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Prepregnancy obesity is associated with
cognitive outcomes in boys in a low-
income, multiethnic birth cohort
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Abstract

Background: Maternal obesity and high gestational weight gain (GWG) disproportionally affect low-income
populations and may be associated with child neurodevelopment in a sex-specific manner. We examined sex-
specific associations between prepregnancy BMI, GWG, and child neurodevelopment at age 7.

Methods: Data are from a prospective low-income cohort of African American and Dominican women (n = 368;
44.8% male offspring) enrolled during the second half of pregnancy from 1998 to 2006. Neurodevelopment was
measured using the Wechsler Intelligence Scale for Children (WISC-IV) at approximately child age 7. Linear
regression estimated associations between prepregnancy BMI, GWG, and child outcomes, adjusting for race/
ethnicity, marital status, gestational age at delivery, maternal education, maternal IQ and child age.

Results: Overweight affected 23.9% of mothers and obesity affected 22.6%. At age 7, full-scale IQ was higher
among girls (99.7 ± 11.6) compared to boys (96.9 ± 13.3). Among boys, but not girls, prepregnancy overweight and
obesity were associated with lower full-scale IQ scores [overweight β: − 7.1, 95% CI: (− 12.1, − 2.0); obesity β: − 5.7,
95% CI: (− 10.7, − 0.7)]. GWG was not associated with full-scale IQ in either sex.

Conclusions: Prepregnancy overweight and obesity were associated with lower IQ among boys, but not girls, at 7
years. These findings are important considering overweight and obesity prevalence and the long-term implications
of early cognitive development.
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Background
Low-income, urban children are at higher risk of not
achieving their developmental potential [1–3]. Further-
more, low-income, multiethnic populations are dispro-
portionally affected by adverse prenatal factors, such as
excessive maternal adiposity and high gestational weight
gain (GWG) [4, 5]. Prior studies suggest that prepreg-
nancy body mass index (BMI) and/or GWG may be
negatively associated with cognitive development in early
and mid-childhood [6–14]; however, these associations

have not been examined in a low-income, multiethnic
urban population.
Fetal development depends on maternal nutrition sta-

tus, but the systemic inflammation, metabolic stress, and
hormonal perturbations that accompany excess adiposity
may adversely affect placental function and fetal devel-
opment at critical phases [15–17]. While child sex is a
determinant of behavior and cognition, and evidence
suggests that boys and girls respond differently to
adverse exposures (e.g., poverty, stress, prenatal lead
exposure [18, 19]), the interplay among maternal BMI
and/or GWG, child sex and cognitive development is
poorly understood. We recently reported differences in
associations of maternal prepregnancy BMI and child
development by sex in our cohort at age 3; specifically
we found that maternal obesity was associated with
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lower psychomotor development index scores in boys,
but not girls [20]. Whether these sex-specific effects
persist into mid-childhood remains unknown.
Child growth and development are also shaped by

environmental and socioeconomic factors, many of
which are interrelated. Although partially heritable, child
cognition may be predicted by postnatal aspects of the
home environment, such as parental nurturance or
environmental stimulation [21, 22]. A more nurturing
environment has the potential to temper adverse effects
from other key determinants, such as limited socioeco-
nomic resources, environmental exposures and possibly
maternal excess adiposity or GWG; however, this has
not been evaluated [12, 23, 24]. Environmental toxicant
exposures, including pesticides and air pollution, are
associated with child neural development [25–29] and
have been linked to weight and fat mass gain [30–35].
Because pregnancy includes shifts in adipose tissue
depots [36], toxicant exposure levels in utero could
potentially vary by prepregnancy BMI and GWG; but it
is unclear if toxicants impact associations between BMI
and/or GWG and child cognition.
Therefore, among low-income African American and

Dominican urban children participating in the Columbia
Center for Children’s Environmental Health (CCCEH)
Mothers and Newborns Study, we examined whether
maternal prepregnancy BMI and GWG were related to
neurodevelopment at child age 7 and if associations
varied by child sex. We hypothesized that maternal
obesity and greater GWG would be associated with
lower IQ, and that associations would be stronger among
boys. Moreover, we evaluated whether a more nurturing
postnatal home environment changed directions of associ-
ations. We also conducted a sensitivity analysis to evaluate
whether associations observed were moderated or con-
founded by prenatal exposure to chlorpyrifos (CPF) and
polycyclic aromatic hydrocarbons (PAH), which were
previously associated with decreased child IQ in our
population [25, 26].

Methods
This analysis was conducted in a subset of a cohort
designed to examine the role of environmental expo-
sures on birth outcomes. Since 1997, the CCCEH
Mothers and Newborns cohort (n = 727) has followed
mother-child dyads from northern Manhattan and the
South Bronx, previously described in detail [37]. From
1997 to 2006, Dominican and African American women
with singleton gestations were enrolled from prenatal
clinics at New York Presbyterian Medical Center and
Harlem Hospital if they met eligibility criteria, including
first prenatal visit < 20 weeks of gestation and no self-
reported diabetes, hypertension, HIV, illicit drug use or
smoking during pregnancy.

An initial prenatal visit during the second or third
trimester included maternal measurements and an
interviewer-administered questionnaire. Self-reported pre-
pregnancy weight, Income, marital status, exposure to
environmental tobacco smoke, and prenatal distress, in-
cluding demoralization (i.e. psychological stress) [38], use
of public assistance, and material hardship (self-report of
challenges affording food, paying utilities) [39] were
assessed. Self-reported height was obtained at the prenatal
visit, and measured height was obtained at postnatal
follow-up visits. Maternal height data checking and clean-
ing in this cohort was previously described in detail [40].
After delivery, medical records were abstracted to ascer-

tain prenatal medical history, last measured weight prior
to delivery and infant birth weight. Total GWG was calcu-
lated by subtracting the last measured weight prior to
delivery from the self-reported prepregnancy weight. BMI
category-specific gestational-age standardized weight gain
Z-scores (GWG Z-scores) were calculated from total
GWG, as previously described, for women with last mea-
sured prenatal weights within 4 weeks of delivery [41, 42].
Positive GWG Z-scores indicate that GWG is above aver-
age for a gestational age duration, and negative Z-scores
indicate that GWG is below average for a given gestational
age. For tests of interaction, we used the GWG-Z score
calculated using the normal weight women reference for
all participants, and for other tests BMI-category specific
Z-scores were used. Maternal intelligence was assessed
with the Test of Nonverbal Intelligence (2nd edition)
(TONI), a 15-min language-free measure of general
intelligence, at child age 3 years during a follow up visit at
our testing center. During a home visit, at mean child age
3.6 years (range 1.1–6.3 years), a trained researcher con-
ducted the 1-h unstructured Home Observation for Meas-
urement of the Environment (HOME) Inventory to assess
learning materials, language stimulation, academic stimu-
lation, variety, and parental responsivity, modeling and
acceptance [28]. At child age 7, the Wechsler Intelligence
Scale for Children (WISC-IV) was administered by a
trained bilingual research assistant. Ten WISC-IV sub-
scales were used for this study [29]. Raw scores were con-
verted into scaled scores, as previously described, and
scales scores were derived into composite scores assessing
four cognitive indices: verbal comprehension, perceptual
reasoning, working memory and processing speed). The
composite scores were summed to yield a full-scale com-
posite IQ score. Average expected performance on WISC-
IV is a score of 100 (with a standard deviation of 15), and
intellectual disability is typically defined as a WISC-IV
full-scale IQ score less than or equal to 70.
This study was approved by the Institutional Review

Board at Columbia University. Informed consent was
obtained from all participating mothers and assent was
obtained from the children at age 7.
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Analyses were conducted with Stata 14.0 (Stata-Corp,
College Station, TX, USA) using an alpha of 0.05 and 0.1
for statistical tests of a priori hypotheses and interac-
tions, respectively.
A complete-case analysis was conducted. Baseline

characteristics were compared using chi-square tests, t-
tests, and Wilcoxon rank-sum tests. ANOVA was used
to compare mean characteristics across prepregnancy
BMI categories by child sex. Standard BMI categories
were used to allow for comparisons with other reports,
and withour findings at age 3 [20]. Multivariable linear
regression was used to evaluate associations of 1) mater-
nal prepregnancy BMI category and 2) prepregnancy
BMI category and GWG Z-score [41, 42] with child con-
tinuous WISC-IV full-scale IQ and index specific scores.
Potential confounders and effect modifiers were identi-

fied by causal diagrams and literature review. Potential
effect modifiers of the associations between prepreg-
nancy BMI and child outcome, included child sex and
GWG. First, we evaluated if associations between pre-
pregnancy BMI category and child IQ varied by child
sex on the additive scale by including an interaction
term between BMI and sex. We observed effect modifi-
cation by sex, so all subsequent models were sex-
stratified. Then, we included interaction terms between
GWG and prepregnancy BMI category to examine effect
modification by GWG Z-score on the additive scale.
Potential confounders included maternal race/ethnicity
(Dominican or African American), marital status (yes/no,
married or cohabitating), education (≥high school vs. <high
school), age (continuous), parity (nulliparous vs. parous),
maternal IQ (continuous), demoralization (total score >
1.55, representing the highest quartile of demoralization in
the sample) and hardship (yes/no, defined as at least 1
unmet basic need: going without food, shelter, utilities or
clothing at least once during pregnancy). Potential con-
founders were retained in the model if they changed the
beta coefficient for BMI category by > 10%. The final
adjustment set included maternal race/ethnicity, marital
status, education and maternal IQ, plus child gestational
age at delivery (weeks) and age at testing (months) to re-
duce variance in the outcome. We investigated the postna-
tal HOME score (continuous) by adding this factor to the
primary model and examining change in beta coefficients.
An additional sensitivity analysis examined whether

inclusion of the common environmental toxicants chlor-
pyrifos (CPF) and polycyclic aromatic hydrocarbons
(PAH), collected as part of the original study design,
modified or confounded associations (See Additional file 1
for details).
Despite strategies designed to improve retention in

this longitudinal study [43], a number of participants
lacked outcome data due to loss to follow-up by child
age 7. To address this, inverse probability weighting

(IPW) was used to assess effects of attrition, as previ-
ously conducted in this cohort [44]. Separately for boys
and girls, a logistic regression model was fit with base-
line data, including maternal prepregnancy BMI, parity,
age, race/ethnicity, education and hardship, predicting
successful retention from which a predicted probability
was estimated, and the inverse of this probability was
used as a sampling weight in the re-analysis of the linear
models.

Results
From the original cohort (n = 727), complete data were
available on 368 dyads (Fig. 1). Baseline characteristics
were similar between included and excluded dyads (data
not shown); however, compared to those not included,
the relative proportion of African American dyads in-
cluded was higher (41.3 vs. 28.4%) and Dominican dyads
was lower (58.7 vs. 71.6%).
Among all mothers, average total GWG was 16.5 ± 7.4

kg (Mean ± SD) and GWG Z-score was 0.16 ± − 3.6.
Table 1 shows baseline characteristics and child mea-
sures by sex. At child age 7, full-scale IQ and working
memory scores were higher among girls compared to
boys. Unadjusted mean values for WISC-IV scores by
prepregnancy BMI and child sex are outlined in Fig. 2.
In boys, perceptual reasoning, full-scale IQ, and process-
ing speed scores varied by prepregnancy BMI category,
with higher scores found among boys born to women
with normal prepregnancy BMI values (see Additional
fi1e 1: Table S1). Scores did not vary by prepregnancy
BMI in girls.
In our multivariable models, the association between

prepregnancy BMI and child cognitive outcomes varied
by sex. Specifically, the interaction p-values between pre-
pregnancy overweight or obesity and infant sex were
0.06 and 0.09, respectively, for full-scale IQ. This sug-
gests that associations between prepregnancy BMI and
child IQ were different among girls compared to boys.
As full-scale IQ is a composite score reflecting four cog-
nitive indices, we sex-stratified subsequent full-scale and
index-specific models.
Among boys in our initial multivariable models with

and without adjustment for GWG (Table 2 – Models 1
& 2), maternal overweight and obesity were associated
with lower full-scale IQ and perceptual reasoning scores.
Only maternal overweight was associated with lower
processing speed scores, and only maternal obesity was
associated with lower verbal comprehension scores.
Among girls, prepregnancy BMI category was not associ-
ated with full-scale IQ or any of the four indices in
models with and without adjustment for GWG (Table 2
– Models 3 & 4). No interactions between prepregnancy
BMI category and GWG were observed within the sex-
stratified tables. When GWG z-scores were included as
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covariates in the sex-stratified models, GWG was not as-
sociated with cognitive outcomes in boys. Among girls,
however, an inverse association between GWG and per-
ceptual reasoning was observed.
In the primary models with additional adjustment for

postnatal HOME score (see Additional file 1: Tables S2
& S3 - Model 1), we found that the HOME score
impacted several associations, some by > 10%. In boys,
BMI category beta coefficients for full-scale IQ and ver-
bal comprehension were attenuated after adjustment for
the HOME score. The effect size on full-scale IQ among
boys for maternal obesity compared to normal weight
was − 6.5 without HOME adjustment, and − 5.7 with
HOME adjustment (a 12% difference). Furthermore, the
association between maternal obesity and lower verbal
comprehension scores in boys no longer existed after
adjustment for the HOME score.
Calculation of IPW for retention at child age 7 showed

that African American race was associated with follow-
up for girls, but not boys, while other factors were not
associated with retention (data not shown). Weighting
the data did not appreciably alter associations for

prepregnancy BMI category models, or for models
with both prepregnancy BMI category and GWG (see
Additional file 1: Tables S1 & S2 – Models 2 & 3).
In toxicant sensitivity analyses, we found no evidence
of effect measure modification or confounding of pre-
pregnancy BMI by high CPF or PAH [45] (see Add-
itional file 1).

Discussion
In this longitudinal cohort of low-income, urban, African
American and Dominican maternal-child dyads, we found
sex-specific associations in mid-childhood between mater-
nal prepregnancy BMI and child cognitive outcomes in
boys, and a limited association between GWG and child
perceptual reasoning in girls. Specifically, in boys, maternal
overweight and obesity were associated with lower full-
scale IQ and perceptual reasoning scores at child age 7,
while maternal overweight was associated with lower pro-
cessing speed scores. Maternal obesity was also associated
with lower verbal comprehension scores, although this
deficit was attenuated when HOME score was added to
the model. The effect sizes for maternal prepregnancy

Fig. 1 Participant flow diagram
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overweight or obesity in boys, when compared to normal
weight women, ranged from 4.6 to almost 9 points lower
in mid-childhood. Among girls, we observed no association
between maternal prepregnancy BMI and cognitive test
scores in mid-childhood, but found that gestational-age-
standardized GWG was inversely associated with percep-
tual reasoning after adjustment for the HOME score.
These sex-specific associations observed for effects of

maternal excess adiposity on mid-childhood cognitive test
scores are intriguing and have not been previously
reported. As childhood IQ predicts education level, socio-
economic status and professional success [46], a deficit up
to 9 points may be individually meaningful and have impli-
cations on a population level. The biological rationale for
these observed sex differences in mid-childhood, as well as
the biological underpinnings of the links between prepreg-
nancy body size, GWG and child cognitive development,
are not fully understood and may be interrelated. Some of
the biological pathways linking maternal overweight/

obesity and high GWG to fetal and child brain develop-
ment, structure and function include inflammatory or hor-
monal perturbations [47–52] and differential dietary or
nutrient exposures (e.g., high-fat diet, suboptimal nutrient
intakes) [48, 53]. Consistent with previous evidence sug-
gesting that boys are differentially affected by adverse expo-
sures [18], the boys in our study appear to be negatively
affected by maternal overweight or obesity compared to
girls. Alternatively, the girls could also be adversely affected
by maternal overweight or obesity, but in this low-
socioeconomic context where boys appear to be more vul-
nerable to adverse exposures [54] and girls appear to be
more responsive or resilient [55], adverse effects on girls’
developmental trajectories may be attenuated by age 7.
The mechanisms underlying these sex-specific findings

are unknown, but investigations of explanatory biochemical
and molecular changes are ongoing, particularly in the pla-
centa. The placenta mediates fetal programming through
regulation of fetal growth and development, and evidence

Table 1 Participant demographics and outcome values by child sex (n = 368)

Boys
(n = 165)

Girls
(n = 203)

p-value

Maternal

Prepregnancy BMI category, n (%) 0.54

Underweight 9 (5.5) 9 (4.4)

Normal weight 83 (50.3) 95 (46.8)

Overweight 34 (20.6) 55 (27.1)

Obese 39 (23.6) 44 (21.7)

Dominican ethnicity, n (%) 98 (59.4) 118 (58.1) 0.81

Maternal education <high school, n (%) 49 (29.7) 78 (38.4) 0.08

Receipt of public assistance or Medicaid, n (%)a 152 (92.7) 183 (90.6) 0.48

Never married, % 108 (65.5) 143 (70.4) 0.31

HOME score 38.8 ± 6.5 39.7 ± 6.0 0.14

Total GWG, kg 17.0 ± 6.8 16.1 ± 7.9 0.25

GWG Z-score 0.26 ± 0.95 0.08 ± 1.09 0.10

Maternal IQ score 85.0 ± 13.1 86.4 ± 13.3 0.35

Detectable PAHc, n (%) 48 (36.9) 55 (36.2) 0.89

High chlorpyrifosd (> 6.17 pg/g), n (%) 19 (16.1) 18 (12.1) 0.34

Child

Age at WISC-IV, months 84.6 ± 2.1 84.8 ± 2.3 0.42

Full-scale composite WISC-IV score 96.9 ± 13.3 99.7 ± 11.6 0.03

Intellectual disabilitye, n (%) 1 (0.61) 3 (1.5) 0.42

Verbal comprehension WISC-IV score 94.6 ± 11.9 96.6 ± 11.5 0.11

Perceptual reasoning WISC-IV score 100.0 ± 14.5 100.3 ± 12.7 0.78

Working memory WISC-IV score 96.3 ± 14.2 99.9 ± 13.4 0.01

Processing speed WISC-IV score 99.8 ± 16.2 102.6 ± 14.9 0.08

Values are means ± SD or percentages. aData available on 152 boys and 183 girls; cData available on 130 boys and 152 girls; dData available on 118 boys and 149
girls; eFull-scale WISC-IV score < =70. BMI, body mass index; GWG, Gestational weight gain; HOME, Home Observation for Measurement of the Environment; PAH,
polycyclic aromatic hydrocarbons; WISC-IV, Wechsler Intelligence Scale for Children
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points to sexual dimorphism in placental functioning asso-
ciated with maternal adiposity [56]. Women with greater
adiposity experience greater placental inflammation [57,
58], oxidative and nitrative stress [17, 59] and placental dys-
function compared to women within the normal BMI range
[17, 60, 61]. A growing body of animal and human evidence
indicates that placental function [62], responsivity [63] and
endocrine and neurochemical responses [64], determined
by global genome expression and regulation [65–68], the
epigenome [62, 69] and response to maternal inflammation
and diet [70–72], affect the growing fetus in a sex-specific
manner as early as conception [62]. Additionally,
males and females develop at different rates in utero
[73], and a faster growing fetus has greater exposure
to prenatal insults that may partly explain why males
are at increased risk for developing adverse pregnancy
outcomes [62, 74].
It is challenging to compare our findings to other

reports because neurodevelopmental sex differences for
maternal pregnancy weight-related exposures have pre-
viously not been explored in a low-income, urban popu-
lation, and further, previous studies examined a wide
range of cognitive functions assessed over varying
periods of follow-up [75]. However, our findings in boys
are consistent with most previous studies in similarly
aged children (5-8y) reporting significant associations
for prepregnancy BMI alone [6, 11, 13, 76, 77] or

prepregnancy BMI and GWG [8, 10, 12, 78]. In girls, we
found no associations for prepregnancy BMI and ob-
served an unexpected inverse association for GWG with
perceptual reasoning scores when models were adjusted
for the HOME score. These findings are less consistent
with previous reports where associations for GWG were
also observed, but only among women with higher pre-
pregnancy weight or BMI [8, 14, 79].
The quality of the home environment and parenting

practices in childhood are important contributors to child
neurodevelopment, and the role of a stimulating and nurt-
uring environment on associations may vary by child sex
[24, 28]. We do not believe that any previous similar study
evaluated whether the postnatal home environment im-
pacted associations. In separate studies, Farah et al. in
children ages 4 and 8 and Horton and Kahn et al. in chil-
dren at 7 years found that parental nurturance predicted
child working memory; additionally, Horton and Kahn
et al. found that boys benefited more than female counter-
parts from a nurturing home environment [22]. In build-
ing our models, we found that a stimulating and nurturing
postnatal home environment attenuated associations
between prepregnancy BMI and child cognitive scores in
some models. This suggests that the home environment
may be on the causal pathway, as posited by Farah and in
animal models [22], or a positive confounder between
maternal pregnancy weight-related factors and child

Fig. 2 Mean values (Mean ± SD) for child WISC-IV scores at age 7 by sex and prepregnancy BMI category. *Indicate that scores vary across
prepregnancy BMI categories
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cognition. Therefore, supporting a healthy home environ-
ment during pregnancy and thereafter may be an import-
ant area for future investigation and intervention.
In our sensitivity analysis, the toxicants CPF and PAH

did not modify or confound associations between pre-
pregnancy BMI and child cognitive test scores. While
our exposure assessment in cord blood may capture a
significant period of exposure near the end of pregnancy
(e.g., PAH DNA adducts have an estimated half-life of
3–4 months), this does not reflect the entire course of
pregnancy, or the early pregnancy period where the
adverse effects of environmental exposures or high pre-
pregnancy BMI and associated inflammation may be
stronger [45].
These findings add to the growing evidence that ma-

ternal adiposity affects offspring cognition in middle
childhood, but there are limitations to this work. First,
our sample size may have been underpowered to detect ef-
fect measure modification, especially after sex-stratification.
Second, as with most studies in this area, we used self-
reported prepregnancy weight to calculate prepregnancy
BMI, which potentially biased findings [80]; however, we
conducted data cleaning on women with longitudinal pre-
natal weight data and excluded highly implausible values.
We had too few women with severe obesity (BMI > 40 kg/
m2) to evaluate obesity subgroups. This cohort was pre-
dominately enrolled in late pregnancy and included women
with relatively healthy pregnancies who did not report dia-
betes or other medical conditions; however, we were unable
to account for preeclampsia, gestational diabetes or other
conditions in our analyses since these were not abstracted
in the original study design. Although there was attrition,
we conducted IPW analyses to assess whether attrition
biased our findings and the results were essentially un-
changed. The strengths of this study include our ability to
account for many factors in our analyses, including mater-
nal IQ, the postnatal home environment and, in a subset,
urban environmental toxicant exposures. We also used
gestational-age-standardized GWG Z-scores to examine
GWG, which allowed for assessment of associations inde-
pendent of gestational age at delivery.

Conclusions
In summary, we found that prepregnancy overweight
and obesity were associated with lower IQ scores in boys
at 7 years of age, but not in girls, an association that was
partially attenuated by adjustment for the home environ-
ment. These sex-specific associations may reflect differ-
ences in the intrauterine environment or potentially the
postnatal environment, but the mechanisms are cur-
rently not well understood. These findings are important
in light of the high prevalence of maternal overweight
and obesity, and the longer-term implications of early
cognitive development.
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