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Abstract

Background: Extremely preterm infants (≤ 28 weeks gestation) commonly require endotracheal intubation and
mechanical ventilation (MV) to maintain adequate oxygenation and gas exchange. Given that MV is independently
associated with important adverse outcomes, efforts should be made to limit its duration. However, current
methods for determining extubation readiness are inaccurate and a significant number of infants fail extubation
and require reintubation, an intervention that may be associated with increased morbidities. A variety of objective
measures have been proposed to better define the optimal time for extubation, but none have proven clinically
useful. In a pilot study, investigators from this group have shown promising results from sophisticated, automated
analyses of cardiorespiratory signals as a predictor of extubation readiness. The aim of this study is to develop an
automated predictor of extubation readiness using a combination of clinical tools along with novel and automated
measures of cardiorespiratory behavior, to assist clinicians in determining when extremely preterm infants are ready
for extubation.

Methods: In this prospective, multicenter observational study, cardiorespiratory signals will be recorded from 250
eligible extremely preterm infants with birth weights ≤1250 g immediately prior to their first planned extubation.
Automated signal analysis algorithms will compute a variety of metrics for each infant, and machine learning methods
will then be used to find the optimal combination of these metrics together with clinical variables that provide the
best overall prediction of extubation readiness. Using these results, investigators will develop an Automated system for
Prediction of EXtubation (APEX) readiness that will integrate the software for data acquisition, signal analysis, and
outcome prediction into a single application suitable for use by medical personnel in the neonatal intensive care unit.
The performance of APEX will later be prospectively validated in 50 additional infants.

Discussion: The results of this research will provide the quantitative evidence needed to assist clinicians in
determining when to extubate a preterm infant with the highest probability of success, and could produce significant
improvements in extubation outcomes in this population.

Trial registration: Clinicaltrials.gov identifier: NCT01909947. Registered on July 17 2013.
Trial sponsor: Canadian Institutes of Health Research (CIHR).
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Background
Scope of the problem
Approximately 15,000 infants are admitted to the
neonatal intensive care unit (NICU) in Canada each year,
of which 11% are extremely preterm (gestational age
(GA) ≤ 28 weeks) [1]. Due to lung immaturity, weak
respiratory drive and surfactant deficiency, the majority
of these infants require endotracheal intubation and in-
vasive mechanical ventilation (MV) during their first
days after birth [2]. In a recent large epidemiological
study, 85% of extremely preterm infants required MV at
some point during hospitalization, most of whom were
intubated in the delivery room [3]. Amongst infants with
GA of 24 and 25 weeks, 99% and 95% required MV,
respectively [3]. Therefore, MV remains an integral part
of respiratory management of extremely preterm infants.
Although life-saving at first, prolonged MV has been

linked to several adverse outcomes, including ventilator-
associated pneumonia, airway trauma and bronchopul-
monary dysplasia (BPD) [4]. BPD is the most serious
pulmonary morbidity, having been associated with long-
term respiratory and neurodevelopmental impairments
[5], as well as important social and economic burdens
[6]. The duration of MV is a strong predictor for devel-
oping BPD; each additional week increases the odds of
BPD by a factor of 2.7 [7]. Consequently, clinicians make
every attempt to limit its duration and advocate for
extubation as early as possible [8]. However, premature
extubation carries its own hazards, including lung dere-
cruitment, compromised gas exchange, inspiratory
muscle fatigue and ultimately the need for reintubation
[9–11]. Indeed, rates of extubation failure in extremely
preterm infants have been reported in the literature to
be anywhere from 10% to 70%, depending on the popu-
lation studied and the time frame or criteria used to
define failure [12, 13].
Extubation failure increases morbidities and mortality

for several reasons [9, 14]. Not only are endotracheal
intubations technically challenging [15], but they may be
associated with hypoxemia, bradycardia, fluctuations in
blood pressures as well as changes in cerebral func-
tion [16, 17]. In a recent prospective cohort study,
40% of intubations were associated with adverse
events, and 9% of intubations were associated with
severe sequelae including hypotension, chest compres-
sions, pneumothorax and death [17]. Furthermore,
reintubations risk traumatic injury to the upper
airway, lung atelectasis and infection [4, 18, 19].
Together, these complications may lead to cardiore-
spiratory and/or neurological injuries that may result
in long term disability. In fact, emerging studies suggest
that reintubation may be an independent risk factor for
death or BPD in this population [20, 21]. These observa-
tions are very concerning, and underscore the need for

lowering the rates of extubation failure while minimizing
the duration of MV.

Predictors of Extubation readiness in preterm infants
Although neonatology has seen major advances in MV
and post-extubation respiratory support, the scientific
basis for determining whether a patient is ready for
extubation remains imprecise. The decision to extubate
is usually based on clinical judgment, taking into
account personal experience and bedside observation of
blood gases, oxygen requirements and ventilator settings
[22]. As a result, there are significant practice variations
and a paucity of protocols to streamline management for
all components of the peri-extubation process, with
decisions often being physician-dependent and not
evidence-based [22, 23].
Over the years, several attempts have been made to

identify objective prediction tools of extubation readi-
ness in preterm infants. In the late 1980s-1990 for in-
stance, it was common practice for infants to undergo a
trial of endotracheal continuous positive airway pressure
(CPAP) of 2–3 cmH2O for periods of 6 to 24 h [24–26].
Infants were extubated if they had no significant apneas,
bradycardias or respiratory acidosis during the trial.
However, evidence from a meta-analysis refuted this
practice, showing that the trial’s prolonged length and
low pressures increased the risk of respiratory failure
[27]. Subsequently, investigators turned towards shorter
assessment periods during which various clinical and
physiological variables were evaluated. Unfortunately,
many of these prediction tools are of limited applicability
today, since they were performed before routine use of
antenatal steroids or surfactant therapy. Moreover, the
studies were small, single-center and enrolled very
heterogeneous populations. For the most part, measures
of tidal volume, minute ventilation, breathing pattern,
pulmonary mechanics and diaphragmatic function failed
to classify infants into their respective extubation class
(success or failure) [28–30]. When prediction tools were
found to have favorable sensitivities and specificities,
they were not prospectively validated [31], or showed no
differences in extubation failure rates when compared to
clinical judgment alone [32, 33].
More recently, clinicians have shifted towards the use

of short-duration spontaneous breathing trials (SBTs) for
the assessment of extubation readiness in extremely
preterm infants [22]. The SBT is a bedside procedure
that consists of observing changes in heart rate, oxygen
saturation (SpO2) and/or oxygen requirements during a
short trial of endotracheal CPAP. Although the use of a
standardized 30-min SBT has been standard of care for
assessing extubation readiness in mechanically ventilated
adults [34], the evidence for its use in preterm infants is
less compelling. In one study, Kamlin et al. performed a
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3-min SBT using endotracheal CPAP of 5–6 cmH2O in
preterm infants with birth weights (BW) < 1250 g who
were deemed ‘ready’ for extubation [35]. The SBT
showed a sensitivity of 97% and a specificity of 73% at
predicting extubation success, thus it was adopted as
standard of care in that institution. However, a follow-up
prospective audit of this practice found that routine use
of SBTs did not improve weaning times or extubation
success rates [36]. In the latest prospective observational
study, the validity of a 5-min SBT was evaluated in 49
infants with GA < 32 weeks [37]. The SBT had a high
sensitivity and positive predictive value, but limited spe-
cificity and negative predictive value.

Cardiorespiratory variability and prediction of Extubation
readiness
Variations in heart rate and respiratory rate have long
been known to be influenced by the autonomic nervous
system (ANS), with cardiovascular integrity depending
on the correct balance between sympathetic and para-
sympathetic tones [38]. Autonomic dysfunction, as char-
acterized by reduced heart rate variability (HRV), has
been linked to increased mortality and cardiovascular
disease in adult individuals [39]. Respiratory variability
(RV), on the other hand, is reduced in conditions of
hypoxia, hypercapnia and inspiratory mechanical loading
[40–43]. Similarly, evidence from the adult literature has
consistently demonstrated reduced HRV and RV in pa-
tients who failed weaning from MV [44, 45].
The role of HRV and RV in predicting disease in

newborn infants is not understood as well. However, it
has become increasingly attractive over the past years, as
recent evidence suggests that loss of HRV precedes the
clinical presentation of neonatal sepsis [46]. The poten-
tial for cardiorespiratory variability measurements to
predict extubation readiness has led our group to ex-
plore their usefulness in the extremely preterm popula-
tion. The first evaluation was conducted as part of a
retrospective analysis of respiratory data collected by
Kamlin et al., whereby RV indices were computed during
a 3-min SBT performed prior to extubation [35]. The
combination of RV and clinical response to the SBT pre-
dicted successful extubation more accurately than either
test alone [47]. However, the study used a pneumotacho-
graph to measure respiration, a tool that has several lim-
itations [48]. For those reasons, we conducted a pilot
prospective observational study of 56 preterm infants
(BW ≤1250 g) in which cardiorespiratory behavior was
obtained from electrocardiogram (ECG) and respiratory
inductive plethysmography (RIP) signals that captured
respiratory movements from the ribcage and abdomen.
Data were collected during 2 periods prior to extubation:
a 60-min recording on low ventilatory support followed
by a 3-min period on endotracheal CPAP. The primary

outcome, extubation failure, was defined as the need for
reintubation within 72 h from extubation. The study re-
vealed that HRV was significantly lower in infants who
failed their first extubation attempt [49]. In addition,
both HRV and RV measures had perfect specificity and
PPV, but limited sensitivity and NPV. Nevertheless, a
major factor limiting the evaluation of RV was the need
for manual, breath-by-breath analysis of the respiratory
signals. Manual analysis of respiratory signals is expen-
sive, time consuming, operator-dependent and prone to
errors. To circumvent this problem, it became more at-
tractive to use an automated, continuous analysis of re-
spiratory behavior. One such example is AUREA, a
robust Automated Unsupervised Respiratory Events
Analysis system developed by members of our team
[50]. AUREA uses uncalibrated RIP signals to compute a
number of respiratory-related metrics that are then used
to classify the infant’s respiratory patterns on a sample-
by-sample basis. The method is fully automated, com-
pletely repeatable, standardized, and requires no human
intervention. Importantly, it is more efficient than man-
ual scoring (the most common method of analysis) and
is not limited by intra- or inter-scorer variability [50].
AUREA was originally designed for older infants recov-

ering from anaesthesia, but was later extended to support
analysis of RIP data from preterm infants [51, 52].
Consequently, we used AUREA to reanalyze the
original recorded dataset from the pilot study of 56
preterm infants [53]. Exploring the utility of the met-
rics computed by AUREA revealed that the variability
of two metrics (the instantaneous breathing frequency
and ribcage movement) were significantly different be-
tween infants who succeeded and failed extubation
[53]. All in all, those results indicated that cardiore-
spiratory signals analyzed using AUREA contained
information that could be useful to predict successful
extubation. However, AUREA computes many differ-
ent metrics describing cardiorespiratory behavior on a
sample by sample basis. Therefore, it is not straight-
forward to determine which metrics to use, the cri-
teria to select the samples and how to combine them
to obtain the best predictor of extubation readiness.
Consequently, we applied machine learning methods to
explore how to best combine features of HRV and RV to
predict extubation readiness. The best results were
obtained using a Support Vector Machine (SVM), an
advanced machine learning classifier that uses nonlinear
decision boundaries [54]. After combining 17 features
computed by AUREA, the SVM produced accurate classi-
fications with an optimal true positive rate greater than
85% and a false positive rate of less than 30% [55]. The re-
sults of this pilot study were encouraging and suggested
that a classifier with such performance had the potential
to reduce extubation failures by 80%.
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Rationale
Both prolonged MV and the need for reintubation are
associated with short- and long-term complications.
Therefore, it is critical to determine the optimal timing
for extubation to minimize the duration of MV while
maximizing chances of success. There is promising
evidence that analysis of cardiorespiratory signals can pro-
vide valuable information into the extubation readiness of
extremely preterm infants. We therefore hypothesize that
extubation readiness of preterm infants can be determined
accurately by using machine learning methods to combine
clinical variables along with novel, quantitative and auto-
mated measures of cardiorespiratory behavior.

Objectives
This project aims to develop an automated predictor to
help physicians determine when extremely preterm
infants are ready for extubation, using the combination
of clinical tools along with novel and automated
measures of cardiorespiratory variability. The research
objectives will be accomplished in this following
sequence:

1- Generate a library of clinical data and cardiorespiratory
signals in preterm infants prior to extubation;

2- Develop a robust model for prediction of extubation
readiness, i.e. referred to as APEX (Automated
prediction of extubation readiness);

3- Prospectively validate the clinical utility of this
prediction model

Methods
Study design
This is a prospective, multicenter observational study
aiming to develop an automated prediction tool for
extubation readiness in extremely preterm infants. The
study design conforms to recommendations by the TRI-
POD (transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis) statement
and the study protocol is reported using the Standard
Protocol Items: Recommendations for Interventional
Trials (SPIRIT). The SPIRIT checklist is available in
Additional file 1.

Study setting
Five tertiary-level NICU’s in North America are
involved: the Royal Victoria Hospital, Jewish General
Hospital and Montreal Children’s Hospital (Montreal,
Quebec, Canada), Detroit Medical Centre (Detroit,
Michigan, USA) and Women and Infants Hospital
(Providence, Rhode Island, USA). Approval was obtained
from each institution’s Ethics Review Board. Enrollment
began in September 2013 and is currently ongoing. Of
note, the Royal Victoria Hospital and Montreal Children’s

Hospital NICU’s merged and moved to a new site in May
2015.

Eligibility criteria
Figure 1 presents a diagram representing the flow of par-
ticipants through the study. All infants with BW ≤ 1250 g
and requiring MV are eligible for the study. Infants are
excluded if they have any major congenital anomalies,
congenital heart disease, cardiac arrhythmias, or are
receiving any vasopressor or sedative drugs at the time
of extubation. Infants are also excluded if they are extu-
bated from high frequency ventilation, or directly to
room air, oxyhood or low-flow nasal cannula. Details of
all inclusion and exclusion criteria are summarized in
Table 1.

Extubation
There is no consensus on when an extremely preterm in-
fant should be extubated. Thus, prior to initiation of the
study, we proposed the following guidelines to consider a
patient ‘ready’ for extubation: For infants <1000 g - mean
airway pressure (MAP) ≤ 7 cmH2O and fraction of in-
spired oxygen (FiO2) ≤ 0.3; For infants ≥1000 g - MAP ≤8
cmH2O and FiO2 ≤ 0.3. Nevertheless, all decisions regard-
ing weaning, determination of extubation readiness and
post-extubation management are ultimately made by the
responsible physician. In general, all units have adopted
SpO2 target ranges according to their respective institu-
tional guidelines and have been practicing a permissive
hypercapnia ventilator strategy. Caffeine therapy is
commonly administered prior to extubation as part of
standard care. Infants typically receive post-extubation
respiratory support in the form of either nasal CPAP or
non-synchronized nasal intermittent positive pressure
ventilation (NIPPV), at the discretion of the attending
physician. These are the two most frequently used and
best regarded support modalities [22, 23]. However, since
design of the study and beginning of patient recruitment,
we have observed that an increasing number of infants are
being extubated to heated humidified high flow nasal
cannula (HHHFNC) therapy. This modality is the subject
of ongoing investigations, and some uncertainty remains
regarding its effectiveness in preventing extubation fail-
ures in the extremely preterm population when compared
to CPAP or NIPPV [56]. This has led to adjustment of the
final sample size in order to account for this new practice
(see ‘sample size calculation’ below).

Interventions
The development of APEX (the automated prediction
model of extubation readiness) involves the following
steps: acquisition of cardiorespiratory and clinical data,
offline analysis of all the data, derivation and prospective
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validation of the model. All phases of APEX develop-
ment are described below.
I. Acquisition of cardiorespiratory data.
Infants are studied prior to their first planned extuba-

tion, once deemed ‘ready’ by the attending neonatologist.
The following cardiorespiratory signals are acquired: (1)
ECG using 3 ECG leads placed on the infant’s chest or
limbs; (2) Chest and abdominal movements using uncal-
ibrated RIP with the Respitrace QDC system® (Viasys®
Healthcare, USA). One RIP band is placed around the
infant’s chest at the level of the nipple line, and the other
band around the infant’s abdomen, above the umbilicus;
(3) SpO2 and photoplethysmograph (PPG) signals with a
pulse oximeter (Radical, Masimo Corp, Irvine, LA.)
placed on the infant’s hand or foot.
All signals are amplified, anti-alias filtered at 500 Hz,

and sampled at 1 kHz by a portable analog-digital data
acquisition system (PowerLab version 7.3.8, ADInstru-
ments, Dunedin, New Zealand, © 2009) mounted on a

Fig. 1 Study enrollment flow diagram template

Table 1 Inclusion and exclusion criteria

Inclusions Exclusions

Birth weight ≤ 1250 g Major congenital anomalies

Requiring intubation/
mechanical ventilation

Congenital heart disease

First planned extubation Cardiac arrhythmias

Receiving any vasopressor at time of
extubation

Receiving any sedatives at time of
extubation

Extubation from high frequency
ventilation

Direct extubation to room air, oxyhood or
low flow nasal cannula

Accidental/unplanned extubation

Death prior to extubation
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battery-powered laptop computer. Fig. 2 shows a repre-
sentative example of the signals acquired.
Data is acquired from each infant while quiet, stable

and in supine position, during 2 continuous recording
periods immediately preceding extubation:

1. A 60-min period while the infant receives any mode
of conventional MV. These data will be used to
characterize the HRV properties of the infant
prior to extubation. However, this data may not
be suitable for characterizing RV, since the
respiratory pattern is still influenced by the
ventilator.

2. A 5-min period will be used to record the respiratory
parameters. During this time, the ventilation will be
switched to endotracheal CPAP at the same positive
end-expiratory pressure level used during the first
recording period, so that the cardiorespiratory
patterns are controlled by the infant.

II. Acquisition of clinical data.
The key clinical variables recorded for each infant are

summarized in Table 2, and the following respiratory
outcomes are recorded while the infant is hospitalized in
the NICU:

Extubation failure in the first 72 h after extubation
This the primary outcome for the development of APEX.
Extubation failure is defined by one or more of the
following criteria: (a) FiO2 > 0.5 to maintain SpO2 > 88%
or PaO2 > 45 mmHg (for 2 consecutive hours); (b)
PaCO2 > 55–60 mmHg with a pH < 7.25, in two
consecutive blood gases done at least 1 h apart; (c) one
episode of apnea requiring positive pressure ventilation
with bag and mask; (d) Multiple episodes of apnea (≥ 6

episodes/6 h). This information will be collected
prospectively from the nursing flow chart and blood gas
records.

Extubation failure between 72 h and 14 days after
extubation
Following the 72-h period after extubation, infants are
monitored for presence of extubation failure criteria
(as described above) until 14 days post-extubation.

Reintubation
This is a secondary outcome measure and is recorded at
any time point from extubation until NICU discharge.
The timing and reasons for reintubation are collected in
detail since the decision to re-intubate is made by the
responsible physician. Therefore, the indications for
reintubation may differ from the criteria defining extu-
bation failure.
III. Data analysis.
The analysis will be developed in 2 phases. Phase 1

will identify and evaluate cardiorespiratory features
(metrics or patterns) that differ in infants who succeed/
fail extubation. Phase II will use machine learning
methods to determine the optimal combination of these
features for the derivation of APEX.

Phase I: Cardiorespiratory features
All signals will be exported to MATLAB™ (The Math-
Works, Inc.) format for the following analyses:
A) Respiratory Signal Analysis. AUREA will be used to

describe respiratory activity in terms of a series of met-
rics that characterize the amplitude, frequency and phase
information of the RIP signals on a sample-by-sample
basis [52]. These metrics are computed automatically,
provide quantitative measures of the respiratory activity
and include:

a. Instantaneous respiratory frequency (fmax): is the
frequency in the respiratory band with the most
power between 0.4 and 2.0 Hz. [57] It is estimated
by passing the RIP signal through a bank of digital,
band-pass filters; the central frequency of the filter
with the highest output power at each time defines
fmax. This yields a sample-by-sample estimate with
an accuracy of 0.1 Hz, or half the filter pass-band
(0.2 Hz). Note that because we use symmetric,
two-sided filters, there is no time delay in estimating
fmax.

b. RMS metric: extracts the amplitude information of
the respiratory signals, and is defined as the sum of
the root mean square (RMS) values for the ribcage
(RCG) and abdomen (ABD) RIP signals.

c. Pause metric: is based on the power of regular
breathing in either RCG or ABD. Pauses are defined

Fig. 2 Representative example of a cardiorespiratory recording from
a preterm infant. The signals displayed, from top to bottom, are:
electrocardiogram, rib cage movements, abdominal movements,
sum of rib cage and abdominal movements, oxygen saturation
and photoplethysmography
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by a lack of respiratory effort, so the RIP signals are
expected to have low relative power in the regular
breathing band (0.4–2.0 Hz). The pause metric is
defined as the ratio of power in the regular
breathing band for a short window to the median
regular breathing power for the entire record. This
metric is close to 1 during regular breathing and
lower during pauses.

d. Movement artifact metric: defined separately for
ABD and RCG, compares the power in the
movement artifact band (i.e., 0–0.4 Hz) to that in
the regular breathing band. It is calculated using
the outputs of a filter bank spanning the
frequencies 0–2 Hz; each filter has a 0.2 Hz
bandwidth. This metric will be close to +1 during
regular breathing and shift towards −1 during
movement artifacts.

e. Thoraco-abdominal asynchrony metric: estimates the
phase between RC and AB using selectively filtered
RIP signals to improve the signal-to-noise ratio. The
filtered signals are then converted to binary signals
and an exclusive-OR signal is computed, representing
the phase relation between RC and AB at each sample
[58]. Averaging the resulting signal over a window
length NA yields an asynchrony metric proportional to
the phase shift.

Once the metrics are computed, AUREA then applies
k-means clustering to these metrics to assign each time
sample of the RIP signals to one of 5 respiratory patterns
(also illustrated on Fig. 3):

– Pause (PAU)
– Synchronous-breathing (SYB)
– Asynchronous-breathing (ASB)
– Movement artifact (MVT)
– Unknown (UNK)

The performance of AUREA’s assignment of respiratory
patterns will be compared with results of an experienced
manual scorer, and fine-tuned accordingly.
B) Heart Rate Analysis. ECG signals acquired during

the recording periods will be analyzed by first converting
the ECG signal into a point process by identifying the
maxima of the R wave. The resulting signal will then be
low-pass filtered using the French-Holden algorithm
[59] to generate a continuous HR signal. Instantaneous
estimates of power in the: i) Very Low Frequency
(VLF) = 0.01–0.04 Hz; (ii) Low Frequency (LF) = 0.04–
0.2 Hz, and (iii) High Frequency (HF) = > 0.2 Hz bands
will be determined by passing the continuous HR signal
through a bank of band-pass filters with appropriate cut-
offs. These filters will be implemented in the time domain
as symmetric, two-sided finite impulse response filters,
making it possible to track changes in HRV as a function
of time with no delay.
C) Pulse Oximeter Analysis. The PPG signal will be an-

alyzed to detect movement artifacts using an algorithm
that computes and removes a moving average of the
larger quasi-periodic pulse components. The RMS of the
residual will be close to zero for clean signals and higher
during movement artifacts. This metric is faster and
performs better than other methods that use higher

Table 2 Clinical variables to be collected for infants enrolled in the study

Antenatal and maternal variables Mother age, parity, complications during pregnancy, maternal medications, intra-uterine
growth restriction, mode of delivery, multiple birth, use of antenatal steroids, rupture of
membranes, use of antibiotics during labor, histological chorioamnionitis.

Infant characteristics pre-extubation Gender, birth weight, gestational age, Apgar scores (1, 5 and 10 min), cord blood gases, use
of surfactant (age, dose), use of antibiotics and caffeine administration prior to extubation
(age and dose).

Infant characteristics at time of extubation Weight at extubation, age and post-conceptional age at extubation, ventilator mode, peak
inflation pressure, positive end-expiratory pressure, mean airway pressure, tidal volume, set
inspiratory time, ventilator rate, fraction of inspired oxygen (FiO2), oxygen saturation and
blood gas

Infant characteristics post-extubation Type of non-invasive respiratory support, interface used, settings, FiO2 and blood gas

Primary extubation outcome Fulfilling extubation failure criteria within 72 h from extubation

Secondary extubation outcomes - Fulfilling extubation failure criteria up to 14 days after extubation
- Need for reintubation at any time point from extubation until death or discharge
(including timing and reasons for reintubation)

Other outcome variables Total duration (in days) of mechanical ventilation, non-invasive respiratory support and of
oxygen supplementation, intraventricular hemorrhage, patent ductus arteriosus, necrotizing
enterocolitis, postnatal infection (defined as positive culture from the blood, urine or
cerebrospinal fluid), need for postnatal steroids, bronchopulmonary dysplasia at 36 weeks
post conceptual age (classified as none, mild, moderate or severe), upper airway complications,
diuretics at discharge, retinopathy of prematurity and death occurring anytime in the NICU
(including timing and cause).
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order statistics [60, 61]. Oxygen saturation and Pulse
Transit Time (PTT) will be computed for artifact-free
segments. The PTT estimates the time elapsed between
the R-wave of the ECG and the peripheral PPG pulse
[62], and has been shown to be useful in the diagnosis of
Obstructive Sleep Apnea Syndrome [63].
D) Stationarity. Each metric is computed for each

sample. The behavior of any given sample may vary ran-
domly and/or as a function of time. This will likely occur
during the 5-min period on endotracheal CPAP as the
infant adapts to a sudden change on respiratory load.
Consequently, the time course of each metric will be
inspected to ensure that it is stationary. If not, we will
first try to break the data set into shorter, quasi-
stationary segments. Should this fail, the metric’s time-
varying behavior will be described using time series
analysis methods.
E) Feature Detection. We will determine which statis-

tical properties of these metrics describing cardiorespira-
tory activity are likely to be useful for predicting
extubation readiness. To do so, subjects will be sepa-
rated into two groups, defined by extubation failure or
success, and the probability density (PDF) of each metric
will be computed and compared. Differences in the
variability of a metric will be revealed by changes in the
shape of the PDFs; increased variability should result in
a broader PDF while a decrease will result in a narrower

PDF. In pilot studies, we found that the interquartile
range was a useful feature to quantify variability. How-
ever, the shapes of the PDFs may suggest other statistics
to use as features. The respiratory patterns generated by
AUREA, along with the clinical variables collected, will
be subjected to a similar analysis. The set of cardiorespi-
ratory and clinical features with discriminative ability
will be selected for use with machine learning methods
to build the final predictor.

Phase II: Machine learning
The machine learning phase will examine the hypothesis
that subjects ready for extubation can be differentiated
from those who are not by using a classifier that com-
bines clinical variables with the features computed in
Phase I.
For classification, infants will be assigned to either the

SUCCESS or FAILURE groups depending on the
primary outcome, extubation failure or success. We will
then use discriminative classification algorithms (e.g.
SVM [54] and Adaboost [64]) to construct classifiers for
risk assessment. SVM is a powerful classification
method, which takes existing labeled examples and con-
structs a non-linear decision boundary providing a class
separation. New examples are then classified by compar-
ing them to this boundary. SVM relies on two important
insights: the boundary can be defined by the examples

a

c

b

d

Fig. 3 Sample epochs of respiratory data from a preterm infant displaying the respiratory patterns detected automatically by AUREA. AUREA -
Automated Unsupervised Respiratory Event Analysis system a Pause (PAU), b Movement artifact (MVT), c Asynchronous breathing (ASB) and
d Synchronous breathing. Horizontal dotted lines indicate the center of each segment
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that are closest to it (called support vectors) and any
new instance can be classified by comparing it to the
support vectors. This implicit way of defining the deci-
sion boundary permits the use of large numbers of attri-
butes, and the discovery of non-linear relationships
between them (rather than simple logical relationships
such as “AND” and “OR”). The algorithms to be used
provide non-linear classification boundaries as well as a
measure of uncertainty in the labeling of each example
(expressed as a “margin” between the example and the
classification boundary). Unlike other learning algo-
rithms that produce non-linear classifiers, such as neural
networks, these algorithms are known to work well with
limited numbers of examples, as is the case for our data,
and to be very robust to noise in the input features.
IV. Prospective validation of APEX.
The development of APEX as described above will use

a variety of specialized software tools. These provide the
flexibility necessary for exploratory research but may not
be suitable for clinical use. Therefore, we will develop an
integrated software system that will perform all the data
acquisition, signal analysis, and classification operations
needed to predict extubation outcome with a user-
friendly interface suitable for medical personnel in the
NICU. Prototypes of the package will be developed and
tested using MATLAB’s interactive environment, which
supports all the needed algorithms and provides a
complete set of tools for graphical interface develop-
ment. Once a prototype is available, its clarity and us-
ability will be assessed by recruiting clinicians from the
NICUs (neonatologists, respiratory technicians) to test
the package in a simulated setting and provide feedback.
Once the package is finalized, the MATLAB compiler
will be used to generate a stand-alone application that
will be installed on the data acquisition machines.
The performance of APEX will then be validated in a

prospective study of an additional 50 preterm infants.
These will be used only to evaluate the performance of
the predictor in the clinical setting. Moreover, the APEX
classification algorithm and parameters will be pre-
specified and used for all infants. Patient recruitment,
acquisition, and follow-up will be the same as for the
original study. However, immediately following comple-
tion of the cardiorespiratory recordings, APEX will carry
out the signal analysis and classification computations to
assign the infant to FAILURE, SUCCESS, or UNCER-
TAIN groups (see ‘Statistical methods’ below). This
APEX classification will not be available to the attending
staff and so will not influence clinical care.

Participant timeline
At each NICU, a research coordinator screens all infants
for eligibility and maintains a log of all inclusions/exclu-
sions. Parents are approached by a study investigator

who is not the attending neonatologist of that baby, and
informed parental consent is obtained prior to the first
planned extubation. Participants have the cardiorespira-
tory signals recorded immediately prior to their first
planned extubation and clinical information is prospect-
ively collected at various time points from birth until
death, discharge or transfer from the NICU, as presented
on the SPIRIT participant timeline in Table 3.

Sample size
The machine learning methods that will be used for this
study have built-in mechanisms to guard against over-
fitting the data (i.e., representing the training examples
perfectly but having weak predictive power on new
data). Consequently, traditional statistical approaches for
determining sample size do not apply [65]. Therefore,
sample size was estimated by applying a methodology
proposed by Obuchowski and McClish and detailed by
Zhou et al. [66, 67]. This method relies on estimating
the prevalence of the disease of interest in the study
population, estimating the variance of the receiver oper-
ating characteristics (ROC) curve based on a pilot study,
and picking a required precision for the area under the
curve (AUC). The prevalence of extubation failure was
estimated conservatively to be 20%, based on both a
review of the literature and the clinical collaborators’
experience. The variance in the AUC was then estimated
by applying bootstrap methods to the data acquired in
our pilot study. Using these values and an AUC preci-
sion of 0.1 led to an estimated sample size of 170 babies.
This sample size would provide a minimum of 5 failure
cases in each fold when performing 5-fold cross-
validation, thereby ensuring a reliable measurement of
generalization power [68]. Nevertheless, in the face of
changing practice with the increasing use of HHHFNC
post-extubation, and the uncertainty related to its impact
on extubation failure rates in this population, the sample
size was conservatively increased to 250 patients. As for
the prospective validation of APEX, the sample size of 50
infants has been chosen large enough to demonstrate the
anticipated benefits and feasibility of the predictor.

Recruitment
Several strategies have been put in place to ensure
steady patient recruitment at each participating site.
First, the research coordinators promptly identify eli-
gible patients and approach the parents for consent
well before extubation. The coordinators follow the
infant’s daily status and proactively organize with the
attending physician for the cardiorespiratory record-
ings to be made prior to extubation. In addition, in
order to raise awareness of all NICU personnel (i.e.
neonatologists, nurses, respiratory therapists, neonatal
nurse practitioners and trainees) about the study,
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routine activities have been instituted at each unit, in
the form of information sessions, in-service training
and presentations.

Data collection methods and data management
In order to harmonize the process of cardiorespiratory
acquisition and clinical data collection, assessors from

Table 3 Participant timeline according to the SPIRIT guidelines

-t1 = birth to extubation
0 = immediate period prior to initiation of data acquisition
t1 = 60-min recording prior to extubation
t2 = 5-min recording prior to extubation
t3 = immediate period post-extubation
t4 = first 72 h period post-extubation
t5 = period between 72 h and 14 days post-extubation
t6 = discharge, death or transfer from the neonatal intensive care unit
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all recruiting sites will get formal training by the same
research investigator. Assessors will also receive
standardized instructions describing all procedures step-
by-step, tips for troubleshooting signal acquisition and
definitions of clinical data items. All cardiorespiratory
signals will be recorded using a pre-set template from
PowerLab’s data acquisition system, thereby ensuring
homogeneous sampling methods and a controlled vo-
cabulary of comments added by the investigators during
the recording. As for clinical data, it will be entered
manually then transcribed into a standardized Microsoft
Excel TM (Microsoft Corporation) template that uses
multiple layers of quality control to minimize data
transcription errors and regulate the type of information
entered. Both cardiorespiratory signals and clinical data
files will be copied to an encrypted USB key and stored
in a locked cabinet that is only accessible to the research
investigators. This data will be kept for a period of
7 years after the end of the study, in accordance with the
Research Ethics Board guidelines.
Results from the first objective will yield a large, com-

plex dataset that needs to be properly organized, cataloged
and readily accessible to investigators from multiple disci-
plines and geographically-distinct institutions. To facilitate
this collaboration, the cloud-based storage and sharing
platform Dropbox for Business™ (Dropbox, Inc.) will be
used. At the same time, it is important to ensure that the
cloud-based file-sharing environment is secure and free of
patient identifiers. Thus, our group has developed and
implemented an automated anonymization protocol for
that purpose, as described in detail elsewhere [69]. In a
nutshell, the original cardiorespiratory signals and clinical
data are first transferred to a secure repository only
accessible to a single administrator responsible for imple-
menting the protocol. The files are then systematically de-
identified and automatically transferred to the collabora-
tive repository, where all team members can view the
anonymized data in real time [69].
Despite the aforementioned safeguards during the data

acquisition process, issues may still arise in the quality
of clinical files (e.g. transcription errors, missing data or
outlier values) and cardiorespiratory signals (missing or
disconnected signals, inadequate recording durations).
For those reasons, our group has additionally put in
place an algorithm for automated validation and quality
control of all files, as described in detail elsewhere [70].
Through automatically-generated summary reports, the
completion status of all files is shown and problems are
flagged. Moreover, the behavior of various signal proper-
ties and clinical variables are described within each site
and compared between sites. As a whole, this ensures
that all issues are identified and addressed in a timely
fashion, that the data quality is uniform across sites and
that all included files are validated prior to analysis.

Statistical methods
Machine learning algorithms
The performance of the entire machine learning algo-
rithm (described in ‘data analysis’ above) will be assessed
using cross-validation, a standard approach that consists
of splitting the data into several sub-sets (‘folds’) while
ensuring that the distribution of the data in each subset
is similar. Some subsets are used for feature selection and
classifier training, while others are used for computing an
unbiased estimate of the specificity and sensitivity of the
classifiers. Each infant will be assigned to one subset of
the data, such that data from the same infant will not be
used both for training and testing. We will use stratified
5-fold cross-validation, which ensures that reliable esti-
mates of the sensitivity, specificity, and variance of the
predictors can be obtained. ROC curves reflecting the
sensitivity and specificity trade-off will be produced
and used to analytically determine the best trade-off
from the point of view of clinical practice [57].
The machine learning system will produce a binary

prediction of whether a baby will succeed or fail extuba-
tion. However, for use in the clinical setting, a confi-
dence measure in the classification would be necessary.
To this end, we will use a method for estimating condi-
tional probabilities for SVM, proposed by Platt [71], and
efficiently implemented by Lin et al. [72]. This approach
works on top of an existing support vector machine to
produce an estimate of the probability that each example
belongs to the class of interest. Our objective is to use
these estimates to classify infants into 3 classes: (i)
FAILURE: infants assigned to the failure group with
high confidence; (ii) SUCCESS, infants assigned to the
success group with high confidence; (iii) UNCERTAIN,
infants assigned to either the success or fail groups with
low confidence. Where the boundary should lie between
high and low probability will depend upon the rela-
tive cost associated with a false negative (resulting in
the extubation of an infant who will fail) versus that
of a false positive (extending the period of ventilation for
an infant who would otherwise be extubated). Given the
nature of the experimental design (i.e. infants are only
studied when deemed ready for extubation) we anticipate
that the clinical implementation of our methods would in-
volve delaying extubation for infants predicted to fail. We
will evaluate performance based on two measures for the
FAILURE class, the identification rate (IR) and the false
discovery rate (FDR), defined as:

IR ¼ NFfc

NFT
; FDR ¼ NSfc

NSfc þ NFfc

where NFT = total number of failures
NFfc = number of failures assigned to

FAILURE class
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NSfc = number of successes assigned to
FAILURE class.

Bootstrap methods will be applied to our data to
estimate the threshold value that provides the largest
value for IR with an acceptable FDR.

Prospective APEX validation
The predictive validity of APEX in the clinical context
will be evaluated in two ways.
First, we will evaluate the accuracy with which infants

are assigned to the high confidence SUCCESS and FAIL-
URE groups by comparing the predicted and observed
outcomes. We expect that infants will be assigned to
these high-confidence groups with high accuracy. Sec-
ond, the clinical utility of the approach will also depend
on the benefits and costs associated with its potential
impact on patient outcome. The benefits of using the
method can be summarized in terms of the IR, the
proportion of extubation failures that could potentially
be prevented. The costs can be summarized in terms of
the FDR, the proportional of infants incorrectly assigned
to failure class. Our objectives are to obtain an IR of 0.8
and an FDR of less than 0.5. This would translate into re-
ducing the extubation failure rate from an estimated 20%
to less than 5%, at the cost of prolonging the ventilation of
one infant for each extubation failure prevented.

Data monitoring and harms
The leads and bands used to measure cardiorespira-
tory behavior are non-invasive and come in minimal
contact with the baby. Therefore, there are no risks
or discomforts associated with the study interven-
tions. Furthermore, none of the study procedures
interfere with the standard care that the participating
infant will be receiving in the NICU. Any adverse
events will be recorded in Case Report Forms and
reported to each site’s respective Research Ethics
Board in accordance with the protocol and with Good
Clinical Practice.

Discussion
The science of disconnecting extremely preterm infants
from the ventilator remains imprecise in today’s NICU.
Therefore, such decision continues to be based on
subjective evaluations, while clinicians try their best to
balance the risks of a failed extubation against the harms
of prolonged MV. No accurate predictor of extubation
readiness currently exists. For the most part, available
predictors are overly simplistic and fail to capture the
complex and intrinsic behaviors predisposing infants to
a successful extubation. Consequently, the development
of an automated tool that could accurately predict suc-
cessful extubation is extremely important.

To our knowledge, this is the first study to prospect-
ively evaluate clinical and cardiorespiratory behavior of
extremely preterm infants prior to extubation. Through
multi-disciplinary collaboration between clinicians,
biomedical engineers and computer scientists, this
project aims to develop a more consistent, compre-
hensive, and personalized automated tool for the pre-
diction of extubation readiness. The study includes a
large sample size, is of multi-center nature and has
developed a rigorous framework at all levels of the
study design. This will generate the largest database
of cardiorespiratory signals and clinical data relating
to extubation in extremely preterm infants, therefore
providing valuable insight on the complex interactions
between all those variables and allowing for investiga-
tion of several questions related to this subject.
The study also has some potential limitations. Firstly,

all decisions pertaining to weaning from MV, extubation,
post-extubation respiratory support and reintubation are
made by the responsible physician. This adds significant
practice variability and a greater number of confounding
factors when developing the prediction model. However,
we believe that the pragmatic nature of the study makes
it more reflective of clinical reality and therefore more
generalizable to the real world. Besides, this concern was
addressed in the derivation of the large sample size of
patients. Secondly, it is important to note that the pre-
diction model will be developed for infants who were
deemed “clinically ready” for extubation by the respon-
sible physician. This results in test-referral bias, whereby
only infants pre-selected by the attending physician
(based on their own personal bias of extubation readi-
ness) are subjected to the test. Naturally, this leads to a
selection of more babies with successful extubation and
fewer babies with failed extubation, thereby overestimat-
ing sensitivity and underestimating specificity. Therefore,
the prediction tool will only be valid in that context and
cannot be generalized for all situations, until further
validation [73, 74]. Lastly, it is currently unclear which
criteria and time frame used to define extubation failure
have the most clinical relevance for extremely preterm
infants. A recent systematic review of the literature
addressed this problem by evaluating extubation failure
rates (defined as the need for reintubation) as a function
of the time frame used. Amongst infants with BW < 1000 g,
cumulative reintubation rates continued to increase up to
7 days post-extubation, with no sign of plateau [13].
Results of this review indicated that a time frame of 72 h
could underestimate the true failure rate, and recom-
mended using longer windows of observation in these
infants. Although we have defined the primary outcome
(extubation failure) as the fulfillment of pre-specified
criteria within 72 h from extubation, we are also prospect-
ively evaluating extubation failure using criteria up to
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14 days post-extubation, as well as the need for reintuba-
tion until discharge.

Trial status
Enrollment began in September 2013 and is currently
ongoing.

Additional file

Additional file 1: SPIRIT 2013 Checklist: Recommended items to address
in a clinical trial protocol and related documents*. (DOCX 60 kb)
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