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Abstract 

Background: RANK/RANKL/OPG axis was implicated in many pathological conditions. The study aimed to assess the 
relationship between the studied RANK, RANKL, and OPG polymorphisms and alleles and cognitive impairment in 
children with transfusion‑dependent thalassemia (TDT).

Methods: This study included 60 TDT children. Real‑time PCR was done for: rs1805034, rs1245811, and rs75404003 
polymorphisms for the RANK gene, rs9594782 and rs2277438 polymorphisms for the RANKL gene, and rs207318 
polymorphism for the OPG gene. The intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for 
Children‑Third Edition.

Results: TDT children had a low average total IQ, verbal IQ, and borderline performance IQ. RANK rs1805034 (C > T) 
had a significant effect on total IQ (p = 0.03). Its TT polymorphism and the CT polymorphism of RANKL rs9494782 
(C > T) had a significantly lower total IQ (p = 0.01 for both). The G allele of the RANKL rs2277438 (G > A) had a signifi‑
cantly lower total IQ (p = 0.02). RANK rs1805034 (C > T) and RANKL rs2277438 (G > A) significantly affected verbal IQ 
(p = 0.01 and 0.03). TT genotype of RANK rs1805034 (C > T) had significantly lower verbal IQ (p = 0.002). Furthermore, 
the GG genotype of RANKL rs2277438 (G > A) had a significantly lower verbal and performance IQ than the AA 
genotype (p = 0.04 and 0.01 respectively), and its G allele had a significantly lower performance IQ than the A allele 
(p = 0.02).

Conclusion: TDT children had low average total and verbal IQ while their performance IQ was borderline. The RANK/
RANKL/OPG pathway affects cognition in TDT children, as some of the studied genes’ polymorphisms and alleles had 
significant effects on total, verbal, and performance IQ of the studied TDT children.
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Background
Beta thalassemia syndromes are mostly autosomal reces-
sive disorders characterized by beta-globin chains syn-
thesis genetic deficiency. More than 200 mutations cause 
thalassemia [1]. Beta thalassemia spectrum varies from 
severe transfusion-dependent anemia in the homozygous 
state to mild to moderate non-transfusion-dependent 

Open Access

*Correspondence:  suzanmousa@mu.edu.eg

1 Department of Pediatrics, Children’s University hospital, Faculty of Medicine, 
Minia University, El‑Minya, Egypt
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12887-022-03479-9&domain=pdf


Page 2 of 11Mousa et al. BMC Pediatrics          (2022) 22:435 

microcytic hypochromic anemia in the heterozygous 
state [2]. Excess unpaired alpha-globin chains aggregate 
and damage red cell membranes, leading to premature 
destruction of erythroid precursors resulting in inef-
fective erythropoiesis. These events cause anemia with 
erythroid hyperplasia and extramedullary hematopoiesis 
[3].

Transfusion-dependent thalassemia (TDT) causes sev-
eral health problems due to profound anemia and fre-
quent blood transfusions such as splenomegaly, bone 
disease, growth delay, endocrinal disturbances, and blood 
transfusion-transmitted infections [4, 5]. In addition to 
long-term transfusion therapy, complications related 
to iron overload, such as iron overload cardiomyopathy, 
account for most deaths in thalassemia patients [6].

Regular blood transfusion and chelation therapy have 
increased the life expectancy in thalassemia patients. 
Neurological involvement, as a result, has become more 
evident with the advancement in the age of thalassemia 
patients [7, 8]. Although most were subclinical, a broad 
spectrum of neurological complications has also been 
reported, such as cognitive impairment and cerebrovas-
cular diseases [9].

Multiple risk factors contributing to cognitive impair-
ment in TDT include anemia, iron overload, chronic 
hypoxia, asymptomatic brain infarcts, and visual and 
auditory toxicity of deferoxamine [10–14]. Although 
there is some controversy on the relation between brain 
iron overload and cognitive impairment in thalassemia, 
for instance, Manara et  al. in 2019 found no evidence 
of iron overload in brain tissue except in the choroid 
plexuses. They concluded that iron overload might not 
directly cause cognitive impairment in thalassemia. How-
ever, they proposed that choroid plexus’ iron overload 
may cause cognitive impairment indirectly. As neuro-
degeneration secondary to choroid plexus iron overload 
produces free radicals in the cerebrospinal fluid or tissues 
contiguous to regions strictly related to cognition [15].

Tumor necrosis factor (TNF) is a pro-inflammatory 
cytokine that controls the expression of numerous signal-
ing pathways implicated in the progression of immuno-
logical reactions related to the development of various 
vascular and metabolic diseases [16]. Osteoprotegerin 
(OPG) is a cytokine of the TNF receptor superfamily.

The receptor activator of nuclear factor-κB (RANK) 
and RANK ligand (RANKL) are a receptor-ligand pair of 
the TNF receptor superfamily. The RANK/RANKL/OPG 
axis has emerged as the critical molecular pathway in 
bone metabolism [17].

Previous studies have elucidated the crosstalk between 
endothelial cells and osteoblasts during osteogen-
esis, thus connecting angiogenesis with osteogenesis. 
However, the cellular mechanisms involved are mainly 

unknown, but growing evidence suggests that the RANK/
RANKL/OPG triad may play a significant role in vascu-
lar calcification and different disease mechanisms. Many 
studies confirmed the critical role of the RANK/RANKL/
OPG axis in pathological angiogenesis and inflammation, 
in addition to its role in cell survival through vascular 
endothelial growth and activation of the nuclear factor 
kappa light chain enhancer of activated B cells (NF-κB) 
pathway [18].

It had been documented that RANK/RANKL/OPG 
axis signaling is implicated in CNS functioning and cor-
responding pathologies, processes of differentiation, and 
cell death. It was reported that this axis is involved in the 
differentiation of cells involved in neuroinflammation, 
predominantly in microglia and in resident macrophages 
and inflammatory cells migrating across the blood-brain 
barrier. They act as neuroprotectants after brain damage 
[19].

This study aimed to assess the relationship between the 
studied RANK, RANKL, and OPG polymorphisms and 
alleles and cognitive impairment in children with TDT.

Subjects and methods
Study design and participants
This cross-sectional study was carried out at the Pediat-
ric department, Minia University Children and Maternity 
Hospital, Faculty of Medicine, Minia University, from 
September 2019 till May 2021. It included 60 children 
already diagnosed with transfusion-dependent thalas-
semia, based on previous hemoglobin electrophoresis 
and clinical course.

They were recruited from the pediatric hematology 
outpatient clinic and pediatric hematology in-patient 
ward. All patients were on a regular blood transfusion 
program every 2–6 weeks and on deferasirox iron chela-
tion therapy for at least 12 months before participating in 
the study. Age ranged between 5 and 16 years, and there 
was no sex predilection. Iron overload in the studied chil-
dren was assessed by serum ferritin, and liver and cardiac 
MRI.

Children with mental disorders, history of cerebrovas-
cular accidents, any chronic disease other than TDT, or 
refused to participate were excluded from the study.

Data collection
Baseline clinical assessment
All included children were subjected to detailed medical 
history taking and thorough clinical examination with 
particular emphasis on the history of the age of the first 
transfusion, transfusion burden/year (ml/kg/year), and 
history of splenectomy, the average frequency of transfu-
sion, and type and duration of chelation therapy. In addi-
tion, the socioeconomic status score was determined for 
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every participant child according to El-Gilany et al. [20], 
a modification of the old scoring system of Fahmy and El-
Sherbini [21].

Liver and cardiac MRI
Liver iron concentration (LIC) in mg/g dry weight and 
T2* MRI was performed in the Department of Radiology, 
Minia University Children and Maternity Hospital, using 
MR Philips ingenia 1.5 Tesla (Philips Medical Systems, 
Netherlands), as part of regular follow-up of the patients.

Laboratory analysis
The following laboratory investigations were done for all 
participants: CBC, serum ferritin, liver function tests.

About 6 ml of venous blood were withdrawn from 
each subject by sterile venipuncture, 2 ml were collected 
on two sterile vacutainers containing EDTA solutions 
tubes, this tube was used for CBC assay by an automated 
cell counter (CelltacES, Nihon Kohden, Germany). The 
remaining 4 ml were put on serum separator gel tubes 
then were allowed to clot for 30 minutes at 37 °C before 
centrifugation for 15 minutes at 3500 rpm. The expressed 
serum measured serum ferritin using fully automated 
clinical chemistry auto-analyzer system Konelab 60i 
(Thermo Electron Incorporation, Finland). The remain-
ing serum was stored at − 20 °C.

Molecular analysis
Real-time PCR was done for the following SNPs: 
rs1805034, rs1245811, and rs75404003 polymorphisms 
for the RANK gene, rs9594782 and rs2277438 polymor-
phisms for the RANKL gene, and rs207318 polymor-
phism for the OPG gene. It was carried on DT lite 4 
Real-Time PCR System (DNA Technology, Russian).

For IQ assessment, all the patients were subjected to IQ 
assessment by using the Arabic version of the Wechsler 
Intelligence Scale for Children-Third Edition (WISC-R) 
[22]. This test assesses children’s intelligence on three 
scales: total IQ, verbal IQ, and performance IQ. Total-
scale IQ is based on ten tests incorporated in the verbal 
and performance (non-verbal) IQ scales. The administra-
tion time was approximately 60–90 minutes.

Verbal IQ is based on information, similarities, arith-
metic, comprehension, and digit span. The comprehen-
sion subtest is a scale of the student’s social knowledge 
and the depth of development of morals. Similarities 
subtest measures logic, abstract thinking, and verbal 
reasoning, while information is a scale of general knowl-
edge, education, and long-term memory of his experi-
ence. Arithmetic and digit span subtests are measures of 
working, short, and long-term memory. Performance IQ 
is based on picture completion, coding, picture arrange-
ment, block design, and object assembly. Block design 

measures analyzing and synthesizing an abstract design 
and producing the design from colored plastic. Picture 
completion subtest measures students’ capability of rec-
ognizing closely related items. The Object Assembly 
subtest is a measure of the ability of visualization of item 
parts of Mazes. The mazes subtest measures perceptual 
organization, visual-motor coordination, and self-con-
trol. The IQ was graded based on the following guide-
lines: ≥ 130 very superior, 129–120 superior, 119–110 
high average, 109–90 average, 89–80 low average, 79–70 
borderline, ≤69 extremely low [23].

Statistical data analysis
Data will be coded, entered, and analyzed using SPSS 
(statistical package for social sciences) version 20. 
Descriptive statistics were calculated and expressed as 
mean ± standard deviation (SD) for quantitative data 
and as number and percent for qualitative data. Ana-
lytical statistics were done by using independent sam-
ple t-test (comparison of quantitative data between two 
groups) and by ANOVA and post-hoc test (comparison 
of quantitative data among more than two groups). Cor-
relation testing was done by using Pearson’s and Spear-
man’s correlation coefficients. Binary logistic regression 
and linear regression analyses were performed to detect 
the associated independent factors affecting IQ and test 
for confounding factors’ effect on IQ. p-value < 0.05 was 
considered significant.

Results
In this study, 38 (63.3%) of the studied TDT children were 
males, their mean age was 13 ± 4.1 years, and 32 (53.3%) 
of them were a result of a consanguineous marriage. 
Regarding their socioeconomic status, 26 (43.3%) were 
considered as very-low socioeconomic status, 20 (33.3%) 
were of low socioeconomic status, and 14 (23.3%) were of 
medium socioeconomic status. Furthermore, their mean 
age of starting blood transfusion was 19.2 ± 9 months, 34 
(57%) of them were splenectomized, their mean BMI was 
18.3 ± 2.1, and their mean age of starting chelation was 
7 ± 4.2 years. Furthermore, their mean pre-transfusion 
hemoglobin was 5.7 ± 0.54 g%. In addition, their mean 
serum ferritin was 4282.6 ± 2635 ng/ml, their mean liver 
iron concentration was 12.2 ± 7.7 mg/g dry weight, and 
their mean cardiac T2* MRI was 17.1 ± 6.3 ms.

Their mean total IQ was 80 ± 11.5 (low average), and 
their mean verbal IQ was 83. 7 ± 14.1 (low average), while 
their mean performance IQ was 77.7 ± 9.4 (borderline). 
The frequencies of different total, verbal, and perfor-
mance IQ categories are shown in Fig. 1.

Frequency distribution of different genotypes of the 
studied polymorphisms among the TDT children are 
shown in Fig. 2.
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Regarding the relation of the studied genes polymor-
phisms with total IQ, RANK rs1805034 (C > T) polymor-
phisms had a significant relation with total IQ (p = 0.03). 
Moreover, the post hoc test revealed that TDT children 
with its TT polymorphism had significantly lower total 
IQ than children with the CT polymorphism (p = 0.01). 
While RANKL rs9494782 (C > T) polymorphisms did not 
have a significant relation with total IQ (p = 0.1), how-
ever, children having the CT polymorphism of this gene 
had significantly lower total IQ than children with the CC 
polymorphism on performing the post hoc test (p = 0.01). 
On studying the alleles, children with the G allele of the 
RANKL rs2277438 (G > A) had significantly lower total IQ 
(p = 0.02), with a significant unstandardized β coefficient 
of − 5.09 (CI 95%: − 9.8 – − 3.37) (p = 0.02) (Table 1).

Regarding the relation of the studied genes polymor-
phisms with verbal IQ, polymorphisms RANK rs1805034 
(C > T) and RANKL rs2277438 (G > A) had significant 
relation with verbal IQ (p = 0.01 and 0.03). At the same 
time, the homomutant TT genotype of RANK rs1805034 
(C > T) had significantly lower verbal IQ than the CT het-
ero-mutant genotype (p = 0.002), while the GG genotype 
of RANKL rs2277438 (G > A) had a significantly lower 
verbal IQ than the AA homomutant genotype (p = 0.04). 
The unstandardized β coefficient of RANKL rs2277438 
(G > A) polymorphisms was 6.5 (CI 95%: 1.4–11.6) 
(p = 0.02). However, no alleles showed a significant statis-
tical relation with verbal IQ (Table 2).

No polymorphism showed a significant relation to the 
performance IQ. However, the GG genotype of RANKL 
rs2277438 (G > A) had a significantly lower performance 

IQ than the AA genotype (p = 0.01). Furthermore, the G 
allele of the RANKL rs2277438 (G > A) had significantly 
lower performance IQ than the A allele (p = 0.02), with a 
significant unstandardized β coefficient − 3.924 (− 7.789 
– − 2.318) (p = 0.02) (Table 3).

RANK rs1805034 (C > T) polymorphism showed sig-
nificant negative correlation with total and verbal IQ, as 
(r = − 0.33, p = 0.01) and (r = − 0.33, p = 0.009) respec-
tively. While RANKL rs2277438 (G > A) polymorphism 
showed significant positive correlation with verbal IQ 
(r = 0.38, p = 0.01). Although its G allele correlation 
with performance IQ did not reach statistical signifi-
cance (p > 0.05) (Table 4).

Age and serum ferritin had significant negative correlations 
with total, verbal, and performance IQ in this study regarding 
other factors that might affect TDT children’s IQ (Table 4).

Linear regression analyses of the factors signifi-
cantly correlating with total and verbal IQ are shown 
in Table  5. RANK rs1805034 (C > T) polymorphism’s 
standardized 𝛃 coefficient reached statistical signifi-
cance for predicting changes in total and verbal IQ 
(p = 0.009 and 0.03 respectively). Whereas RANKL 
rs2277438 (G > A) polymorphism’s standardized 𝛃 coef-
ficient was borderline significant for predicting changes 
in verbal IQ (p = 0.06) (Table 5).

Discussion
Neurological involvement, such as cognitive impairment 
and cerebrovascular diseases, has become more evident 
with improved patient care and increased life expectancy 
in TDT [7–9].

Fig. 1 Frequency of different total, verbal, and performance IQ categories among studied TDT children
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Our study demonstrated that TDT children had low 
total, verbal, and performance IQ. This deterioration of 
IQ scores is compatible with Meymandi et al. and Cana-
tan et al. studies. They reported significantly lower verbal 
IQ subsets, performance IQ subsets, and academic prob-
lems in 60% of thalassemia children [24, 25]. Our results 
also agreed with the Egyptian study done by Raafat et al. 
in 2015, who found that TDT patients had marked lower 
performances and full-Scale IQ scores [26]. Cognitive 
impairment in thalassemia has several risk factors, such 
as chronic anemia resulting in chronic hypoxia, bone 

marrow expansion and may be iron overload. These 
factors cause the production of free radicals in the cer-
ebrospinal fluid and tissues contiguous to regions strictly 
related to cognition [12, 14, 15, 27].. Moreover, asymp-
tomatic brain infarcts, pain and discomfort related to 
treatment complications, mood changes, and frequent 
absences from school may aggravate cognitive impair-
ment [10, 11, 28, 29].

Contradictory to our results, Economou et  al., 2006 
and Alzaree et al., 2018 reported that TDT children had 
higher scores on the verbal scale [27, 30]. However, other 

Fig. 2 Frequency of the studied polymorphisms genotypes among TDT children
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studies claimed that intelligence decline does not neces-
sarily occur in TDT children, and they are just slightly 
lower than their healthy counterparts. They attributed 
that to little caring about the quality of education of 
those children [24, 31]. The contradictory results can be 
explained by using different assessment tools, and the 
extent to which the illness had affected the body and how 

these patients are supported may differ among different 
study groups [32, 33].

Our study found that polymorphisms of RANK 
rs1805034 (C > T) affected total IQ and verbal IQ. More-
over, TDT children with TT polymorphism had signifi-
cantly lower total and verbal IQ than children with CT 
polymorphism. Additionally, children with the CT poly-
morphism of RANKL rs9494782 (C > T) had significantly 

Table 1 The relation of the studied polymorphisms and alleles of the RANK/RANKL/OPG axis with the total IQ of TDT children

* Statistical significance p < 0.05

Gene TDT total IQ

mean ± SD p unstandardized coefficient β 
(95% CI)

p

OPG rs2073618 (G > C)
 Polymorphisms GG 76.5 ± 11 0.2 0.84 (−4.33–6) 0.75

GC 80 ± 11

CC 80 ± 13

 Alleles C 80 ± 11.8 0.84 −0.5 (−4.8–3.7) 0.8

G 79.5 ± 10.5

RANK rs1805034 (C > T)
 Polymorphisms CC 79.5 ± 3 0.03* −2.4 (− 6.14–1.4) 0.2

CT 85.4 ± 13

TT 76.8 ± 11.5

 Alleles C 82 ± 9 0.14 −3.2 (−7.4–1.1) 0.14

T 78.8 ± 12

RANK rs1245811 (A > G)
 Polymorphisms AA 82.5 ± 17 0.6 0.55 (−4.5–5.6) 0.8

AG 77 ± 12

GG 80.4 ± 11

 Alleles A 79.3 ± 13.5 0.8 0.74 (−5–6.5) 0.8

G 80 ± 11

RANK rs75404003 (C > DEL)
 Polymorphisms CC 81 ± 11 0.3 −2.8 (−7.3–2) 0.2

C DEL 80 ± 12.5

DEL DEL 73 ± 5.5

 Alleles C 80.7 ± 11.3 0.21 −3 (−7.6–1.7) 0.2

Del 77.7 ± 11

RANKL rs9494782 (C > T)
 Polymorphisms CC 87 ± 19 0.1 ‑ 0.2 (−4.8–4.45) 0.95

CT 76 ± 12

TT 80.4 ± 9.5

 Alleles C 80 ± 15 0.94 −0.18 (−5.05–4.7) 0.94

T 80 ± 11.3

RANKL rs2277438 (G > A)
 Polymorphisms GG 73 ± 5 0.2 4.15 (−0.14–8.44) 0.1

GA 78 ± 10

AA 82 ± 12

 Alleles A 81 ± 11.8 0.02* −5.09 (−9.8 – −3.37) 0.02*
G 76 ± 8.5
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lower total IQ than those with the CC polymorphism. 
RANKL rs2277438 (G > A) was significantly affecting ver-
bal IQ. Its AA homomutant form had a significantly higher 
verbal and performance IQ than the GG genotype. Chil-
dren with the G allele of the RANKL rs2277438 (G > A) 
had significantly lower total and performance IQ.

Unfortunately, limited research is available address-
ing the relation of SNPs in our study with cognition; 

however, these SNPs had been linked to other patho-
logical conditions. Previous studies found that RANK 
rs1805034 (C > T) polymorphisms might be involved 
in cardiovascular disorders, and its minor C allele was 
protective for diastolic dysfunction and osteoporotic 
hip fracture [16, 34, 35]. The RANKL SNP rs2277438 
has been reported as a factor that contributes to the 
radiographic progression of Rheumatoid arthritis in 

Table 2 The relation of the studied polymorphisms and alleles of the RANK/RANKL/OPG axis with the verbal IQ of TDT children

* Statistical significance p < 0.05

Gene TDT verbal IQ

mean ± SD p unstandardized coefficient β 
(95% CI)

p

OPG rs2073618 (G > C)
 Polymorphisms GG 80.5 ± 12 0.7 −0 .95‑(−7.3–5.4) 0.8

GC 85 ± 14

CC 82 ± 14

 Alleles C 83.4 ± 14 0.8 0.7(−4.55–5.9) 0.8

G 84 ± 13.5

RANK rs1805034 (C > T)
 Polymorphisms CC 83 ± 7 0.01* −3.7‑ (−8.3–0.8) 0.1

CT 92 ± 16

TT 79 ± 13

 Alleles C 87 ± 12 0.1 −4.98‑(−10.2–0.2) 0.1

T 82 ± 14.4

RANK rs1245811 (A > G)
 Polymorphisms AA 86.5 ± 17 0.8 0.08 (− 6.1–6.3) 1

AG 81 ± 12

GG 84 ± 14.3

 Alleles A 83.5 ± 13.4 1 0.13 (−6.9–7.2) 1

G 83.6 ± 14

RANK rs75404003 (C > DEL)
 Polymorphisms CC 83.5 ± 12 0.3 −1.7 (−7.3–4) 0.55

C DEL 85 ± 17

DEL DEL 75 ± 11

 Alleles C 84 ± 13 0.53 −1.8 (− 7.55–3.9) 0.5

Del 82.3 ± 15.6

RANKL rs9494782 (C > T)
 Polymorphisms CC 92 ± 26.3 0.3 −0.735 (−6.4–5) 0.8

CT 80 ± 15

TT 84 ± 11

 Alleles C 84.3 ± 19.4 0.8 −0.85 (−7.55–3.9) 0.8

T 83.4 ± 11.7

RANKL rs2277438 (G > A)
 Polymorphisms GG 74.5 ± 4.5 0.03* 6.5 (1.4–11.6) 0.02*

GA 80 ± 11

AA 87 ± 15

 Alleles A 85.5 ± 14.5 0.1 −7.97 (−6.8–5.) 0.1

G 77.6 ± 9
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the Japanese population [36]. Also, Rhee et al., and Cho 
et  al., showed that SNP srs2277438 and rs9594782 of 
the RANKL gene influenced vascular calcification and 
bone metabolism in humans [37, 38].

A meta-analysis was done by Song et al. showed that 
rs2073618 G > C(1181G > C) polymorphisms of the 
OPG gene were closely related to cardiovascular disor-
ders [39]. In this study, the GG polymorphism of this 

SNP had lower total, verbal and performance IQ, but 
this did not reach statistical significance.

A recent study by Ping-Hsun et  al. found a relation-
ship between cognitive impairment and the RANK/
RANKL/OPG axis; they reported that serum RANKL 
levels were positively correlated to the cognitive function 
tests in hemodialysis patients [40]. Moreover, another 
study found that enhancing RANKL/RANK signaling in 

Table 3 The relation of the studied polymorphisms and alleles of the RANK/RANKL/OPG axis with the performance IQ of TDT children

* Statistical significance p < 0.05

Gene TDT performance IQ

mean ± SD p unstandardized coefficient β 
(95% CI)

p

OPG rs2073618 (G > C)
 Polymorphisms GG 75 ± 9 0.65 12 (−2.2–6.25) 0.35

GC 77 ± 9

CC 79 ± 10.4

 Alleles C 78 ± 9.6 0.43 −1.4 ‑(−4.95–2) 0.4

G 76.8 ± 8.7

RANK rs1805034 (C > T)
 Polymorphisms CC 77.5 ± 3.5 0.3 −1.2‑ (−4.3–1.9) 0.43

CT 80.4 ± 10.

TT 76 ± 10

 Alleles C 78.7 ± 7 0.4 −1.6‑(−5.15–1.9) 0.4

T 77 ± 10

RANK rs1245811 (A > G)
 Polymorphisms AA 80 ± 15 0. 6 0.3 (−3.9–4.4) 0.9

AG 75 ± 10

GG 78 ± 9

 Alleles A 77 ± 12 0.9 0.4 (−4.35–5.1) 0.9

G 77.7 ± 8.7

RANK rs75404003 (C > DEL)
 Polymorphisms CC 79 ± 10 0.35 −2.7‑ (−6.4–1) 0.15

C DEL 76.3 ± 8

DEL DEL 74 ± 5

 Alleles C 78.4 ± 9.8 0.13 −2.9‑(−6.75–0.9) 0.13

Del 75.5 ± 7

RANKL rs9494782 (C > T)
 Polymorphisms CC 83 ± 12 0.12 0.45 (−3.4–4.2) 0.84

CT 74.3 ± 10

TT 79 ± 8

 Alleles C 77 ± 11 0.8 0.45 (−3.5–4.4) 0.8

T 77.8 ± 8.7

RANKL rs2277438 (G > A)
 Polymorphisms GG 70 ± 8 0.12 3.2 (−0.3–6.7) 0.14

GA 78 ± 10

AA 79 ± 9

 Alleles A 78.6 ± 9 0.02* −3.9‑ (−7.8‑‑0.06‑) 0.02*
G 74.7 ± 9.5
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animals by recombinant RANKL significantly reduced 
ischemic brain infarct volume [41].

Also, serum OPG levels were significantly related to 
cognition [42], and the OPG SNP T245G was signifi-
cantly associated with an increased risk of ischemic brain 
stroke [43].

The effect the RANK/RANKL/OPG axis has on cog-
nition may be attributed to its effect on the circulating 
endothelial progenitor cells, which play a crucial role in 
pathological angiogenesis and inflammation [18, 44]. 
As Moazzami et  al. in 2020 reported, a lower number of 
endothelial progenitor cells is associated with cognitive 
impairment and impairment of verbal memory functions 
[45]. In addition to the axis involvement in the differentia-
tion of cells involved in neuroinflammation, predominantly 
in microglia, and in resident macrophages and inflamma-
tory cells migrating across the blood-brain barrier [19].

Limitations
This study is a single-center study that needs to be incor-
porated into a multi-center study to determine the results 
on a broader scale with larger sample size. In addition, 

other genes involved in RANK/RANKL/OPG pathway 
should also be studied in the future concerning their 
effect on cognition in transfusion-dependent thalassemia 
patients. Another limitation is that we have not com-
pared our results with healthy children or children with 
non-transfusion-dependent thalassemia of the same age 
and sex. Nevertheless, the aim of this study was limited 
to assessing the studied genetic markers in TDT children.

Conclusion
In conclusion, TDT children in this study had low average 
total and verbal IQ while their performance IQ was border-
line. Furthermore, this study showed that RANK rs1805034 
affected total and verbal IQ, CT polymorphism of RANKL 
rs9494782 was associated with lower total IQ, and RANKL 
rs2277438 affected verbal IQ, and its GG genotype was 
associated with lower performance IQ. Moreover, the 
RANKL rs2277438 G allele was associated with lower total 
and performance IQ. Therefore, the RANK/RANKL/OPG 
pathway impacts cognition in TDT children, and the above 
SNPs act as genetic markers for cognition impairment in 
TDT children.

Table 4 Correlations of factors affecting total, verbal, and performance IQ in TDT children

Hb hemoglobin, BMI body mass index, LIC liver iron concentration.

* Statistical significance p < 0.05

Total IQ Verbal IQ Performance IQ

r p r p r p

RANK rs1805034 (C > T) −0.33 0.01* −0.33 0.009* – –

RANKL rs2277438 (G > A) – – 0.38 0.01* – –

G allele of RANKL rs2277438 (G > A) 0.22 0.79 – – 0.25 0.05

Age (years) −0.54 0.001* − 0.63 0.001* − 0.32 0.01*

Sex 0.08 0.5 0.21 0.09 0.1 0.4

Socioeconomic level 0.18 0.15 0.2 0.06 0.17 0.17

BMI 0.113 0.3 0.12 0.3 −0.09 0.4

Pre-transfusion Hb (gm%) 0.09 0.4 0.09 0.4 0.04 0.7

Serum ferritin (ng/ml) −0.32 0.01* −0.33 0.009* −0.28 0.02*

LIC (mg/g dry weight) −0.019 0.8 0.13 0.3 0.02 0.8

Table 5 Multiple linear regression analysis of factors correlating with total and verbal IQ

* Statistical significance p < 0.05

Total IQ Verbal IQ

Standardized 
coefficient (𝛃)

t p Standardized 
coefficient (𝛃)

t p

RANK rs1805034 (C > T) − 0.17 −1.67 0.009* − 0.21 − 2.2 0.03*

RANKL rs2277438 (G > A) – – 0.1 0.39 0.06

Age (years) −0.51 −4.83 0.001* −0.58 −5.7 0.001*

Serum ferritin (ng/ml) −0.23 −2.23 0.03* −0.22 − 2.2 0.02*

R2 R2 = 0.4
(F = 11.8; df = 3)

R2 = 0.5
(F = 13.9; df = 4)
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