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Abstract

Background: Premature birth is a growing and serious public health problem affecting more than one of every
ten infants worldwide. Bronchopulmonary dysplasia (BPD) is the most common neonatal morbidity associated with
prematurity and infants with BPD suffer from increased incidence of respiratory infections, asthma, other forms of
chronic lung illness, and death (Day and Ryan, Pediatr Res 81: 210–213, 2017; Isayama et la., JAMA Pediatr 171:271–279,
2017). BPD is now understood as a longitudinal disease process influenced by the intrauterine environment during
gestation and modulated by gene-environment interactions throughout the neonatal and early childhood periods.
Despite of this concept, there remains a paucity of multidisciplinary team-based approaches dedicated to the
comprehensive study of this complex disease.

Methods: The Discovery BPD (D-BPD) Program involves a cohort of infants < 1,250 g at birth prospectively followed
until 6 years of age. The program integrates analysis of detailed clinical data by machine learning, genetic susceptibility
and molecular translation studies.

Discussion: The current gap in understanding BPD as a complex multi-trait spectrum of different disease endotypes
will be addressed by a bedside-to-bench and bench-to-bedside approach in the D-BPD program. The D-BPD will
provide enhanced understanding of mechanisms, evolution and consequences of lung diseases in preterm infants.
The D-BPD program represents a unique opportunity to combine the expertise of biologists, neonatologists,
pulmonologists, geneticists and biostatisticians to examine the disease process from multiple perspectives with a
singular goal of improving outcomes of premature infants.

Trial registration: Does not apply for this study.
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Background
Premature birth is a serious public health problem affect-
ing more than one of every 10 infants worldwide [1].
Bronchopulmonary dysplasia (BPD), defined by a require-
ment for oxygen supplementation at 36 weeks post-
conceptional age (PCA) due to respiratory insufficiency.
BPD is the most common neonatal morbidity and is asso-
ciated with increased incidence of infections, asthma,
other forms of chronic lung illness, and death [2, 3]. Very
low birth weight (VLBW) infants (BW < 1,250 g) are at
greatest risk of developing BPD and disproportionately
experience long-term consequences of prematurity [4, 5].
While VLBW infants often require treatment for pul-

monary complications after birth, their course upon
graduation from the neonatal intensive care unit (NICU)
is highly variable. Results from the NHLBI Prematurity
and Respiratory Outcomes Program (PROP) revealed
that some though some infants remain asymptomatic
and appear to live a healthy first year of life despite of a
diagnosis of BPD, others experience frequent hospitaliza-
tions for respiratory indications, need for home respira-
tory support and suffer from additional respiratory
morbidities [6–9]. Long term, a significant proportion of
former VLBW infants, with or without BPD, exhibit re-
spiratory limitations at school age and into adulthood
[10–12]. Predicting the long-term pulmonary outcomes
for VLBW infants early in life is difficult, despite ~ 30%
of infants receiving a diagnosis of BPD during their ini-
tial hospitalization. This challenge is due, in part, to the
definition of BPD itself. While a diagnosis of BPD simply
identifies babies requiring oxygen therapy relatively early
after birth, limited information is available during the
first months of life to predict the evolution of lung
growth and development and the impact on gas ex-
change. BPD likely represents a diagnostic umbrella
encompassing a broad range of pulmonary diseases of
diverse etiologies and prognoses (endotypes). This hy-
pothesis is supported by the absence of genetic studies
that identify single genes that strongly correlate with
BPD and conclusively predict long term respiratory
compromise in prematurely born infants [13, 14].
Environmental exposures of the developing lung are

recognized as a key factors that influence long-term out-
comes [15] and modulation of these exposures may offer a
window of opportunity to improve the undesirable conse-
quences of lung immaturity. In addition, understanding
patterns of lung disease within the BPD umbrella – par-
ticularly when using an unbiased approach like machine
learning [16] - may enable redefinition of lung diseases in
VLBW infants with greater linkage between phenotype,
genetic, and/or environmental determinants of disease.
Given the gaps in our understanding of lung disease endo-
types in prematurely born infants, the molecular bases
underlying these endotypes, the genetic predisposition

toward individual endotypes, and the contribution(s) of
environmental factors in disease inception and severity,
we established the Discovery BPD program (D-BPD). D-
BPD is a multi-disciplinary, seven center program (Table 1)
that fosters collaboration between neonatologists, pulmo-
nologists, immunologists, environmental biologists, basic
scientists and bioinformaticians. The D-BPD collaborative
will enable identification of new endotypes within the
BPD umbrella and define genetic, molecular and environ-
mental factors associated with pathogenesis.
D-BPD integrates three distinct yet interactive areas of re-

search (Fig. 1). The clinical data core uses machine learning
strategies to leverage the detailed longitudinal clinical data.
The gene susceptibility program uses genome-wide associ-
ation mapping and positional cloning in inbred strains of
mice to identify candidate susceptibility genes. Finally, the
basic science molecular program explores the mechanistic
correlates of clinical and genetic findings associated with
oxidative stress. A list of all investigators and research staff
from each center is provided in Additional file 1.
As of this writing, the D-BPD cohort currently in-

cludes 325 infant/mother/father triads. Infants < 1,250 g
at birth will be followed until 6 years of age. In this
manuscript, we present the D-BPD program protocol, il-
lustrate the breadth of data and biospecimens available
for study, and outline ongoing and future investigations
that will enable the identification of preventive strategies
against lung diseases of prematurity.

Methods
The D-BPD structure is depicted in Fig. 2. Five clinical
centers are coordinated by Fundacion INFANT through

Table 1 Participating centers and specific projects

Program center Center objective Enrollment

National Institute of
Environmental Health
Sciences (NIEHS)

Biorepository analysis for
D-BPD

N/A

Fundacion INFANT Data coordinating center
for the D-BPD
Molecular translation of
genetic mutations

N/A

University of Alabama at
Birmingham (UAB)

Laboratory research/
Redox biology

N/A

Pontificia Universidade
Católica Laboratory of
Respiratory Physiology

FOT coordination and
analysis

N/A

Clinica y Matenidad Suizo
Argentina

Recruitment 104

Sanatorio Otamendi y
Miroli

Recruitment 47

Sanatorio de la Trinidad Recruitment 47

Sanatorio de los Arcos Recruitment 52

Hospital Italiano de Buenos
Aires

Recruitment 75
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the Preterm INFANT Network. Fundacion INFANT is
responsible for supervising the conduct of the clinical
study, including data collection, regulatory affairs, and
sample collection, early processing and storage. Fundacion
INFANT and the National Institute of Environmental
Health Sciences (NIEHS) monitor quality collection of
data through clinical report forms. Oversight of the pro-
gram rests in an NIEHS appointed Steering Committee
Chair, NIH officials, and an Observational and Safety
Monitoring Board (OSMB). Teams from the NIEHS,
Fundación INFANT, the University of Alabama at
Birmingham (UAB) and the Pontificia Universidade
Católica do Rio Grande do Sul conduct every other week
videoconference calls to discuss all aspects of the program
including recruitment, data collection, new data, recent
results, long term objectives, and regulatory matters.

Multicenter protocol development
Outcomes of interest
The primary aim of D-BPD is to identify new endotypes
within the BPD umbrella in order to define genetic,
molecular and environmental factors associated with
disease pathogeneses. These data will enable the predic-
tion of respiratory morbidity through early childhood.
Long-term lung disease determinations in D-BPD will be
assessed by the combined clinical evaluation of respira-
tory signs and symptoms until the age of 6 years using
physiologic evaluations of lung function at defined time
points during childhood. The D-BPD program will also
define genetic, molecular and environmental factors
associated with the traditional definition of BPD, its
severity, and the inception and evolution of other
prematurity morbidities and death.

phenotypes

Fig. 1 The D-BPD research areas integration. The clinical data core, using machine learning strategies will leverage the detailed longitudinal
clinical data the gene susceptibility program using genome-wide association mapping and positional cloning in murine strains to identify
candidate susceptibility genes, and a basic science molecular program exploring mechanistic correlates of clinical and genetic findings associated
with BPD endotypes. Image credits: Wikimedia Commons
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Protocol
The inclusion and exclusion criteria are listed in Table 2.
The protocol is outlined in Fig. 3. The protocol inte-
grates data from the molecular to population-level. We
expect to enroll 750 infants. Based on prior population
studies, we estimate that 40% of this cohort will meet
the diagnoses of BPD. With these parameters, the study
has more than 80% power to compare an area under the
curve (AUC) larger than 0.6 in a receiver operating char-
acteristic (ROC) analysis, against a null hypothesis of an
AUC with no diagnostic value (AUC = 0.5). This is a
conservative estimate, as the power is larger for AUC
values larger than 0.6.

Environmental and clinical data collection
Parents who consent to participate in the study are
personally interviewed by participating neonatologists
using questionnaires specifically designed by the NIEHS
epidemiologists and biostatisticians for this study. This
questionnaire collects epidemiological and clinical infor-
mation associated with pregnancy. Data from VLBW
infants are obtained prospectively every day during the
NICU stay using specially designed forms. After dis-
charge, families are contacted via telephone and inter-
viewed using modified ISAAC questionnaires to monitor
the respiratory status of their baby. These questionnaires
have been modified to assess respiratory health at 6
months and yearly thereafter up to 6 years PCA.

Biospecimen archive (bedside to bench)
The characterization of long-term respiratory outcomes
in VLBW infants is hindered by the absence of biological
materials to study phenotype-specific disease deter-
minants, from molecular alterations in mitochondrial
function to genetic mutations or gene-by-environment
interactions. NIEHS and Fundación INFANT, in con-
junction with the Preterm Network, established stan-
dardized procedures for sample collection and central
processing, and protocols for accessing the resulting
biorepositories. Saliva specimens from parents are

Fig. 2 Discovery BPD (D-BPD) structure

Table 2 Inclusion/Exclusion criteria

Inclusion criteria

- Birth weight < 1250 g

Exclusion criteria

- Structurally significant heart disease

- Congenital anomalies of the respiratory tract

- Eye malformations

- Immunodeficiencies

- Conception by in vitro fertilization
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collected at study entry for DNA extraction. Infant saliva
samples are obtained in the first 4 weeks of life. Early
(birth) specimens allow for exploration of injuries and
exposures during gestation, developmental and genetic
biosynthetic capacities. Collection at later time points
(after 1 week) likely reflect responses to oxidative stress,
infection, inflammation, nutritional state, and tissue re-
pair. The program is now collecting samples from pla-
centa tissue and umbilical cord blood tissue at the time
of birth.

Assessments of respiratory function (physiologic biomarkers)
The evaluation of lung function in early years of life has
been hampered by the need for sedation. In addition, the
absence of appropriate biomarkers for the inception of
asthma contributed to the scarcity of tools to predict
long-term lung health in infancy. Forced oscillatory test
(FOT) uses the patient’s spontaneous respiration without
sedation to define the physiology of the small and large
airways. FOT applies an oscillation pressure wave gener-
ated by a loudspeaker to the respiratory system to
analyze the pressure-flow relationship in terms of im-
pedance [Zrs; encompasses both resistance (Rrs) and
reactance (Xrs)]. Rrs, calculated from pressure and flow
signals, is a measure of central and peripheral airway
caliber, while Xrs, derived from the pressure in the phase
with volume, relates to compliance (Crs) and inertance
(Irs). FOT has been used to detect lung function abnor-
malities in asthmatics with normal spirometry [17], to
identify the deleterious effects of oxidative stress (e.g.,
cigarette smoke exposure) on pulmonary function, and
to study bronchodilator responsiveness in infants [18].

Therefore, we will use FOT to evaluate lung function in
study participants between the age of 3–4 years. Partici-
pants will again be evaluated at the age of 5–7 years.

Data collection, management and storage systems
All source documents and laboratory reports are
reviewed by the clinical team and the staff in charge of
data entry to ensure that they are accurate and complete.
Data collection is performed by clinical trial staff at the
sites under supervision of the PI. During the study,
investigators maintain complete and accurate documen-
tation. Research sites that participate in this study main-
tain maximum confidentiality about the clinical and
research information obtained from study participants.
All information about study participants is kept in
password-protected computer files or in locked cabinets
accessible only to authorized personnel. Biological sam-
ples, tables, and files are identified by unique numbers.
Questionnaire data are entered twice in the database de-
signed by NIEHS for such purpose. This database is
reviewed and maintained by the data manager.

Genetic susceptibility
In order to explore the phenotypic variation attributable
to gene-environment interaction, the NIEHS has de-
signed a process to translate findings in model organ-
isms to human disease susceptibility in order to draw
mechanistic insight that may help identify individuals
who are sensitive to environmental exposures [19, 20].
BPD is a complex disorder, and because the contribution
of each gene in a complex trait may be relatively minor,
identification of each of the genes that ultimately

Fig. 3 D-BPD Program Protocol Time Line spans from birth to 6 years of corrected age collecting health data and biospecimens. The babies will
be monitored daily during their NICU stay by the participating neonatologist (without direct clinical responsibilities) using structured data
collection log sheets. Information of the clinical course will be collected daily during the first 28 days and every 2 days thereafter. Afterwards
phone calls will be made every 6 months until 6 years of age are completed
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contribute to a complex trait is a major challenge [21].
Furthermore, susceptibility genes interact with multiple
environmental exposures or stimuli related to the eti-
ology of a disease. In order to better define the genetic
contribution to BPD susceptibility, we have chosen gene
candidates a priori that have biological plausibility to
contribute to the pathogenesis of BPD. These pheno-
types can be tested using in vivo/in vitro in model sys-
tems and in the Buenos Aires D-BPD population. We
have also performed a genome-wide association study
(GWAS) of hyperoxia-induced acute lung injury in neo-
natal inbred mice which recapitulates some characteris-
tics of BPD. This gene discovery approach identified a
number of novel genes that have been tested and con-
firmed to have a role in susceptibility to acute lung in-
jury in neonatal mice [22]. The combination of gene
discovery and biologically plausible genes provides a
panel of candidates that may be used to screen VLBW
infants and, potentially, develop more precise interven-
tion/prevention strategies in the treatment of BPD.
Lastly, evaluating ancestry indicative markers is an excel-
lent way to discover novel genes underlying complex
diseases [23] like premature lung disease, and the
availability of infant-parent triad will allow us to pursue
those investigations.

Analytic approach by machine learning
A central problem regarding the phenotypic charac-
terization of BPD relates to the current definition of the
disease: oxygen requirement [24]. This operational defin-
ition fails to convey the diverse underlying pulmonary
pathologies, the varying degrees of pathology between in-
dividual preterm infants due to differences in pulmonary
development, the presence of lung fibrosis (and resulting
changes in lung compliance), the severity of lung vascular
remodeling (and resulting pulmonary hypertension) and
the degree of tracheomalacia and/or bronchomalacia.
These factors may vary widely between individual infants
and perhaps even in the same infant over time given that
BPD is a multifactorial disorder superimposed upon the
developing lung. These realities suggest that BPD is most
likely to be a superficial umbrella term that encompasses
related but different conditions caused by distinct under-
lying pathophysiological mechanisms. The large amounts
of data that will be amassed during the present study and
the urgent need for more stringent dissection of the
causes and outcomes under the BPD diagnosis supports
the use of machine learning [25] for assessing these pos-
sible sub variants (endotypes). These endotypes will be
generated employing latent class analysis (LCA) [26, 27], a
data-driven, hypothesis-generating approach. Clusters
(endotypes) will be constructed employing longitudinal data
without any a priori classification such as the canonical
labels “severe” or “mild” BPD. To this end, patient-specific

data will be used for the construction of trajectories. Each
trajectory will be based upon the time course of the
assessed variables including the degree of respiratory sup-
port, growth, infection, early childhood respiratory func-
tion and symptoms. The dimensionality of these variables
will be reduced using principal component analysis [28].
The use of LCA guarantees the acquisition of unbiased
endotypes enabling circumvention of simple clinical
phenotypic characterization based upon a single dimension
of the disease. Thus, the resulting endotypes will encom-
pass all relevant descriptors of disease progression. Once
the endotypes, or clusters, are generated, the next step will
be the segregation of transversal (non time-dependent) vari-
ables among the different clusters including, but not limited
to, genetic markers, environmental conditions, sex, chor-
ioamnionitis and other pathophysiological outcomes. These
transversal variables should allow a better understanding
of the molecular basis underlying individual endotypes.
These data could lead to better diagnostics and the even-
tual possibility of developing personalized treatments for
each endotype. Thus, machine learning is one of the novel
fundamental approaches of the D-BPD program that will
enable the team to propose new definitions that will be
used in clinical study design, drug development and assess-
ments of novel therapies as part of a personalized medicine
therapeutic approach for each individual patient.

Molecular basis of disease onset and severity
One of the main objectives of our machine learning ap-
proach is to characterize the underlying endotypes in in-
fants with a diagnosis of BPD. Bridging the gap between
endotypes and causal mechanisms is a major challenge
[29]. We will tackle this issue by utilizing identified can-
didate genes for disease. The connection between endo-
types and candidate genes will be assessed, enabling the
achievement of the ultimate goal of the D-BPD program:
to define the molecular basis that contribute to endo-
types of BPD. This knowledge will facilitate the pursuit
of specific treatments, ranging from improved palliative
care to the development of long-term projects for
target-specific drug design. To this end, the identified
variants/mutants will be classified using bioinformatics
[30]. The first step consists of assessing the effects of
genetic mutations on gene expression at the level of
transcription, splicing or mRNA half-life, and protein
structure/function [30–32]. Candidate proteins will be
studied by employing a combined in silico/in vitro ap-
proach. The effect of the mutations will be evaluated on
the basis of previous reports regarding functional data,
interaction analysis with other proteins or RNA/DNA,
and available data from system biology or structural data
when NMR and/or crystal structures of the candidate
proteins are available. Bioinformatics, homology model-
ling and molecular dynamic simulations will be applied
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in parallel with in vitro approaches that consist of re-
combinant expression and purification of candidate pro-
teins and/or individual subdomains. The wild-type and
relevant mutants will be assessed at the structure-
dynamics-function level and will encompass a complete
battery of spectroscopic and biophysical characterization
methods including far-UV circular dichroism spectros-
copy, vibrational spectroscopy, fluorescence and spec-
troscopy in order to determine structure and stability.
For each specific protein, depending on their known
functions, individual protocols for assessment of func-
tion of the mutant proteins will be designed including,
but not limited to, interaction assays for complex forma-
tion, redox properties and enzymatic functions.

Study approval and oversight
The multi-center D-BPD protocol and consent, add-
itional information to be completed by the participants,
such as survey instruments or questionnaires, proposals,
and any other advertising/contracting material has been
be submitted to the NIEHS IRB and all participating
local IRBs for approval in writing. The protocols, con-
sent, and survey instruments are reviewed annually for
progress and compliance. We will submit and obtain ap-
proval from the NIEHS IRB and all participating local
IRBs for all subsequent modifications to the protocol, in-
formed consent documents, and any documentation per-
taining to the study. We are responsible for obtaining

approval from the NIEHS IRB and all participating local
IRBs of the ongoing continuing review throughout the
entire duration of the study. We will notify the NIEHS
IRB and all participating local IRBs of serious adverse
events and protocol violations per their requirements.

Training and quality control
Since the inception of the study, Fundacion INFANT
has held bi-weekly training webinars with the research
team from each site to ensure uniform approaches to
data and specimen collection.

Summary and progress through enrollment
Enrollment began in June, 2013 and is ongoing (Fig. 4).
Consent rates have ranged from 45 to 90% by center
(67% for the overall consortium) for a total enrollment
of 325 participants. The biospecimen archive of DNA,
cord blood, physiologic testing results, and breadth of
the investigative teams has prompted the initiation of
several ancillary studies that have added dimensions to
the original D-BPD design (Table 3).

Discussion
In summary, the current gap in understanding BPD as a
complex multi-trait spectrum of different disease endo-
types will be addressed by a bedside-to-bench and
bench-to-bedside approach in the D-BPD program.
Other observational programs have been successful in

Fig. 4 D-BPD cohort diagram
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identifying perinatal and clinical risk factors and have
very elegantly described respiratory physiology in infants
[6, 33]. A few important assets that distinguish our
program from others include: 1) The recruitment of
case/parent triads which makes it possible to perform
transmission/disequilibrium tests to identify preferential
transmission of alleles from parent to affected child
within different triads (comprising an affected child
plus two parents). The transmission/disequilibrium test
(TDT) considers parents who are heterozygous for an
allele associated with disease and evaluates the frequency
with which that allele or its alternate is transmitted to
affected offspring [34]. Compared with conventional tests
for linkage, the TDT has the advantage that it does not
require data either on multiple affected family members
or on unaffected sibs. Moreover, the use of parental data,
instead of nonrelated controls avoids ethnic confounding,
even if the parents represent a mixture of ethnic
backgrounds. 2) We plan to study lung function utilizing
standard spirometry testing and novel lung function
evaluations with Forced Oscillatory Testing beyond the
first year of life. Therefore, our studies can extend the
characterization of lung development into childhood and,
consequently, identify manifestations of premature lung
disease that may not be apparent until later in life. 3) Fi-
nally, the ultimate goal of the endotype discovery para-
digm is to build upon the foundations earlier studies,
including PROP, to identify novel pathways that contribute
to pulmonary outcomes in prematurely born infants.
Specifically, we will develop machine learning algorithms
to identify endotypes from our cohort to enable the use of
an unbiased, hypothesis generating approach. Similar
approaches have recently been used to uncover disease
endotypes “hidden” under the same umbrella term (e.g.:
fever or asthma) [16]. Our hypothesis is that this will dis-
aggregate premature lung disease into several subgroups
with different etiologies and prognoses hidden under the
BPD definition to date. A limitation of our program is a
lack of standardized physiologic testing during the NICU
course including a room air challenge at 36 weeks PCA.
The room air challenge enables identification of infants
with immature control of breathing and/or a weak chest
wall/airway. Given the longitudinal nature of our study

and the development of trajectories for clustering, we are
confident that analysis of the longitudinal data will enable
the unbiased identification of the above-referenced infants.
Overall the D-BPD Program will provide enhanced un-

derstanding of mechanisms, evolution and consequences
of lung diseases in preterm infants. The D-BPD program
represents a unique opportunity to combine the expert-
ise of biologists, neonatologists, pulmonologists, geneti-
cists and biostatisticians to examine the disease process
from multiple perspectives with a singular goal of im-
proving outcomes of premature infants.
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