamethoxazole were 
significantly higher in the strains belonged to the O25-
B2-ST131 clone (p value < 0.05). Details of the diffusion 
disk results for E. coli isolates can be seen in Table 1.

Fifty eight (48.3%) isolates were considered as MDR, 
among which the frequency of MDR isolates was higher 
in O25-B2-ST131 strains. The prevalence of MDR iso-
lates among O25-B2-ST131 and non-O25-B2-ST131 
strains were 87.09% (n = 27/31) and 34.8% (n = 31/89), 
respectively. A significant correlation was observed 
between MDR isolates and O25-B2-ST131 strains 
as compared to the non-O25-B2-ST131 strains (p 
value < 0.05). After MIC, it was found that there were 
no colistin-resistant isolates. Sixty-eight (56.6%) iso-
lates were ESBL-producing isolates. The frequency of 
ESBL was higher in O25-B2-ST131 strains and there 
was a significant association between ESBL production 
and O25-B2-ST131 strains (p value < 0.05). There was 
also a significant association between MDR isolates and 
ESBL production (p value < 0.05). The O25-B2-ST131 
strains were considered as the group with higher rates 
of antibiotic resistance to several antibiotics such as 

Table 1 Antibiotic resistance patterns of clinical isolates of E.coli from UTI

Antibiotic Total, n = 120 O25‑B2‑ST131, n = 31 Non‑ O25‑B2‑ST131 n = 89 P‑value

S R S R S R

Azitromycin 94(78.3) 26(21.7) 28(90.3) 3(9.7) 66(74.15) 23(25.8) 0.039

Ampicillin 28(23.3) 92(76.6) 2(6.4) 29(93.5) 26(29.2) 63(70.8) 0.013

Cefazolin 42(35) 78(65) 4(12.9) 27(87.1) 38(42.7) 51(57.3) 0.008

Cefoxitin 51(42.5) 69(57.5) 9(29) 22(71) 42(47.2) 47(52.8) 0.029

Cefotaxime 44(37.7) 76(67.3) 3(9.7) 28(90.2) 41(46) 48(53.9) 0.005

Ceftazidime 44(36.7) 76(63.3) 7(22.6) 24(77.4) 37(41.6) 52(58.4) 0.004

Cefepime 49(40.8) 71(59.2) 6(19.3) 25(80.7) 43(48.3) 46(51.6) 0.008

Ciprofloxacin 63(52.5) 57(57.5) 10(32.25) 21(67.7) 53(59.5) 36(40.4) < 0.001

Imipenem 115(95.8) 5(4.1) 30(96.7) 1(3.2) 85(95.5) 4(4.4) 0.764

Nalidixic acid 80(66.6) 40(33.3) 21(67.7) 10(32.2) 59(66.3) 30(33.7) 0.129

Gentamicin 67(55.8) 53(44.1) 12(38.7) 19(61.2) 55(61.8) 34(38.1) 0.175

Amikacin 102(85) 18(15) 28(90.3) 3(9.67) 74(83.1) 15(16.7) 0.661

Aztreonam 64(53.3) 56(46.6) 15(48.4) 16(51.5) 49(55) 40(44.9) 0.001

Tetracycline 35(29.2) 85(70.7) 8(25.8) 23(74.2) 27(30.3) 62(69.6) < 0.001

Ampicillin sulbactam 66(55) 54(44.9) 18(58) 13(41.9) 48(53.9) 41(46) 0.415

Amoxicillin‑clavulanic acid 51(42.5) 69(57.4) 10(32.2) 23(67.7) 41(46) 48(53.9) 0.038

Piperacillin tazobactam 73(60.8) 47(39.1) 22(71) 9(29) 51(57.3) 38(42.6) 0.399

Meropenem 114(95) 6(4.9) 28(90.3) 3(9.67) 86(96.6) 3(3.3) 0.679

Nitrofurantoin 90(75) 30(25) 26(83.8) 5(16.1) 64(71.9) 25(28) 0.532

Trimethoprim + Sulfamethoxazole 46(38.3) 72(61.6) 9(29) 22(70.9) 37(41.5) 52(58.4) 0.049
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betalactams which can be explained by the higher rate 
of ESBL-producing isolates in this group. Abundance of 
curli pili was observed in 100 (83.3%) isolates. Although 
the frequency of curli pili in O25-B2-ST131 strains 
(83.8%) was higher than non-O25-B2-ST131 strains 
(83.1%), there was no significant relationship between 
curli pili and O25-B2-ST131 strains (p value > 0.05). 
In addition, 27 (22.5%) isolates showed hydrophobic-
ity, of which 11 (40.7%) O25-B2-ST131 and 16 (59.2%) 
non-O25-B2-ST131 strains had hydrophobicity. A total 
of 53 isolates were capable of hemolysis, of which 11 
(20.7%) and 42 (79.2%) strains were O25-B2-ST131 
and non-O25-B2-ST131, respectively. On one side, 70 
isolates (58.3%) showed the ability to resist the bacteri-
cidal properties of serum and on other side, 75 (62.5%) 
isolates had the ability of biofilms formation (15 weak 
biofilm isolates, 23 intermediate biofilm isolates, and 
37 strong biofilm isolates). In O25-B2-ST131 E. coli, 
17 (54.8%), 9 (29%), and 3 (9.6%) strains were able to 
form strong, intermediate, and weak biofilms, respec-
tively. In contrast, in non-O25-B2-ST131 E. coli, 20 
(22.4%), 14 (15.7%), and 12 (13.4%) strains showed the 
ability to form strong, intermediate, and weak biofilms, 
respectively. These studied phenotypic characteristics 
showed that the level of serum resistance, bactericidal 
resistance (80.6% vs. 50.5%), and biofilm formation 
(93.5% vs. 51.6%) was significantly higher among O25-
B2-ST131 compared with non- O25-B2-ST131 strains 
(p value ≤ 0.05) (Fig.  1). Among 58 MDR isolates, 45 
(77.5%) isolates had the potential for biofilm formation 
and there was a significant relationship between biofilm 
formation and MDR (p value < 0.05).

Genotypic analysis of antibiotic resistance and viru-
lence genes among 120 isolates by PCR showed that the 
abundance of afa, kpsMTII, traT, iucD, Cnf1, vat, fos, csgA, 

hlyA, blaSHV, blaCTXM-27, blaCTXM-15, and blaTEM genes 
were 23 (19.2%), 75 (62.5%), 89 (74.2%), 64 (53.3%), 45 
(37.5%), 28 (23.3%), 37 (30.8%), 112 (93.3%), 62 (51.6%), 
38 (31.7%), 42 (35.0%), 72 (60.0%), and 79 (65.8%), respec-
tively. The prevalence of different virulence genes in O25-
B2-ST131 in comparison with non-O25-B2-ST131 E. coli 
were as follows: iucD (n = 25; 80.6% vs n = 39; 43.8%), traT 
(n = 26; 83.8% vs n = 63;70.7%), kpsMTII (n = 27; 87.1% vs 
n = 48; 53.9%), afa (n = 6; 19.35% vs n = 17; 19.1%), fos 
(n = 12; 38.7% vs n = 25; 28.1%), csgA (n = 28; 90.3% vs 
n = 84; 94.3%), vat (n = 12; 38.7% vs n = 16; 17.9%), hlyA 
(n = 12; 38.7% vs n = 50; 56.1%), and cnf1 (n = 6; 19.35% 
vs n = 39; 43.8%). Statistical analysis showed that among 
the studied virulence genes, there was a significantly 
high number of iucD, kpsMTII, cnf1, and vat genes in 
the O25-B2-ST131 strains (p value < 0.05). In total, 72 
(60.0%), 42 (35%), 79 (65.8%), and 38 (31.7%) isolates car-
ried blaCTXM-15, blaCTXM-27, blaTEM, and blaSHV genes, 
respectively. The prevalence of resistance genes among 
O25-B2-ST131 strains were as follow: blaCTXM-15 (n = 25; 
80.6%), blaCTXM-27 (n = 15; 48.3%), blaTEM (n = 21; 67.7%), 
and blaSHV (n = 17; 54.8%), but in non-O25-B2-ST131 
strains the prevalence was as follows: blaCTXM-15 (n = 47; 
52.8%), blaCTXM-27 (n = 27; 30.3%), blaTEM (n = 58; 65.1%), 
and blaSHV (n = 21; 23.5%) (Fig.  2). Although the fre-
quency of all four antibiotic resistance genes was higher 
in O25-B2-ST131 compared to the non-O25-B2-ST131 
strains, frequencies of the blaCTXM-15 and blaSHV genes 
in O25-B2-ST131 isolates were significantly higher in 
non-O25-B2-ST131 strains (p value ≤ 0.05). Examina-
tion of plasmid-borne colistin resistance genes showed 
that none of the isolates carried the mcr-1 gene. This 
research revealed that O25-B2-ST131 and non-O25-
B2-ST131 strains are located in fifteen genetic clusters 
with 80% homology (Fig. 3). The largest cluster consisted 

Fig. 1 Differences in phenotypic factors involved in virulence and antibiotic resistance between O25‑B2‑ST131 and non‑O25‑B2‑ST131 
strains.* = Indicates the significant level of difference P < 0.05; ** = Indicates the significant level of difference value P < 0.001
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of eight strains, seven of which belonged to the O25-
B2-ST131 isolate. Among 31 O25-B2-ST131 strains, 19 
isolates were classified as various clusters. Comparison 
of strains in the same cluster showed that some virulence 
and resistance genes are present in homologous variants 
with rep-PCR patterns. Sixteen and twelve patterns of 
resistance genes were observed in non-O25-B2-ST131 
and O25-B2-ST131 strains, respectively (Table  2). The 
most predominant pattern was found in 26 isolates with 
the pattern of UP7, characterized by the blaCTXM-15 and 
blaTEM genes, whereas two isolates (non-O25-B2-ST131) 
had no resistance genes (UP16 pattern). The phylogenetic 
analysis showed that the most common strains respon-
sible for ESBL-producing E. coli isolates belonged to the 
phylogenetic groups B2. Also, 100% (n = 31/31) isolates 
of E. coli O25-B2-ST131 and 78.65% (n = 70/89) of non-
O25-B2-ST131 belonged to group B2. Although there 
was not phylogenetic groups such as A, B1, and D in the 
O25-B2-ST131 isolates, these serotypes were found in 
5.6% (n = 5/89), 2.24% (n = 2/89), and 13.48% (n = 12/89) 
of non- O25-B2-ST131 isolates, respectively.

Discussion
E. coli ST131 is a universal clone of antimicrobial-
resistant E. coli isolated in most clinical samples [39]. 
In the current study, based on the presence of pabB 
gene using allele-specific PCR, 31 (25.83%) strains were 
subsequently assigned as O25-B2-ST131 E. coli. How-
ever, in line with the results of our study, Rasoulinasab 
et  al. reported a prevalence of 26.9% of E. coli O25b/
ST131 in patients with urinary tract infection in Iran 
[40]. However, the ST131 outbreak has occasionally 

been reported around the world, including Japan (10%), 
Denmark (38%) [41], and Australia (51%) [42]. Various 
research reports have inconsistencies that can be 
related to differences in the study population, sample 
size, age groups (children versus the elderly), type of 
samples (urine versus a diverse range of clinical speci-
mens), and detected O-serogroups [43]. Our result 
showed that in antibiogram test the highest resistance 
was against ampicillin and the lowest resistance was 
against imipenem.  Similar to the results of our study, 
studies have shown that resistance to ampicillin is the 
most common among antibiotics, but resistance to imi-
penem is very low [39, 44]. As a result, to prevent the 
incidence of hospital and community infection out-
breaks, investigating the international distribution of E. 
coli ST131 could be a helpful strategy. In the present 
research, the prevalence rate of ampicillin resistance in 
E. coli was the highest. The observed resistance pattern 
to ampicillin in E. coli ST131 clones in the current 
research was consistent with former studies in different 
provinces of Iran [45, 46]. The highest prevalence of 
ampicillin resistance was found in isolates of 
patients ≤ 12 years old, and resistance rate to this anti-
biotic was low in the current study [47]. Another study 
in the USA indicated that E. coli ST131 clones had a 
resistance rate of 97.8% to ampicillin [48]. In the United 
Kingdom, high levels of ampicillin resistance (55%) 
were found in isolates of E. coli ST131 clones and are 
consistent with the findings of our study [49]. Interest-
ingly, the antibiotic resistance rate was higher in the 
O25-B2-ST131 strains in comparison with non-O25-
B2-ST131 strains. Consistent with our results, previous 

Fig. 2 Comparison of the frequency of antibiotic resistance and virulence genes in O25‑B2‑ST131 and non‑O25‑B2‑ST131 strains
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studies reported a high frequency of antibiotic resist-
ance in O25-B2-ST131 strains which turned them into 
a clinical challenge [40, 44, 50]. The MIC results showed 
that none of the isolates, even E. coli O25-B2-ST131 
strains, were resistant to colistin, and colistin was the 
most effective antibiotic against E. coli isolates from 
UTI. Although a small number of colistin-resistant E. 
coli ST131 strains have been isolated from different 
samples in studies, colistin has still been identified as 
the most effective antibiotic in previous studies [2, 51]. 

Altogether, colistin is probably more effective than 
other antibiotics in treating UTIs. However, the 
nephrotoxic properties of this antibiotic limit its usage 
as the drug of choice for the treatment of urinary tract 
infections [52]. In our study, not only the frequency of 
MDR was high among 120 isolates (48.3%) but also the 
prevalence of MDR among O25-B2-ST131 strains 
(87.09%) was higher than non-O25-B2-ST131. E. coli 
ST131 clone as an MDR pathogen that has recently 
been considered a huge public health issue. In line with 

Fig. 3 Dendrogram analysis of rep‑PCR fingerprint for 120 E. coli isolates; + : Indicates the presence of antibiotic resistance or virulence genes; 
Clusters were highlighted in orange; Key: indicates the isolate number
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our study, it was found that the rate of MDR in E. coli 
ST131 is high as one of the high risk clones and is 
defined as one of the clones with a global distribution 
which has a high ability to survive, clone and spread in 
different types of niches. On the other hand, E. coli 
ST131 has been identified as an O25b: H4 serotype and 
the highly dangerous phylogenetic group B2, which 
carries high amounts of MDR IncFII plasmids contain-
ing blaCTXM-15 [53, 54]. In total, 56.6% of isolates were 
ESBL producers and ESBL production was more com-
mon in O25-B2-ST131 isolates compared to the non-
O25-B2-ST131 isolates. In a study, 31–36% of E. coli 
strains produced ESBL in Korea and in consistent with 
our study, ST131 isolates were significantly associated 
with ESBL, specifically CTX-M-15, and were mostly 
MDR [55]. This suggests that the frequency of ESBL can 
vary in different geographical regions in O25-B2-ST131 
strains. Phenotypic characteristics play an essential role 
in the pathogenicity of UTIs caused by E. coli. Also, the 
determination and analysis of these characteristics 
seem to be necessary for epidemiological studies. The 
O25-B2-ST131 isolates formed a more robust biofilm 
compared to the non-O25-B2-ST131 isolates. This 
result is in accordance with the study by Mostafavi et al. 
[50]. The potency of E. coli to evade the bactericidal 
effect of serum compounds, such as complement and 
antimicrobial peptides, makes it an advantage for 
extraintestinal E. coli that enters the bloodstream. 

Serum bactericidal resistance was mostly observed in 
O25-B2-ST131 isolates compared with the non-O25-
B2-ST131 isolates. Previous results reported high levels 
of serum bactericidal resistance among O25-B2-ST131 
strains [50, 56]. Consistent with our study, Duprllot 
et  al. reported high rates of curli production in O25-
B2-ST131 isolates [57]. Olsen et al. showed that curli is 
not produced by the most pathogenic E. coli strains 
when grown at 37 °C [58]. One explanation for this con-
tradiction in several studies may be the genetic differ-
ences among strains and growth conditions (media and 
temperature) [59]. As a high-risk pandemic strain, E. 
coli sequence type (ST) 131 has been identified in 
human, food, environmental, and animal samples. E. 
coli ST131 has been repeatedly reported to carry clini-
cally important antimicrobial resistance genes and is 
associated with extraintestinal diseases, mainly UTI. In 
this study, except for mcr-1 gene, other virulence genes 
including iucD, traT, kpsMT11, afa, fos, csgA, vat, hlyA, 
and cnf1 were detected in O25-B2-ST131 and non- 
O25-B2-ST131 isolates. It was also found that the fre-
quency of the majority of virulence factors in 
O25-B2-ST131 was higher compared to non-O25-B2-
ST131 strains, which indicates the high pathogenicity 
of O25-B2-ST131. As with our results, previous studies 
have agreed that the virulence factors of O25-B2-ST131 
strains are significant as a dangerous clone type and 
that these strains are considered as a therapeutic 

Table 2 Diversity of ESBL encoding E. coli isolates in urine samples of children with community‑acquired urinary tract infection in 
Tehran, Iran

 +  Indicates the presence of antibiotic resistance gene in the strain, while - indicates the absence of antibiotic resistance gene in the strain

Pattern (UP) Number of isolates Resistance genes

Total
(N = 120)

Non‑ O25‑B2‑ST131
(N = 89)

O25‑B2‑ST131
(N = 31)

blaTEM blaCTX‑M‑15 blaCTX‑M‑27 blaSHV

1 8 (6.6%) 4 (4.4%) 4 (12.9%) ‑  +  + ‑

2 7 (5.8%) 7 (7.8%) 0 ‑ ‑  + ‑

3 17 (14.1%) 16 (17.9%) 1 (3.2%)  + ‑ ‑ ‑

4 9 (7.5%) 8 (8.9%) 1 (3.2%)  + ‑  + ‑

5 3 (2.5%) 1 (1.1%) 2 (6.4%) ‑ ‑  +  + 

6 9 (7.5%) 7 (7.8%) 2 (6.4%) ‑  + ‑ ‑

7 26 (21.6%) 22 (24.7%) 4 (12.9%)  +  + ‑ ‑

8 8 (6.6%) 4 (4.4%) 4 (12.9%)  +  + ‑  + 

9 7 (5.8%) 2 (2.2%) 5 (16.1%)  +  +  +  + 

10 7 (5.8%) 6 (6.7%) 1 (3.2%)  + ‑ ‑  + 

11 3 (2.5%) 1 (1.1%) 2 (6.4%) ‑ ‑ ‑  + 

12 7 (5.8%) 5 (5.6%) 2 (6.4%) ‑  + ‑  + 

13 5 (4.1%) 2 (2.2%) 3 (9.6%)  +  +  + ‑

14 1 (0.8%) 1 (1.1%) 0 ‑  +  +  + 

15 1 (0.8%) 1 (1.1%) 0  + ‑  +  + 

16 2 (1.6%) 2 (2.2%) 0 ‑ ‑ ‑ ‑
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challenge [40, 50]. Although the frequency of mcr genes 
in E. coli ST131 strains is very low, studies have 
reported the prevalence of this gene in E. coli ST131 
strains isolated from animal and environmental sam-
ples [60, 61]. In contrast to our study, some studies have 
confirmed the presence of the mcr gene in E. coli strains 
isolated from human samples in America, Japan and 
Korea which indicates that the frequency of these plas-
mid genes can be different based on the isolation source 
and geographical environment [62–64]. On the other 
hand, E. coli isolates were found to carry antibiotic 
resistance genes such as blaCTXM-15, blaCTXM-27, blaTEM, 
and blaSHV genes. The abundance of these important 
genes in antibiotic resistance was higher in O25-
B2-ST131 strains compared to non-O25-B2-ST131 
strains. Antibiotic resistance studies have been per-
formed in O25-B2-ST131 strains which confirm our 
results. These studies have shown that resistance and 
the presence of genes involved in resistance are higher 
in O25-B2-ST131 strains [40, 50, 62]. It is also shown 
that E. coli ST131 has a wide range of virulence and 
resistance genes located on plasmids with high trans-
missibility that has a global spread [39]. In preceding 
studies, the O25-B2-ST131 E. coli with resistance genes 
and high virulence potential has been described world-
wide. A worrying elevation in the isolation of E. coli 
isolates with the ability to produce CTX-M-15 from dif-
ferent countries has been described, and this phenome-
non is associated with the development of the clonal 
ST131 [65, 66]. Resistance in E. coli ST131 has been 
commonly reported worldwide and associated with 
other resistance genes [45]. In previous studies, the 
percentage of virulence factors among ST131 strains 
has been reported with occasional variations [65, 67]. 
Although in the above studies different virulence genes 
were usually investigated in O25-B2-ST131 E. coli 
strains, the important point is that the amount of anti-
biotic resistance and virulence genes in these strains is 
high. Examination of all characteristics of E. coli iso-
lates from children with UTI revealed that phylogenetic 
group B2 was the most common in all isolates (n = 101; 
84.16%) and O25-B2-ST131 strains. Consistent with 
our study, Hojabri et al. showed that the existent ST131 
strains were considerably more similar to the B2 group 
than the E. coli and non-ST131 isolates [68]. In other 
studies, the high prevalence of B2 group was reported 
among UPEC isolates that are well known worldwide 
[69, 70]. The higher prevalence of group B2 among 
UPEC isolates is due to the antibiotic resistance genes 
and virulence factors existing within this group which 
can cause an increased survival fitness in the urinary 
tract [70]. Another part of our results showed that O25-
B2-ST131 and non-O25-B2-ST131 strains are located 

in fifteen different genetic clusters with 80% homology. 
The largest cluster consisted of eight strains, seven of 
which belong to the O25-B2-ST131 isolate. Of 31 O25-
B2-ST131 isolates, 19 isolates were classified as various 
clusters. According to our study, several specific host 
sub-clusters were found in the McLellan study. Approx-
imately 33% of the strains showed less than 65% simi-
larity [71].

The present study encountered several limitations. 
The study was done in one hospital, and due to budget 
limitation doing a multicenter study was not possible. 
Access to medical data of the children, like underly-
ing diseases and recent medications, to correlate their 
links with colonization of E. coli O25-B2-ST131 strains 
and their antimicrobial resistance phenotypes was not 
possible, because of the lack of a registry system for 
outpatients. Moreover, no follow-up program at the 
time of study was considered to understand differ-
ences in the success or complications of UTI by E. coli 
O25-B2-ST131 strains in comparison to non-O25-B2-
ST131 strains. Hence, many mechanisms and resistance 
genes that can prove higher resistance in E. coli O25-
B2-ST131 strains were not investigated such as carbap-
enems, aminoglycosides, and fluoroquinolones due to 
the costs getting higher in this study.

In conclusion, obtained results showed a higher fre-
quency of antibiotics resistance and virulence factors 
in O25-B2-ST131 strains compared with other E. coli 
isolates in children with CA-UTI. The high frequency 
of antibiotic resistance and virulence genes in O25-
B2-ST131 strains, which can be the cause of increased 
pathogenicity and treatment failure, showed the impor-
tance of these strains in the children’s infections. In this 
study, E. coli isolates with common rep-types presented 
a diversity in their clone types, virulence capacity and 
antibiotic-resistance patterns. Constant monitoring, due 
to the high prevalence of these strains and their involve-
ment in UTI, should be done to control their spread in 
the community.
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