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Abstract 

Background: Kawasaki disease (KD), characterized by systemic vasculitis, is the leading cause of acquired heart dis-
ease in children. Herein, we developed a diagnostic model, with some prognosis ability, to help distinguish children 
with KD.

Methods: Gene expression datasets were downloaded from Gene Expression Omnibus (GEO), and gene sets with a 
potential pathogenic mechanism in KD were identified using differential expressed gene (DEG) screening, pathway 
enrichment analysis, random forest (RF) screening, and artificial neural network (ANN) construction.

Results: We extracted 2,017 DEGs (1,130 with upregulated and 887 with downregulated expression) from GEO. The 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were 
significantly enriched in innate/adaptive immune response-related processes. Subsequently, the results of weighted 
gene co-expression network analysis and DEG screening were combined and, using RF and ANN, a model with eight 
genes (VPS9D1, CACNA1E, SH3GLB1, RAB32, ADM, GYG1, PGS1, and HIST2H2AC) was constructed. Classification results of 
the new model for KD diagnosis showed excellent performance for different datasets, including those of patients with 
KD, convalescents, and healthy individuals, with area under the curve values of 1, 0.945, and 0.95, respectively.

Conclusions: We used machine learning methods to construct and validate a diagnostic model using multiple bioin-
formatic datasets, and identified molecules expected to serve as new biomarkers for or therapeutic targets in KD.
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Background
Systemic vasculitis is the main pathological feature of 
Kawasaki disease (KD), which frequently occurs in chil-
dren between 6  months and 5  years of age. The most 
prominent comorbidity of KD is coronary artery lesions 
(CALs), causing coronary artery aneurysm (CAA) expan-
sion, stenosis, thrombosis, myocardial infarction, and 

sudden death [1–3]. Although early standard treatment 
can considerably reduce complications in acute KD, 5% of 
children with KD still present with CALs [4]. Therefore, 
KD is considered to be a form of childhood “coronary 
heart disease” related to adult coronary heart disease [4, 
5]. Since its discovery, KD has mainly been associated 
with heart disease in children in developed countries [6].

According to the latest diagnostic guidelines, KD is 
primarily defined by the following clinical features: 1) 
fever, 2) diffuse oropharyngeal mucosa hyperemia, 3) 
rash, 4) redness and swelling of the hands and feet in the 
acute phase and peeling of the nails during the recovery 
phase, 5) non-purulent cervical lymphadenopathy, and 
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6) conjunctival hyperemia [7]. A comprehensive assess-
ment of the disease is performed based on the above-
mentioned clinical symptoms and presence of aberrant 
coronary arteries (such as dilated arteries). Addition-
ally, corresponding laboratory experiments and imaging 
examination can help in KD diagnosis. The pathogen-
esis of KD is considerably related to complex influenc-
ing factors, namely infection, genetic susceptibility, and 
immune response, resulting in notable disease heteroge-
neity across individuals and difficulty in diagnosis. Sev-
eral studies have reported the presence of Epstein-Barr 
virus, coronavirus, and hepatitis virus in either periph-
eral blood or respiratory secretions of patients with KD 
[8–11]. However, these reports need further confirma-
tion through experiments owing to the poor replicabil-
ity. Multiple cytokines in the innate immune system of 
patients with KD can induce coronary inflammation in 
response to pathogen invasion [12, 13].

Additionally, the adaptive immune response is consid-
erably activated. Recent studies have shown that both 
pro-inflammatory and regulatory T cells in the blood 
play critical roles in regulating the severity and suscep-
tibility to KD [14, 15]. Although many single nucleotide 
polymorphisms associated with KD are homologous in 
other inflammatory diseases such as rheumatoid arthri-
tis, ulcerative colitis, and systemic habitual lupus erythe-
matosus, the exact molecular mechanism underlying KD 
has not been elucidated [16–18].

Numerous microarray/sequencing data of gene expres-
sion have been published in public databases such as 
Gene Expression Omnibus (GEO) during the past few 
years, and they are being increasingly used in bioin-
formatics to explore target genes or proteins involved 
in various diseases. These data are classified as high-
dimensional sample data, analyzed using machine learn-
ing methods for uncovering patterns to elucidate disease 
pathogenesis and predict diagnostic markers. In this 
study, we aimed to develop and validate a diagnostic 
model based on bioinformatics and machine learning to 
distinguish patients with KD using multiple datasets. The 
results of this study will provide new insights for future 
studies to explore the molecular mechanism underlying 
KD.

Methods
Dataset access and preprocess
GEO was used to retrieve the sequencing and micro-
array datasets used in our study, from which the 
datasets of patients with KD, normal controls, and con-
valescent individuals (GSE73461, GSE68004, GSE63881, 
GSE73463, and GSE109351) were obtained. Considering 
the phenotypic differences between individuals with the 
disease and healthy controls, we selected a subset of these 

datasets. The GSE73461 dataset contained transcrip-
tional profiles of 78 patients with KD and 55 healthy con-
trol samples obtained using genome-wide analysis [19], 
and it was used for differentially expressed gene (DEG) 
screening, gene enrichment analysis, and random forest 
construction. The GSE68004 dataset contained data on 
76 patients with KD and 37 healthy control samples and 
was used to construct and validate the ANN model [20]. 
Both GSE63881 (171 patients with KD and 170 convales-
cent samples) [21] and GSE73463 (146 patients with KD 
and 87 convalescent samples) [19] datasets were used for 
investigating the molecular mechanisms underlying KD 
with the ANN model. In addition, the GSE109351 (three 
samples each of patients with KD, healthy controls, and 
convalescent samples) dataset was used to validate the 
expression of genes in the ANN model [22]. All datasets 
except GSE109351 were created using the GPL10558 Illu-
mina HumanHT-12 V4.0 expression bead chip platform, 
whereas GSE109351 was created using the GPL17586 
Affymetrix Human Transcriptome Array 2.0 platform, 
and data collation and analysis were conducted using R 
software (version 4.0.3). Platform annotation informa-
tion was obtained through GEO, and gene annotation 
was performed with probes using the “org.Hs.eg.db” R 
package.

Screening and enrichment of DEGs
Before screening DEGs, the original data were normal-
ized using the R package “Limma,” which was used to 
identify DEGs from GSE73461, and fold change > 4 and 
p < 0.05 were used as cut-offs for selection [23]. Thereaf-
ter, we used R packages “heatmap” and “ggplot2” to show 
the DEGs with upregulated and downregulated expres-
sion, respectively. The R package “clusterProfiler” was 
used to analyze the enrichment of gene clusters and clas-
sification of biological terms via Gene Ontology (GO) 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [24, 25]. The enrichment results were ranked 
based on the p-value; statistical significance was set at 
p < 0.05. The top 10 significance terms were selected for 
displaying enriched genes and were visualized using R 
package “ggplot2.”

Gene co‑expression module construction
The R package “WGCNA” was used to construct gene 
co-expression modules using the top 5000 genes exhib-
iting statistically significant median absolute deviation 
in the GSE73461 dataset. Numbers 2–30 were selected 
as the preset soft threshold β and filtered using the net-
work topology analysis function “pickSoftThreshold” in 
R. Thereafter, the best β value was screened based on the 
visualization results of “Scale independence” and “Mean 
connectivity.” Subsequently, the proximity matrix was 
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constructed using the soft-threshold power value β and 
transformed into a topological overlap matrix, which 
was then used to calculate the distance between genes 
for hierarchical clustering. Moreover, gene modules were 
generated via dynamic shearing in R and distinguished 
by color, according to the optimal value β, and the size of 
genes in module ≥ 30 as the selection criterion. Clinically, 
the most valuable data for GSE73461 are the groupings 
by phenotype, namely “Bacterial,” “Control,” “Inflamma-
tory,” “Kawasaki,” “Unknown,” and “Viral.” Therefore, we 
calculated and screened the obtained gene modules most 
related to phenotype using the Pearson correlation coef-
ficient test and visualized using “WGCNA.”

Random forest classification and neural network 
construction
The R package “randomForest,” generally used to train 
and predict samples [26], was used to construct clas-
sification models of datasets. Before modeling, we ran-
domly sampled the partial data of GSE73461 (contained 
78 patients with KD and 55 healthy control samples), 
divided into a training set and validation set at the ratio 
of 7:3. The initial variable number for the binary tree in 
the node was set as system default value, and optimal 
number of trees was set to 3,000 to construct an initial 
model. In our study, candidate genes after intersection 
from DEGs and module genes of WGCNA were entered, 
and disease-specific genes were chosen according to the 
screening threshold of mean decrease in Gini and mean 
decrease in accuracy. Additionally, the five-fold cross-val-
idation method based on machine learning was used to 
screen suitable candidate genes for constructing random 
forests to determine the optimal combination of gene 
numbers. After selection, another dataset, GSE68004, 
was chosen for ANN model training using the R pack-
age “neuralnet” [27]. Eight candidate genes were input, 
and 5 hidden layers and 2 outputs (KD and healthy con-
trol) were set as parameters for constructing a KD model 
(termed neuralKD).

Validation of model through machine learning
To further evaluate the detection performance of neu-
ralKD in classification, we used quadratic discriminant 
analysis (QDA), principal component analysis (PCA), 
mixed discriminant analysis (MDA), and multiple logis-
tic regression to perform validation with the R pack-
ages (including “FactoMineR,” “factoextra,” “mda,” and 
“MASS”). Before analysis, we randomly sampled the 
data of GSE68004 (contained 76 patients with KD and 
37 healthy control samples), divided into a training set 
and validation set at the ratio of 8:2. R package "Caret" 
was used to perform a five-fold cross-validation of AUC, 
through which the average scores can be determined. 

Moreover, we visualized the results of candidate genes 
using the R package “heatmap.” Finally, the R package 
“pROC” was used to evaluate the performance of the 
classifier of “neuralKD.”

Additional data verification
We used two more datasets (GSE63881 and GSE73463) 
to explore the ability of the model to evaluate the progres-
sion of KD. A boxplot was constructed using the expres-
sion of eight genes (VPS9D1, CACNA1E, SH3GLB1, 
RAB32, ADM, GYG1, PGS1, and HIST2H2AC) in neu-
ralKD between the KD and convalescent groups. Fur-
thermore, the receiver operating characteristic (ROC) 
curve was analyzed to evaluate the performance of 
the classifier. In addition, the correlation among genes 
involved in neuralKD was calculated and visualized using 
the R package “corrplot.”

Results
Workflow
Figure 1 displays an outline of the workflow followed in 
our study.

Screening of DEGs
We extracted 1,130 DEGs with upregulated and 887 with 
downregulated expression from GSE73461. The results of 
the DEG analysis are shown in Fig. e 2a and b. The results 
of the GO and KEGG analyses were conducted from R 
package "clusterProfiler", which was shown in Fig.  2c 
and d, respectively. DEGs were significantly enriched in 
neutrophil-related immune responses, such as “neutro-
phil mediated immunity” and “neutrophil activation.” 
The KEGG pathway analysis (p < 0.05) suggested that 
the DEGs were primarily involved in “cytokine–cytokine 
receptor interaction” and other T cell-related processes 
such as “Th1 and Th2 cell differentiation.”

Weighted co‑expression network construction and module 
identification
For weighted gene co-expression network analysis 
(WGCNA), we set 30 as the least number of genes in each 
gene network and 0.9 as the cut height (Fig. 3a). We gen-
erated 14 modules when the connectivity between genes 
in the network satisfied the scale-free network distribu-
tion (Fig. 3b). As we had a summary profile (eigengene) 
for each module, we correlated eigengenes with differ-
ent phenotypes of GSE73461 and searched for the most 
significant associations (Fig.  3c). The turquoise module 
positively correlated with the “Kawasaki” phenotype 
from group information in GSE73461, compared with 
other modules. The degree of correlation between the 
genes in the turquoise module and KD phenotype was 
illustrated using statistical models (Fig. 3d). Additionally, 
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818 genes from the turquoise module that possibly act in 
the molecular mechanism underlying the pathogenesis 
of KD (called “module genes”) were obtained for further 
analysis.

Random forest screening for DEGs and neural network 
construction
To obtain reliable genes that might act as diagnosis mark-
ers for KD, we input the candidate 553 genes into the 
RF classifier after merging the DEGs from GSE73461 
with the “module genes” from WGCNA. The best vari-
able number for the binary tree in the node was set as 23, 
whereas the optimal number of trees in the RF classifier 
was set to 1,500 to obtain the dimensional importance 
of all variables (Fig.  4a). The variable importance of the 
top 30 genes input to the random forest model is shown 
in Fig.  4b. Eight genes (VPS9D1, CACNA1E, SH3GLB1, 
RAB32, ADM, GYG1, PGS1, and HIST2H2AC) were 
selected for further analysis following evaluation with the 
cross-validation method in the RF model (Fig. 4c). There-
after, we used GSE68004 to construct an ANN model 
with 8 input layers, 5 hidden layers, and 2 output layers to 
classify the phenotype between disease and normal sam-
ples, as shown in Fig. 4d.

Validation of classification based on machine learning
To test the classification performance of neuralKD, we 
used machine learning methods including QDA, MDA, 
and PCA. The classification obtained using QDA in the 
training or validation sets was consistent with the actual 

classification of the samples (Fig. 5a and b). Additionally, 
the classification results of PCA were flawed, possibly 
because PCA is an unsupervised algorithm that lacks the 
label corresponding to the sample, leading to the devia-
tion in classification (Fig.  5c). Moreover, MDA showed 
significant group differences (Fig. 5d). The area under the 
ROC curve values were used to evaluate the performance 
of the logistic regression model in GSE68004, as shown 
in Fig. 5e. Simultaneously, we comprehensively evaluated 
the ability of “neuralKD” on other algorithms based on 
accuracy, F1 score, and AUC (Additional File 1 Table S1). 
The five-fold cross-validation results were used to con-
firm the reliability and stability of the model (Table S2). 
These results reveal the possible practicality of neuralKD.

Validation of Kawasaki disease predictive model
To test our hypothesis that neuralKD can predict the 
progression and prognosis of KD, we introduced two 
independent KD datasets (GSE63881 and GSE73463). 
The eight genes were expressed at low levels in the con-
valescent samples and at high levels in the disease sam-
ples (Fig.  6a and c). Moreover, the analysis of the ROC 
curve showed that the area under the curve (AUC) val-
ues corresponding to neuralKD (containing VPS9D1, 
CACNA1E, SH3GLB1, RAB32, ADM, GYG1, PGS1, and 
HIST2H2AC) were 0.945 and 0.95 for the GSE63881 
and GSE73463 datasets, respectively (Fig.  6b and d), 
indicating that neuralKD offers the possibility to pre-
dict the progression and prognosis of KD. In addition, 
we obtained similar findings with GSE109351, which 

Fig. 1 Flow chart of the study, including gene screening and machine learning model construction and validation
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comprised patients with KD, healthy controls, and con-
valescent samples (Additional File 1, Figure S1). These 
eight genes were strongly correlated (Additional File 1, 
Figure S2).

Discussion
According to our GO enrichment analysis through 
GSE73461, most DEGs were enriched in neutrophil-
related processes, especially degranulation, activation, 
and differentiation. Additionally, DEGs associated with 

adaptive immunity responses, such as cytokine-cytokine 
receptor interaction and Th1/Th2 cell differentiation, 
were identified using the KEGG pathway enrichment 
analysis. Our results suggested that KD pathogenesis is 
closely related to the innate/adaptive immune response, 
consistent with the findings of previous studies, although 
the mechanism was not elucidated [28–31]. Moreover, 
we observed that autoimmune diseases such as systemic 
lupus erythematosus and inflammatory bowel disease are 
frequently referenced in KEGG. This suggests that KD 

Fig. 2 Analyses of DEGs in the GSE73461 dataset. This dataset includes 78 KD and 55 healthy control individuals. a Volcano plot of DEGs. b Heatmap 
of DEGs. The correlation between color and fold change of DEG level is displayed in the upper right corner. c Top 10 significantly enriched GO terms 
of DEGs. d Top 10 significantly enriched KEGG pathways of DEGs. In (a) and (b), the genes with upregulated expression are indicated in red, whereas 
those with downregulated expression are indicated in blue. In (b), “Kawasaki” means KD individuals, whereas “control” means healthy control 
individuals
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exhibits a similar phenotype with autoimmune diseases, 
characterized by immune system activation of signaling 
pathways related to IL-1, IL-6, and TNF and the involve-
ment of T/B cells. However, this claim is debatable [32, 33]. 
Although several DEGs and characteristic pathways were 
screened, the single bioinformatic analysis method had 
limited efficacy in identifying candidate genes related to 

the disease, as further screening was needed when using 
a large number of DEGs and omitting non-DEGs associ-
ated with disease phenotypes. Therefore, we used other 
techniques, such as WGCNA, RF, and machine learning, 
to identify the biomarkers associated with KD.

In the present study, we used a subset of data from 
GSE73461 to select DEGs; hence, the results obtained 

Fig. 3 Results of the WGCNA of GSE73461. a Network topology analysis of various soft-threshold power. Soft-threshold power value β = 10 
was chosen. b Cluster dendrogram of the 5,000 genes from GSE73461 was ordered by hierarchical clustering of genes based on the value of 
dissimilarity. Each branch in the figure represents one gene, and each module is assigned different colors. c Heatmap of correlation between gene 
modules and different phenotypes of GSE73461. Correlation coefficient, along with the p-value, is illustrated in parenthesis underneath. The color 
was coded according to the correlation coefficient (legend at right). d Scatter plot of module eigengenes in the turquoise modules in the KD group

(See figure on next page.)
Fig. 4 Screening results of Kawasaki disease-related DEGs using a random forest classifier. a Influence of the number of decision trees on the error 
rate. The x-axis is the number of decision trees, and the y-axis is the error rate. b Ranking of input variables in the random forest model to classify 
KD and healthy control samples. All genes are sorted by the value of “MeanDecreaseAccuracy” and “MeanDecreaseGini,” separately. c Gene number 
screening from fivefold cross-validation method in the construction of random forest. d Visualization of neural network topology of GSE68004 with 
8 input layers, 5 hidden layers, and 2 output layers
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Fig. 4 (See legend on previous page.)
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by artificial grouping according to the clinical phenotype 
may cause variations. Therefore, we selected all data from 
GSE73461 using WGCNA, a systems biology method for 
analyzing molecular interaction mechanisms and resolv-
ing correlation networks [34, 35]. Our results revealed 
characteristic genes in the turquoise module associated 
with the KD phenotype group. Genes in modules might 
represent the feature of their corresponding clinical phe-
notypes by their pattern of expression and, hence, may 
have possible predictive effects. An increasing number 
of studies are exploring biomarkers using a combina-
tion of WGCNA and DEG identification to ensure the 
reliability of research [36, 37]. In this study, the com-
bination of DEG screening and WGCNA reduced the 
number of intersecting genes to select a suitable number 

of characteristic genes for the subsequent analysis. Fur-
thermore, we noticed that almost all genes in the module 
were DEGs, supporting the need for further research on 
DEGs and their related signal pathways, which will facili-
tate the discovery of new diagnostic indicators and thera-
peutic targets.

The main difficulty in building classification models 
using gene expression data is identifying the most mean-
ingful classification indices or features. RF and ANN were 
used to address this issue in our study based on their high 
classification accuracy and convenience. Recently, a sin-
gle algorithm or a combination of these algorithms have 
been widely used in gene expression data classification, 
especially disease diagnosis research [38–40]. In this 
study, we determined characteristic genes related to KD 

Fig. 5 Validation of classification through machine learning. a Heatmap for classifying on the GSE68004 training set based on quadratic 
discriminant analysis algorithm. b Heatmap for classifying the GSE68004 validation set based on the QDA algorithm. c Classification results based on 
PCA with the GSE68004 dataset. d Classification results based on MDA. e Performance evaluation of logistic regression model in GSE68004 by area 
under the ROC curves and the AUC values (AUC = 1)
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and found several important candidate genes through 
the RF classifier. Eight genes were then identified using 
an ANN model and cross-validation. To further vali-
date the neuralKD performance in disease classification, 
we employed various classification-based methods such 
as discriminant analysis, PCA, and logistic regression 
using GSE68004 data. Our results showed that neuralKD 
exhibited excellent diagnostic performance when vali-
dated against multiple machine learning methods except 
for PCA. Given that PCA is an unsupervised algorithm 
[41], applied among machine learning methods in our 

study, and the data were not properly parameterized, the 
classification efficacy of GSE68004 was low. Recently, 
the development of machine learning algorithms and 
availability of gene expression data or clinical data from 
patients with KD has provided approaches to infer bio-
markers for disease diagnosis [42, 43].

These previous studies have established different mod-
els for diagnosing KD through either single nucleotide 
polymorphism or laboratory indicators, demonstrating 
the value of in-depth research on the molecular mecha-
nism of the disease. In particular, neuralKD obtained 

Fig. 6 Gene expression validation and performance evaluation of classification model by genes from the neuralKD model. a Expression of VPS9D1, 
CACNA1E, SH3GLB1, RAB32, ADM, GYG1, PGS1, and HIST2H2AC in GSE63881. Blue: Convalescent group and Red: Kawasaki disease group. b AUC 
verification results with the GSE63881 dataset, which achieved an AUC of 0.945. c Expression of VPS9D1, CACNA1E, SH3GLB1, RAB32, ADM, GYG1, 
PGS1, and HIST2H2AC in GSE73463. Blue: Convalescent group and Red: Kawasaki disease group. d AUC verification results with the GSE73463 
dataset, which achieved an AUC of 0.95
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in our study showed excellent classification ability of 
GSE73463 and GSE63881 datasets and the expression 
levels of the eight genes involved in the model were good 
indicators of KD prognosis.

Among the eight genes (VPS9D1, CACNA1E, 
SH3GLB1, RAB32, ADM, GYG1, PGS1, and HIST2H2AC) 
in neuralKD, VPS9D1 encodes a VPS9 domain-containing 
protein with ATP synthase and GTPase activator activi-
ties. Its expression increases in sepsis survivors and has 
a higher burden of missense variants in sepsis survivors 
[44]. Similarly, the pathogenesis of KD is closely related to 
the inflammatory response, and our results also showed 
low expression of VPS9D1 in the convalescent group, 
indicating the value of this gene in evaluating disease pro-
gression. CACNA1E is a member of the voltage-gated cal-
cium channel family, which comprises key transducers of 
cell surface membrane potential changes into local intra-
cellular calcium transients that initiate different physi-
ological events [45]. A previous study indicated that the 
 As2O3-induced inflammatory response depends on Ca 
overload in chicken myocardial damage [46]. Based on the 
available information and our study results, we hypoth-
esized that CACNA1E is differentially expressed during 
an inflammatory response, thereby affecting the serious 
outcomes of KD such as CALs and even CAA dilation, 
stenosis, thrombosis, and myocardial infarction. Another 
study using GEO data identified SH3GLB1, PGS1, and 
RAB31 as diagnostic markers for pediatric sepsis, a pos-
sible risk factor for KD pathogenesis [47]. Although these 
risk factors may contribute to the pathogenesis of KD, 
the bioinformatic analysis based on pediatric sepsis data 
failed to reveal a direct association with KD. In contrast, 
our results showed that the eight genes in neuralKD have 
robust relationships, suggesting a potential mechanism 
of their interactions in KD. The expression of ADM, also 
called adrenomedullin and associated with coronary 
artery vasodilation, was downregulated in both healthy 
individuals and convalescent-phase patients, compared 
with that in patients with acute KD. This finding is con-
sistent with the results of several previous studies, indi-
cating that ADM expression plays a decisive role in the 
diagnosis and prognosis of KD [48–50]. Importantly, we 
are committed to conducting in-depth research in the 
future on the eight genes sourced from neuralKD to verify 
their effects through in vitro experiments.

Conclusions
We employed machine learning methods to construct 
and validate diagnostic models (neuralKD) through 
multiple datasets using a combination of DEGs screen-
ing and WGCNA, resulting in the identification of 
molecules expected to serve as new biomarkers or 

therapeutic targets in the future. However, the present 
study had some limitations. First, conclusions from 
bioinformatic analyses require further experimental 
verification. Other unknown genes related to the "core 
genes" from neuralKD may also play a certain auxiliary 
role in the pathogenesis and progression of KD, which 
requires further exploration. Second, due to the large 
differences in information provided by different GEO 
datasets, clinical information of samples was omitted 
when constructing the diagnostic model. Using such 
varying clinical data may interfere with our analysis 
and validation results. Third, prospective studies must 
be conducted to validate the utility of this new model 
using larger samples.
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