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Abstract 

Background:  Necrotizing enterocolitis (NEC) is a disastrous gastrointestinal disease of newborns, and the mortality 
rate of infants with NEC is approximately 20%-30%. The exploration of pathogenic targets of NEC will be conducive to 
timely diagnosis of NEC.

Methods:  The whole transcriptome RNA sequencing was performed on NEC samples to reveal the expression of 
lncRNAs, circRNAs, miRNAs and mRNAs. Using differential expression analysis, cross analysis, target prediction, enrich-
ment analysis, the pathogenic ceRNA network and target was found.

Results:  Preliminarily, 281 DEmRNAs, 21 DEmiRNAs, 253 DElncRNAs and 207 DEcircRNAs were identified in NEC 
samples compared with controls. After target prediction and cross analyses, a key ceRNA regulatory network was 
built including 2 lncRNAs, 4 circRNAs, 2 miRNAs and 20 mRNAs. These 20 mRNAs were significantly enriched in many 
carbohydrate metabolism related pathways. After cross analysis of hypoxia-, carbohydrate metabolism-related genes, 
and 20 core genes, one gene HK2 was finally obtained. Dendritic cells activated were significantly differentially infil-
trated and negatively correlated with HK2 expression in NEC samples.

Conclusions:  The promising pathogenic hypoxia-related gene HK2 has been firstly identified in NEC, which might 
also involve in the carbohydrate metabolism in NEC.
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Background
Necrotizing enterocolitis (NEC) is a disastrous gas-
trointestinal disease of newborns, especially affecting 
those neonates with very-low birth weight (< 1500  g) 
[1]. Although the management of preterm infants has 
been much improved, the incidence of NEC among 

newborns is still worrying [2]. The beginning symptoms 
of NEC might be slow and insidious, such as feeding 
intolerance, while they can rapidly develop into a ful-
minant NEC [3]. The mortality rate of infants with NEC 
is approximately 20%-30%, and the rest survivors will 
face many short- or long-term complications, includ-
ing poor growth, intestinal problems, and so on [4, 5]. 
Multiple risk factors involve in the progression of NEC, 
comprising prematurity, intestinal bacterial dysbiosis, 
formula feeds, etc. [6]. Moreover, systemic hypoxia and 
intestinal ischemia are main stresses leading to NEC 
[7]. However, potential pathogenesis of NEC complicat-
edly results from many factors, such as the imbalance 
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between anti-inflammatory and proinflammatory fac-
tors [8], which still remains to be clarified. Additionally, 
due to nonspecific symptoms of NEC, it is hard to make 
early clinical diagnosis and distinguish NEC from other 
diseases with similar features [9]. Therefore, the explo-
ration of promising pathogenic targets of NEC will be 
conducive to the timely diagnosis of NEC, indirectly 
contributing to better prognosis of NEC newborns.

Prematurity and enteral feeding are known as two 
main risk factors for NEC [10]. The primary transport 
function of intestinal epithelial cells is driven by con-
suming great amounts of energy and oxygen [11]. The 
digestion and nutrient transport after feeding demands 
more energy and oxygen. Intestinal epithelium is suf-
fering from dynamic splanchnic circulation and anoxic 
environment of intestinal lumen at the same time [12], 
resulting in a highly fluctuating oxygen supply, thereby 
leading to intestinal mucosa hypoxia [11]. It has been 
evidenced that the synergistical role of feeding and 
postprandial hypoxia leads to the intestinal hypoxia in 
NEC [7]. Moreover, formula feeding has been reported 
to significantly associate with the intestinal hypoxia in 
NEC [13]. Compared with spontaneous intestinal per-
foration samples, the hypoxia related genes are sig-
nificantly upregulated in human NEC samples [14]. 
Additionally, hypoxia and gavage feeding treatments 
are commonly used for NEC mouse model construc-
tion [15]. More importantly, hypoxia inducible factors 
(HIFs), HIF-1 and HIF-2, play crucial roles in many 
inflammatory bowel diseases [16]. However, the inter-
action of coding RNAs and non-coding RNAs has been 
seldom reported in hypoxia of NEC.

With the great development of next generation 
sequencing, whole transcriptome RNA sequencing has 
been contributing to reveal the crucial role of coding 
RNAs and non-coding RNAs in various diseases, includ-
ing NEC. Herein, the purpose of our study is to explore 
the important pathogenic genes involving hypoxia in 
NEC via combining whole transcriptome RNA sequenc-
ing and further bioinformatics analyses.

Methods
Specimen collection
A total of 6 clinical samples were collected from Chil-
dren’s Hospital Affiliated to Shandong University/Jinan 
Children’s Hospital, including 3 NEC tissue samples and 
3 normal tissue samples. Our experiments were approved 
by ethic committee of Children’s Hospital Affiliated 
to Shandong University/Jinan Children’s Hospital, in 
accordance with The Helsinki Declaration. The written 
informed consents were obtained from the guardians of 
all subjects.

Data resources
GSE46619 dataset was downloaded from Gene Expres-
sion Omnibus (GEO) database (https://​www.​ncbi.​nlm.​
nih.​gow/​geo/). Among all samples in this dataset, NEC 
tissue samples and normal intestinal tissue samples 
were picked as the validation dataset, including 5 NEC 
samples and 4 normal samples.

Moreover, hypoxia gene set (200 genes) and carbohy-
drate metabolism gene set (286 genes) were obtained 
from the MSigDB database (https://​www.​gsea-​msigdb.​
org/​gsea/​msigdb/​index.​jsp).

RNA extraction and sequencing
Total RNA was extracted from the tissue samples with 
miRNeasy Tissue/Cells Advanced Micro Kit (Qiagen, 
NO.217684, Shenzhen, China), and detected on Nan-
odrop2000. The RNA integrity was assessed by agarose 
gel electrophoresis, and RIN was detected on Agi-
lent2100. The mRNA sequencing was conducted on 
MGISEQ2000 platform, and the reagents used included 
Dynabeads® mRNA Purification Kit (for mRNA Puri-
fication from Total RNA Preps, Invitrogen, NO.61006, 
Shanghai, China), Library Preparation VAHTS mRNA 
Capture Beads (Vazyme, N401-01–02, Nanjing, China), 
and MGIEasy Duplex UMI Universal Library Prep Set 
(MGI, NO.1000006383, Shenzhen, China). Next, the 
raw data undergone quality control in SeqPrep software 
(https://​github.​com/​jstjo​hn/​SeqPr​ep) in order to obtain 
highly qualified sequences for subsequent analysis.

Differentially expressed RNA analysis
The differential expression analysis was performed 
in limma function [17] of R language (version 4.1.0, 
same below). The significantly differentially expressed 
mRNAs (DEmRNAs), miRNAs (DEmiRNAs), lncR-
MAs (DElncRNAs), and circRNAs (DEcircRNAs) 
between NEC and normal samples were screened with 
|log2FC|> 2 and P value < 0.05.

Target relationship prediction
The target miRNAs of DEcircRNAs were predicted 
using CircNA database (https://​awi.​cuhk.​edu.​cn/​CircN​
et/​php/​index.​php) to obtain circr-pre-miRNAs, and 
the structure of circRNAs, miRNA response element 
(MRE), and RNA-binding protein (RBP) information 
were obtained from Cancer-Specific CircRNA (CSCD) 
database (http://​gb.​whu.​edu.​cn/​CSCD2/#). The miR-
code database (http://​www.​mirco​de.​org) was used for 
the targeted miRNAs prediction of DElncRNAs (lnc-
pre-miRNAs). Finally, the target genes (pre-mRNAs) of 
circr-pre-miRNAs and lnc-pre-miRNAs were predicted 
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in miRWalk database (http://​mirwa​lk.​umm.​uni-​heide​
lberg.​de/).

Functional enrichment analysis
The crucial genes were then subjected to the enrichment 
analysis in “clusterProfiler” [18] in order to obtain more 
functional information, including Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment. The GO and KEGG terms with P 
adjust < 0.05 (adjusted with Benjaminiand Hochberg (BH) 
method) were considered significantly enriched terms.

Construction of ceRNA network
Basing on the predicted interaction pairs and differen-
tially expressed RNAs, we have constructed a circRNA-
lncRNA-miRNA-mRNA ceRNA network. The complex 
post-transcriptional regulation in NEC could be further 
exhibited through the ceRNA network.

The impact of key gene on inflammatory responses in NEC
The expression of crucial pro-inflammatory cytokines 
interleukin-1β (IL-1β), interleukin-6 (IL-6), Tumour 
Necrosis Factor-α (TNF-α) was compared between NEC 
samples and normal samples.

Additionally, the relative immune cell infiltration in 
NEC samples was analyzed using CIBERSORT [19]. 
According to deconvolution algorithm, the composition 
of immune infiltrating cell was characterized in CIBER-
SORT basing on gene expression matrix and preset 547 
barcode genes.

Results
Identification of differentially expressed circRNAs, lncRNAs, 
miRNAs, and mRNAs in NEC
Firstly, basing on our sequencing data, the differentially 
RNAs were identified between NEC and control sam-
ples. There were totally 281 DEmRNAs between NEC vs. 
control samples, comprising 103 upregulated DEmRNAs 
and 178 downregulated DEmRNAs (Fig. 1A), the expres-
sions of which were significantly different (Fig. 1B). Con-
sidering the potential role of these 281 DEmRNAs in the 
onset of NEC, GO and KEGG functional enrichment was 
then conducted(The pathways were obtained baising on 
KEGG [20–22]). The 281 DEmRNAs were significantly 
enriched in 207 GO terms (the top 10 terms were dispa-
lyed in Fig. 1C), and 6 KEGG pathways (Fig. 1D), such as 
IL-17 signaling pathway. The detailed functional results 
were listed in Table S1.

Next, differentially expressed circRNAs, lncRNAs, 
miRNAs were also found between NEC vs. control sam-
ples. A total of 21 DEmiRNAs, 253 DElncRNAs and 207 
DEcircRNAs were found between NEC vs. control sam-
ples. Compared with control samples, 14 upregulated 

and 7 downregulated DEmiRNAs (Fig.  2A), 61 upregu-
lated and 192 downregulated DElncRNAs (Fig. 2B), and 
59 upregulated and 148 downregulated DEcircRNAs 
(Fig. 2C) were identified in NEC specimens. The expres-
sion levels of DEmiRNAs, DELncRNAs, and DEcircR-
NAs were significantly different between NEC vs. control 
samples, separately (Fig. 2D-F).

Targeted miRNAs prediction of DElncRNAs and DEcircRNAs
The targeted miRNAs of 253 DElncRNAs were predicted 
with miRcode database. Then regulatory pairs between 
17 lncRNAs and 142 miRNAs were obtained. After cross 
analysis of 142 miRNAs and 21 DEmiRNAs, 5 overlapped 
miRNAs (lnc-pre-miRNAs) were found (Fig. 3A), includ-
ing hsa-miR-124-5p, hsa-miR-222-5p, hsa-miR-518e-5p, 
hsa-miR-520 g-5p, hsa-miR-519-5p.

The targeted miRNAs of 207 DEcircRNAs were ana-
lyzed using circNet database and chromosomal locali-
zation. The regulatory pairs between 40 circRNAs and 
250 miRNAs were identified. There were 3 overlapped 
miRNAs (circ-pre-miRNAs) between 250 miRNAs 
and 21 DEmiRNAs, including hsa-miR-222-5p, hsa-
miR-522-5p, hsa-miR-520  g-5p (Fig.  3B). Basing on 
these 3 overlapped miRNAs, the host gene informa-
tion of the corresponding 4 circRNAs was obtained, 
which were located on chromosomes 5, 7, 16 and 17. 
Moreover, the structural information and CircBa-
seID of these 4 circRNAs were analyzed using CSCD 
database, including hsa_circ_0001522 (Fig.  3C), hsa_
circ_0000690 (Fig. 3D), hsa_circ_0001772 (Fig. 3E) and 
hsa_circ_0004273 (Fig. 3F).

Construction of key ceRNA regulatory network
Subsequently, the target genes (pre-mRNAs) of 5 lnc-
pre-miRNAs and 3 circ-pre-miRNAs were identified 
using miRwalk database, comprising 5989 and 4944 pre-
mRNAs, respectively. To further find those genes related 
the onset of NEC, pre-mRNAs and 281 DEmRNAs were 
then subjected to a cross analysis, and 24 crucial genes 
were identified (Fig. 4A).

Basing on these 24 crucial overlapped genes, a 4 lncR-
NAs-4 miRNAs-24 mRNAs’ network (Fig.  4B) and a 
4 circRNAs-3 miRNAs-24 mRNAs’ network (Fig.  4C) 
were constructed. Among them, there were 2 overlapped 
miRNAs and corresponding 20 mRNAs. Thus, a key 
ceRNA regulatory network was built including 2 lncR-
NAs (LINC00402 and CYB561D2), 4 circRNAs (hsa_
circ_0001522, hsa_circ_0000690, hsa_circ_0001772, and 
hsa_circ_0004273), 2 miRNAs (miR-222-5p and miR-
520 g-5p) and 20 mRNAs (Fig. 4D), which played a cru-
cial role in the onset of NEC.
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Functional enrichment analysis of core genes in NEC
Due to the potentially important role of the ceRNA net-
work in NEC, the 20 mRNAs then undergone GO and 
KEGG functional enrichment analysis. We found that 38 
GO terms, involving Regulation of glucose transmem-
brane transport, Myeloid leukocyte migration, etc., were 
significantly (top 21 terms showed in Fig. 5A). These 20 
mRNAs were significantly enriched in 13 KEGG path-
ways, such as Galactose metabolism, Starch and sucrose 
metabolism, Carbohydrate digestion and absorption, and 
so on (Fig.  5B). All enrichment results were shown in 
Table S2.

Crucial gene HK2 involving carbohydrate metabolism 
and hypoxia in NEC
The functional enrichment results of the 20 core genes in 
ceRNA network implied many carbohydrate metabolism 
related pathways were significantly enriched, including 

Galactose metabolism, Fructose and mannose metabolism, 
Starch and sucrose metabolism, Biosynthesis of nucleo-
tide sugars, Carbohydrate digestion and absorption, and 
Amino sugar and nucleotide sugar metabolism. Moreover, 
undigested carbohydrate fermentation in bowel has been 
demonstrated to yield short chain organic acids, thereby 
leading to intestinal mucosa disruption and inflammation 
[23]. The functional information inspired us regarding the 
core genes’ impacts on carbohydrate metabolism in NEC. 
On the other hand, combining the crucial role of hypoxia 
in NEC [13], the crucial genes involving carbohydrate 
metabolism and hypoxia in NEC were screened, and the 
whole screening process was shown in Fig. 6.

Then hypoxia related gene set (200 genes) and carbohy-
drate metabolism gene set (286 genes) were downloaded 
from MSigDB database (Table S3). After cross analysis of 
hypoxia related gene set, carbohydrate metabolism gene 
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set, and 20 core genes, one gene HK2 was finally obtained 
(Fig. 7A).

In our sequencing data, HK2 was significantly highly 
expressed in NEC tissues comparing with controls 
(Fig.  7B). The expression of HK2 was also evaluated 
in an independent cohort GSE46619, and significantly 
higher HK2 expression was also observed in NEC sam-
ples (p < 0.01) (Fig. 7C). Collectivelly, HK2 was a probably 
crucial pathogenic gene in NEC involving carbohydrate 
metabolism and hypoxia.

Impact of HK2 on inflammatory responses in NEC
The enhancement of immune and inflammation 
responses are important hallmarks of NEC [24]. Thus, 
the potential impacts of HK2 on inflammatory responses 
in NEC were also analyzed herein. Firstly, crucial proin-
flammatory cytokines’ expression was compared between 
NEC vs. Controls using our sequencing data. Our results 
indicated that the expression levels of IL-1β and IL11 
showed higher expressions in NEC samples compared 
with normal samples (Fig.  8A-B). Moreover, the same 
tendency was also found in GSE46619 dataset (Fig.  8C-
D). Our data suggested that inflammatory responses were 
probably activated in NEC samples.

Additionally, basing on our sequencing data, the 
immune cell infiltration in all samples was also evalu-
ated in CIBERSORT to get more information regarding 
immune responses. The general results of 22 types of 

immune cells’ infiltration in NEC and control samples 
were shown in Fig.  8E, indicating the individual char-
acteristics. Additionally, we found that two types of 
immune cells, NK cells resting and Dendritic cells acti-
vated were significantly differentially infiltrated between 
NEC vs. Controls (Fig.  8F-G), which probably con-
tributed to the development of NEC. Besides, in NEC 
specimens, there was significant negative correlation 
between HK2 and infiltration of Dendritic cells activated 
(Fig. 8H).

Discussion
As a leading cause of neonatal mortality, NEC has been a 
great healthy threat to neonates, especially to premature 
infants [25]. However, to date, the comprehensive analy-
sis of mRNAs, miRNAs, lncRMAs, and circRNAs in NEC 
tissue specimens of newborns is quite limited. Accord-
ingly, we herein utilized the whole transcriptome RNA 
sequencing and further bioinformatics mining to study 
the potential pathogenic ceRNA network and crucial 
gene in NEC. HK2 was found to involve in hypoxia and 
carbohydrate metabolism in NEC.

Although the role of some non-coding RNAs has been 
explored in NEC rat models, for example, miR-27a-5p 
and miR-187-3p are probably involving the NEC patho-
physiological mediation through Wnt signaling [6]. 
However, little is known about the role of lncRMAs, cir-
cRNAs, and their interaction with mRNAs. Accordingly, 
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Fig. 2  Identification of DEmiRNAs, DELncRNAs, and DEcircRNAs between NEC vs. control samples. A-C 21 DEmiRNAs, 253 DElncRNAs and 207 
DEcircRNAs were identified, respectively. B-D The expressions of DEmiRNAs, DELncRNAs, and DEcircRNAs, separately
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whole transcriptome RNA sequencing was conducted 
to revealed the potential pathogenic non-coding RNAs 
and mRNAs in NEC. Preliminarily, 281 DEmRNAs, 
21 DEmiRNAs, 253 DElncRNAs and 207 DEcircRNAs 

were identified in NEC samples. The enrichment analy-
sis indicated that the 281 DEmRNAs were significantly 
enriched in IL-17 signaling pathway. IL-17 signaling 
pathway is able to trigger several pro-inflammatory 

Fig. 3  Targeted miRNAs prediction of DElncRNAs and DEcircRNAs. A-B Overlapped targeted miRNAs of DElncRNAs and DEcircRNAs, respectively. 
C-F The structural annotation of hsa_circ_0001522, hsa_circ_0000690, hsa_circ_0001772 and hsa_circ_0004273, separately
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molecule events, such as IL22, IL1β, TNF, and so on 
[26]. The main pathophysiology of NEC has been known 
as extreme inflammatory responses and necrosis [27]. 
Although IL-17 signaling has been illustrated in some 
IBDs like Crohn’s disease [26], it has been seldom stud-
ied in NEC. Our data provided more evidence regarding 

inflammatory responses in NEC. Furthermore, we 
found that proinflammatory cytokines, IL-1β and IL11, 
showed higher expression in NEC. Besides, Dendritic 
cells (DCs) activated were significantly differentially 
infiltrated between NEC vs. Controls, and negatively 
correlated with the HK2 expression in NEC samples. 

Fig. 4  Construction of key ceRNA regulatory network. A The Venn diagram of pre-mRNAs and 281 DEmRNAs. B Correlation network of 4 lncRNAs-4 
miRNAs-24 mRNAs. C Correlation network of 4 circRNAs-3 miRNAs-24 mRNAs’ network. D Key ceRNA regulatory network
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Fig. 5  GO and KEGG functional enrichment analysis of 20 core mRNAs. A The top 21 significantly enriched GO terms. B 13 significantly enriched 
KEGG pathways

Fig. 6  Key gene screening process
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Emami et al. have reported that in NEC mouse models, 
C. sakazakii infection could destruct the intestinal epi-
thelium via recruiting more DCs and suppressing the 
DC maturation [28]. Obviously, lower levels of activated 
DCs seemed to exert unfavorable effects on NEC.

Subsequently, after target prediction and cross analy-
ses basing on the differentially expressed RNAs, a key 
ceRNA regulatory network was built including 2 lncR-
NAs (LINC00402 and CYB561D2), 4 circRNAs, 2 miR-
NAs (miR-222-5p and miR-520  g-5p) and 20 mRNAs. 
Most of the non-coding RNAs are reported in NEC 
for the first time in our study. Further functional infor-
mation of these 20 key genes was obtained, involv-
ing many carbohydrate metabolism related pathways. 
Additionally, considering the important effects of 
hypoxia on NEC of newborns, the core gene HK2 was 
finally screened involving carbohydrate metabolism and 
hypoxia in NEC. Although limited reports directly sup-
ported the interaction between HK2 and these non-cod-
ing RNAs, especially in NEC, some indirect clues could 
be found. LncRNA CYB561D2 has been indicated to 
activate STAT3 and lead to the immunosuppression in 
brain tumor [29]. Meanwhile, hypoxia was a crucial fac-
tor driving immunosuppression in various tumors [30]. 
However, whether CYB561D2 and HK2 could exert sim-
ilar roles under hypoxia in NEC should be further inves-
tigated. Recently, in a breast cancer cell line, miR-222-5p 
has been evidenced to be downregulated under hypoxia 
[31], indicating that miR-222-5p expression indeed was 
affected by hypoxia. Whereas, the interaction between 
HK2 and miR-222-5p under hypoxia still needs to be 
further clarified in NEC in the future.

Hexokinases (HKs) catalyze glucose to yield glucose-
6-phosphate (G6P) involving the first committed step 
in glucose metabolism, and HK2 (hexokinase 2) is a 
member of hexokinase family [32]. Although HK2 has 
been seldom studied in NEC of newborns, the role of 
HK2 has been illustrated in many diseases. Han et  al. 
have recently demonstrated that differential DNA meth-
ylation/ hydroxymethylation and gene expression of 
HK2 was observed in mouse model of inflammatory 
bowel disease (IBD) [33]. Whereas, as another intestinal 
inflammatory disease, whether similar epigenetic mod-
ification of HK2 occurs in NEC still needs to be clari-
fied. Additionally, in hepatomas, HK2 has been found 
to be highly expressed in tumor cells, accompanied with 
great G6P production, and G6P was an important car-
bon and energy source in hypoxic conditions [34]. More 
importantly, as a crucial transcription factor in hypoxia, 
HIF-1α is able to bind with the promoter of HK2 to 
promote the transcription of HK2 [35]. Thus, we sus-
pect that in NEC, HK2 exerts adaptive role in provid-
ing carbon and energy source in intestinal epithelium 
in a dynamic oxygen conditions, involving hypoxia and 
carbohydrate metabolism. Additionally, Pavo et al. have 
recently reported their findings in repetitive ischemia/ 
reperfusion model that HK2 was significantly upregu-
lated in ischemic zone while downregulated in heart 
regions, indicating the intrinsic remote ischemic con-
ditioning (RIC) of myocardium [36]. In NEC, RIC has 
been increasingly considered a promising tool to pro-
tect distant organs from ischemia/ hypoxia-induced 
damage [37]. Accordingly, their work inspired us to 

Fig. 7  Screening of crucial gene HK2 involving carbohydrate metabolism and hypoxia in NEC. A Results of cross analysis. B-C The expression of HK2 
in NEC samples in local sequencing data and GSE46619, respectively. P value was calculated with t-test

Fig. 8  Potential impacts of HK2 on inflammatory responses in NEC. A-B In our sequencing data, the expression levels of IL-1β and IL11, respectively. 
C-D In dataset GSE46619, the expression levels of IL-1β and IL11, respectively. E The immune cell infiltration in our local samples. F-G Dendritic cells 
activated and NK cells resting were significantly differentially infiltrated between NEC vs. controls, separately. H The correlation analysis of HK2 and 
Dendritic cells activated. P value was calculated with t-test

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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connect HK2 with RIC, which deserved subsequent 
investigation in the near future.

Finally, it is still urgently needed to reveal the HK2 
related underlying mechanisms in NEC, in order to 
better understand the detailed pathogenic role of HK2. 
Only then it will be possible to further explore its role 
in larger sample size and other sample type, such as 
blood sample. All above work are expected to help us to 
apply our findings to clinical cases earlier. The hypoxia-
related gene HK2 we identified is promising to provide 
more alternatives for early detection and diagnosis of 
NEC.

Conclusions
In summary, basing on the whole transcriptome RNA 
sequencing analysis of our local clinical samples, we 
fully use bioinformatics tools and mine the poten-
tial pathogenic ceRNA network in NEC. Notably, a 
promising pathogenic hypoxia-related gene HK2 has 
been firstly identified in NEC, involving the carbohy-
drate metabolism. Our findings give more insights into 
understanding the pathogenesis of NEC of newborns.
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