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Abstract

Background: To develop and evaluate machine learning algorithms to ascertain attention-deficit/hyperactivity
(ADHD) and learning disability (LD) using diagnostic codes in the medical record.

Method: Diagnoses of ADHD and LD were confirmed in cohorts of children in Olmsted County of Minnesota
based on validated research criteria. Models to predict ADHD and LD were developed using ICD-9 codes in a
derivation cohort of 1057 children before evaluated in a validation cohort of 536 children.

Results: The ENET-MIN model using selected ICD-9 codes at prior probability of 0.25 has a sensitivity of 0.76, PPV of
0.85, specificity of 0.98, and NPV of 0.97 in the validation cohort. However, it does not offer significant advantage
over a model using a single ICD-9 code of 314.X, which shows sensitivity of 0.81, PPV of 0.83, specificity of 0.98, and
NPV of 0.97. None of the models developed for LD performed well in the validation cohort.

Conclusions: It is feasible to utilize diagnostic codes to ascertain cases of ADHD in a population of children.
Machine learning approaches do not have advantage compared with simply using a single family of diagnostic
codes for ADHD. The use of medical record diagnostic codes is not feasible to ascertain LD.
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Background
Neurodevelopmental disorders such as attention-deficit/
hyperactivity disorder (ADHD) and learning disabilities
(LD) can have a long-term impact on learning as well as
emotional, behavioral and social development [1, 2]. Know-
ledge of the incidence and prevalence of such neurodeve-
lopmental disorders is crucial for formulating public health
policies that can benefit these children, such as special edu-
cation funding. The analysis of health administrative data

can be a valuable tool in studying neurodevelopmental
disorders. Such data enables population-level analysis, mini-
mizes selection bias, improves generalizability, and allows
accurate estimation of disease incidence and prevalence [3].
In addition, data are often readily accessible at relatively
low cost, permitting feasible and timely analysis [4]. How-
ever, because health administrative data such as diagnostic
codes are collected for billing and administrative purposes,
not research, they require validation before being utilized in
public health research [3]. For example, the accuracy of
diagnostic codes in identifying patients with or without a
specific condition depends on the quality of the data and
the condition of interest [5]. It is also possible that for a
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given outcome, not all relevant information required for
ascertainment may be consistently available in the medical
record.
The aim of this study was to develop and evaluate ma-

chine learning algorithms to ascertain ADHD and LD
using diagnostic codes in the medical record. In prior
work, we constructed a population-based birth cohort to
study the relationship between early anesthesia exposure
and developmental outcomes in children, including
ADHD and LD [6]. In this work, the diagnoses of ADHD
and LD were evaluated by in-depth manual review of
both clinical and school records using validated research
criteria. This dataset provides the opportunity to exam-
ine the relationship between information available from
medical record diagnostic codes and the “gold standard”
of diagnoses by validated research criteria which also in-
corporate information from school records. We hypoth-
esized that machine learning models could be developed
using diagnostic codes in the medical charts to ascertain
ADHD and LD diagnoses in our cohort. Unpublished
work by members of our study team using a separate
birth cohort has examined the development of ADHD
and LD after care in the pediatric intensive care unit
(ICU), again using review of both clinical and school
records. This provided a separate cohort to validate our
models derived from the first cohort. Previous publica-
tions evaluated the accuracy of ICD codes in defining
ADHD by manual review of clinical charts [7, 8]. Our
work was the first to utilize validated criteria to ascertain
ADHD beyond the information from clinical record. To
our knowledge, machine learning models have not yet
been applied to ascertaining of ADHD or LD.

Methods
Study cohorts
The derivation cohort was a propensity-matched cohort
examining the association between anesthetic exposure
and subsequent neurodevelopmental outcomes, includ-
ing LD and ADHD [6]. In summary, a birth cohort of all
children born in Olmsted County, MN from January 1,
1996 to December 31, 2000 was identified. For each
child, school enrollment status in the local public school
district at age 5 and all episodes of anesthetic exposure
before age 3 were identified. The derivation cohort was
created by selecting children enrolled in the school dis-
trict (and thus survived and were resident in Olmsted
county until at least age 5) based on their propensity to
receive general anesthesia, using multiple variables in-
cluding information from birth certificates and medical
diagnoses to calculate the propensity score. Children
were followed up to December 31, 2014.
The validation cohort was generated as part of an unpub-

lished study to study the association of pediatric ICU admis-
sion and neurodevelopmental outcomes. A population-based

birth cohort included children born in Olmsted County, MN
during a 5 year period (1/1/2003–12/31/2007) with an ICU
admission prior to age 4. Each child with an ICU admission
was matched (based on gender, birth date (± 30 days), mater-
nal age (± 3 years) and education level) with a child who
were not admitted to the ICU prior to age 4. These children
were followed for up to 11 years after ICU admission (last
follow up date 12/31/2013).
All diagnostic codes from birth were available for all

cohort members through the Rochester Epidemiology
Project, a population-based medical records linkage
system [9]. For each outcome, a master list of all Inter-
national Classification of Diseases (ICD)-9 codes received
by each child during his/her lifetime was generated in
chronologic order. A list for further analysis was then
generated from the master list by deleting all duplicated
ICD-9 codes, resulting in all distinct ICD-9 codes received
by each child during their lifetimes.

Diagnostic criteria for ADHD and LD
Cases of ADHD and LD were ascertained by study
personnel by manually review of clinical and school re-
cords of all children in the cohorts.

Attention-deficit hyperactivity disorder (ADHD)
ADHD cases were defined based on criteria previously
described [10]. The criteria rely on documentation within
medical and school records of ADHD diagnoses and ques-
tionnaires completed by caregivers. Children were identified
as ADHD cases if their records included either 1) a clinical
diagnosis in the medical record with accompanying de-
scription of appropriate symptoms, or; 2) a positive ADHD
questionnaire in the school record. ADHD questionnaire
results were considered positive only when both parent and
teacher questionnaires were positive. The exclusion criteria
specified in the Diagnostic and Statistical Manual of Mental
Disorders (Fourth Edition) (DSM-IV) were followed (i.e.,
ADHD symptoms were not better accounted for by a mood
disorder, psychotic disorder, schizophrenia, severe intellec-
tual disability, or pervasive developmental disorder). DSM-
IV criteria for ADHD were not otherwise used [10].

Learning disabilities (LD)
LD cases were ascertained according to previously-
described research criteria based on one of two formu-
las: an intelligence quotient (IQ)-achievement discrep-
ancy formula and a low achievement formula [11].
Children were considered to have LD if they met re-
search criteria for at least one of the three LD subtypes
(reading, written language, and mathematics disabil-
ities) determined by either of the formulas using con-
temporaneous IQ and achievement scores.
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Classification algorithms
For each outcome (ADHD or LD), we aimed to identify
classifier algorithms with optimized predictive ability by
comparing algorithm results with the confirmed cases.
Machine learning models were developed and trained in
the derivation cohort before applied to the validation
cohort.
We considered four methods for classification: Least

Absolute Shrinkage and Selection Operator (LASSO)
logistic regression, Elastic Net (ENET) logistic regres-
sion, Classification trees (CART), and Stochastic Gradi-
ent Boosting (GBM). Inputs included ICD-9 diagnosis
codes. To summarize, LASSO and ENET are regression
analysis methods that perform both variable selection
and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model
produced. CART and GBM are tree-based methods, with
the latter using boosting to combine many weak classi-
fiers into a single strong classifier. Each method further
implemented internal cross-validation selection of tuning
parameters that affect model complexity of the classifier
based on the misclassification error. For each method, we
considered tuning parameters minimizing cross-validation
mean misclassification error (MIN) and one maximizing
regularization or pruning but still within 1 standard error
(1SE) of the minimum misclassification error which may
reduce overfitting.
Because the prevalence of cases in the cohort is rela-

tively low, the number of cases is less than the number
of non-cases. By minimizing misclassification error mis-
classification is roughly equally likely to occur in those
predicted/classified as case and non-case status; as a
result, we would expect a higher proportion of true cases
will be misclassified as compared to that of non-cases,
leading to low sensitivity and high specificity. One ap-
proach to overcome this sensitivity/specificity imbalance
is assigning more weight to the cases during model
training, thereby increasing the cost of misclassifying a
case as compared to a non-case. Several case-weight op-
tions were considered in the derivation dataset, model-
ing prior probabilities for cases ranging from 10 to 75%
(representing the proportion of LD or ADHD cases after
different weights are assigned).
For each of these methods, additional factors were

considered. The first was whether to include within the
classifier all ICD-9 codes or a subset of codes that are
plausibly related to the diagnosis in question. The
former approach makes no presuppositions and uses all
data, but may also increase the possibility of spurious
associations or overfitting, especially as the number of
events within the dataset is relatively modest and sub-
stantially less than the number of codes considered
(3597). The latter approach may increase specificity, but
may also miss important unanticipated associations. For

the latter, experts in pediatric neurodevelopment, inde-
pendently and without access to the data, developed a
list of select ICD-9 codes that could conceivably indicate
a diagnosis of LD or ADHD, respectively. The LD list in-
cluded 38 unique ICD-9 codes and ADHD list included
34 unique codes (additional file 1).
The second factor is whether the frequency of an ICD-

9 code appearing in a child’s record is incorporated into
the algorithm, or whether just the presence of at least
one appearance of that code is considered. Repeated
coding may imply that that code should be more heavily
weighted, but the vagaries of the coding process may
also intrude. As this would likely reduce external validity
as results may be tuned to the coding practice at our in-
stitution, we decided to only pursue the approach using
indication of the ICD-9 code rather than the frequency.
An ICD-9 code of 314.XX indicates a diagnosis of

ADHD and has been shown in previous studies to have
a high sensitivity in identification of ADHD cases when
only medical records were examined [8, 12]. Therefore,
a model containing a single ICD code of 314.XX was
also evaluated in this study. Similar analysis was not
performed for LD due to the lack of clear ICD-9 codes
labeling LD.
Classification metrics of the resulting machine learning

models included sensitivity, specificity, positive predict-
ive value (PPV), negative predictive value (NPV), and
overall accuracy. Kappa was estimated for overall accur-
acy, controlling for the expected accuracy. Concordance
is also described based on the numeric predicted prob-
ability of case status. We determined a priori that to
identify children with these disorders from administra-
tive data, a model with high sensitivity and PPV would
be preferred.
In the derivation cohort, results are presented using an

internal non-parametric bootstrap approach. Only select
models demonstrating strong sensitivity and PPV in the
derivation cohort were carried forward to the validation
cohort. Analyses were performed using R statistical soft-
ware (R version 3.6.1) with the caret package which acts
as a wrapper for functions in the glmnet, gbm, and rpart
packages [13–17].

Results
Characteristics of study cohorts
The derivation cohort consisted of 1057 children who
were born from 1996 to 2000, including 617 (58%) boys
and 440 (42%) girls. The median (Q1, Q3) age at the
time of code ascertainment was 16 (14–17) years.
Among the study cohort of 1057 children, 175 (17%)
children had a diagnosis of ADHD and 142 (13%) chil-
dren had a diagnosis of LD as identified by previously
established research criteria. The validation cohort
consisted of 536 children who were born from 2003 to
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2007, including 296 (55%) boys and 240 (45%) girls. The
median (Q1, Q3) age at the time of code ascertainment
was 9 (8–10) years. Among the validation cohort of 536
children, 62 (12%) children had a diagnosis of ADHD
and 20 (4%) children had a diagnosis of LD.

ADHD
In the derivation cohort, the sensitivity and PPV for
models using all ICD-9 codes showed little variation ac-
cording to the four classification methods examined for
a given prior probability (results from validation models
not presented here can be found in additional file 2-table
1). The ENET-MIN with a prior probability of 0.25 was
chosen as performing well, with a sensitivity of 0.94 and
a PPV of 0.84 (Table 1). In brief, sensitivity of 0.94 sug-
gests that of those with ADHD, the model correctly clas-
sified 94%. A PPV of 84% suggests that among persons
who the model classifies as having ADHD, 84% actually
have ADHD. Applying only selected ICD-9 codes to this
model reduced sensitivity, specificity, accuracy, and PPV
(Table 1). This same pattern was observed for the other
classification methods when comparing models using all
vs. selected ICD-9 codes. The model using a single ICD
code to identify ADHD also performed well with sensi-
tivity and PPV greater than the selected code ENET-
MIN method (Table 1).
In the validation cohort, compared with the derivation

cohort sensitivity was decreased and PPV was increased
for the ENET-MIN model, both for the all codes and
selected codes methods (Table 1). This same pattern of
results was observed for the single code method, al-
though there was little difference in the PPV between
derivation and validation cohorts.

LD
In the derivation cohort, as in the case of ADHD the
sensitivity and PPV for models using all ICD-9 codes

showed little variation according to the four classifica-
tion methods examined for a given prior probability
(results from other validation models can be found in
additional file 2-table 2). The ENET-MIN method with a
prior probability of 0.4 was chosen as performing well
when all codes were considered, with a sensitivity of
0.90 and a PPV of 0.72 (Table 2). Applying only selected
ICD-9 codes to this model reduced sensitivity, specificity,
accuracy, and PPV (Table 2), a pattern also observed for
other classification methods. In the validation cohort, the
ENET-MIN method performed poorly, with a sensitivity
of 0.25 and a PPV of 0.12.

Discussion
The main findings of the study are 1) complex machine
learning models using clinical diagnosis codes perform
well in identifying ADHD cases but do not offer signifi-
cant advantage over a simple model using a single ICD-9
code for ADHD, and 2) clinical diagnostic codes are of
limited utility in ascertaining LD cases.
Several previous studies evaluated the concordance be-

tween case ascertainment of ADHD using diagnostic
codes with ascertainment using manual clinical records
review, the latter using a variety of criteria to define
ADHD. Gruschow et al. employed this design to review
the medical records of patients with ICD-9 codes of
314.XX and a random sample of patients without this
code among children who resided in New Jersey and re-
ceived primary care from a single hospital network [8].
One in five of the patients who had records indicating a
positive ICD code were determined to have an unknown
case status upon manual review of the medical record.
Depending on how ADHD diagnoses were assigned to
those with unknown status, this single code method
demonstrated sensitivity ranging from 0.96 to 0.97,
specificity form 0.98 to 0.99, and PPV from 0.83 to 0.98.
Other studies which examined only children with ADHD

Table 1 Performance of selected models in predicting attention deficit hyperactivity disorder diagnosis in the derivation and
validation cohorts

Sensitivity Specificity Accuracy PPV NPV Kappa Concordance

ENET-MIN all codesa

Derivation cohort 0.94 0.99 0.98 0.84 0.99 0.88 0.99

Validation cohort 0.69 0.99 0.96 0.93 0.96 0.77 0.93

ENET-MIN selected codesa

Derivation cohort 0.82 0.97 0.96 0.69 0.99 0.73 0.93

Validation cohort 0.76 0.98 0.96 0.85 0.97 0.78 0.91

Single code

Derivation cohort 0.90 0.96 0.95 0.82 0.98 0.83 0.93

Validation cohort 0.81 0.98 0.96 0.83 0.97 0.80 0.89

PPV positive predictive value, NPV negative predictive value, ENET-MIN Elastic Net model with tuning parameters minimizing cross-validation mean
misclassification error
aprior probability for models set at 0.25
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diagnostic codes also found that diagnostic codes reflected
other information contained within the medical record
with reasonable accuracy [7, 12]. Thus, if the clinical rec-
ord is utilized as the basis for ADHD case ascertainment,
it appears utilizing diagnostic codes can obviate the need
for manual record review. However, none of these studies
had access to school records, and none applied research
criteria (such as excluding the diagnosis if other condi-
tions were present as specified in DSM criteria) to define
cases of ADHD. Prior work suggests that both of these
factors are important to accurate ascertainment of ADHD
[10, 18]. For example, approximately 11% of children in a
population-based birth cohort with ADHD using the same
criteria as in the current work did not have a clinical diag-
nosis of ADHD in their medical records [10].
Our analysis using a single diagnostic code as the cri-

teria for ADHD ascertainment is most directly compar-
able to prior work. We find similarly high specificity
(with correspondingly high NPV), showing that children
without the ADHD diagnostic code are very unlikely to
have ADHD. We also find that some children with the
ADHD diagnostic code do not meet ADHD criteria,
with PPV values consistent with Gruschow et al. if those
with unknown status in their study are assumed to not
have ADHD. The major difference from the prior work
is the lower sensitivity in the current analysis, which
likely reflects that some ADHD cases are identified
through school procedures and are not reflected in the
medical record. When taken together with prior work,
these results suggest that study designs relying only on
information from the medical record may underestimate
the prevalence of ADHD. This limitation should be ac-
knowledged in studies using such methods.
The availability of all diagnostic codes in our dataset

and of machine learning algorithms provides the poten-
tial for improving case ascertainment by analyzing not
just the occurrence of a single family of diagnostic codes
[19]. As perhaps expected, models including all diagnos-
tic codes performed the best in the derivation cohorts,
but there was a greater discrepancy between derivation
and validation models that included all diagnostic codes.

However, we found no evidence that the use of more so-
phisticated models improved performance compared
with using a single code. This finding suggests that there
is not a practical advantage to using such models in
studies using diagnostic codes to ascertain ADHD.
In contrast to ADHD, the use of diagnostic codes in

machine learning methods did not prove useful in ascer-
taining LD. Although it was possible to produce a model
with good performance using all codes for the derivation
cohort, performance was poor in the validation cohort.
Performance was not as good in models including se-
lected codes, and was degraded in the validation cohort.
This finding shows that as a practical matter, is it not
feasible to utilize diagnostic codes available in the med-
ical record to ascertain LD cases. LD is typically diag-
nosed within the educational system, and it appears that
these diagnoses are not accurately reflected in the med-
ical record.
Although complete access to all school and medical

records in a geographically-defined population is a
strength of this analysis, it also has several limitations.
The study population includes one county in Minnesota
that may not be representative of the United State popu-
lation, with care provided by two healthcare systems, so
that the results may not generalize to other settings. Cri-
teria such as DSM definitions and clinical practices used
to diagnose both ADHD and LD continue to evolve,
have engendered some controversies [20, 21], and may
differ in other settings. Diagnostic coding systems also
change with time. For example, models using ICD-10 or
11 codes might have different results than the ones using
ICD-9 codes. This represents a challenge to all investiga-
tion in this area [22]. The age of children in the valid-
ation cohort was substantially younger than the training
cohort and those in our dataset who were listed as no
LD or no ADHD could have been diagnosed with LD or
ADHD subsequent to inclusion in the validation cohort.
The impact to the ADHD analysis may be small as
ADHD is typically diagnosed prior to the age of the val-
idation cohort; however, LD is less clear and it could
more often be diagnosed at higher ages. This may be a

Table 2 Performance of selected models in predicting learning disability diagnosis in the derivation and validation cohorts

Sensitivity Specificity Accuracy PPV NPV Kappa Concordance

ENET-MIN all codesa

Derivation cohort 0.90 0.97 0.97 0.72 0.99 0.78 0.99

Validation cohort 0.25 0.93 0.90 0.12 0.97 0.12 0.72

ENET-MIN selected codesa

Derivation cohort 0.59 0.96 0.93 0.55 0.97 0.53 0.81

Validation cohort 0.40 0.89 0.88 0.13 0.97 0.14 0.59

PPV positive predictive value, NPV negative predictive value, ENET-MIN Elastic Net model with tuning parameters minimizing cross-validation mean
misclassification error
aprior probability for models set at 0.40
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possible explanation for the poor validation characteris-
tics of the LD classifier. Finally, the number of children
analyzed was relatively small in comparison with other
datasets used to develop machine learning algorithms,
especially for the validation cohort. It is possible that
model performance would improve if more children
were included. However, the great amount of effort
needed to review school records poses logistical barriers
to analyze larger cohorts in a similar fashion.

Conclusions
In conclusion, it is feasible to utilize medical record
diagnostic codes to ascertain cases of ADHD in a popu-
lation, recognizing inherent limitations in sensitivity (as
not all cases are noted in the medical record) and in
PPV (as not every coded diagnosis can be supported by
other information in the medical record). Machine
learning approaches do not have advantages compared
with simply using a single family of diagnostic codes for
ADHD. The use of medical record diagnostic codes is
not feasible to ascertain LD cases.
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