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Abstract

Background: Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by varying deficits
in social interactions, communication, and learning, as well as stereotypic behaviors. Despite the significant increase
in ASD, there are few if any clues for its pathogenesis, hampering early detection or treatment. Premature babies
are also more vulnerable to infections and inflammation leading to neurodevelopmental problems and higher risk
of developing ASD. Many autism “susceptibility” genes have been identified, but “environmental” factors appear to
play a significant role. Increasing evidence suggests that there are different ASD endophenotypes.

Discussion: We review relevant literature suggesting in utero inflammation can lead to preterm labor, while
insufficient development of the gut-blood–brain barriers could permit exposure to potential neurotoxins. This risk
apparently may increase in parents with “allergic” or autoimmune problems during gestation, or if they had been
exposed to stressors. The presence of circulating auto-antibodies against fetal brain proteins in mothers is
associated with higher risk of autism and suggests disruption of the blood–brain-barrier (BBB). A number of papers
have reported increased brain expression or cerebrospinal fluid (CSF) levels of pro-inflammatory cytokines, especially
TNF, which is preformed in mast cells. Recent evidence also indicates increased serum levels of the pro-
inflammatory mast cell trigger neurotensin (NT), and of extracellular mitochondrial DNA (mtDNA), which is
immunogenic. Gene mutations of phosphatase and tensin homolog (PTEN), the negative regulator of the
mammalian target of rapamycin (mTOR), have been linked to higher risk of autism, but also to increased
proliferation and function of mast cells.

Summary: Premature birth and susceptibility genes may make infants more vulnerable to allergic, environmental,
infectious, or stress-related triggers that could stimulate mast cell release of pro-inflammatory and neurotoxic molecules,
thus contributing to brain inflammation and ASD pathogenesis, at least in an endophenotype of ASD patients.
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Background
Autism Spectrum Disorders (ASD) are pervasive neuro-
developmental disorders that include autistic disorder,
Asperger’s disorder, and Pervasive Developmental
Disorder-Not Otherwise Specified (PDD-NOS) [1,2].
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ASD are characterized by variable deficits in commu-
nication and social skills, a wide range of behavioral
and learning problems and stereotypic behaviors. ASD
manifest during early childhood and at least 30% of
cases present with sudden clinical regression of devel-
opment around 3 years of age often after acute epi-
sodes, such as a viral infection or following a
vaccination [3,4]. Over the last 20 years, there has
been an impressive increase in ASD prevalence of
about 15% per year with current estimates of 0.5-1%
of children [5,6]. A study from South Korea reported
even higher rates in undiagnosed school children with
ASD-like behaviors [7]. A recent report from the US
Centers for Disease Control estimated that 1/88
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children may be affected by ASD (http://www.cdc.gov/
Features/CountingAutism/). In the majority of cases,
however, the cause of ASD is unknown [8], in spite of
the apparent increase in ASD prevalence [9-11]. We
propose that a number of perinatal factors contribute to
focal brain inflammation and thus ASD (Figure 1).

Prematurity
The contribution of perinatal, genetic, and immune factors
in ASD was reviewed [12,13]. Premature births (less than
37 weeks gestation) have been increasing and currently ac-
count for 15% of all births in the US [14]. Infants less than
28 weeks gestation are at the highest risk for long-term
neurologic problems. Placental dysfunction is a major
cause of prematurity, along with intra-uterine infections
and auto-immunity, which may also contribute to autism
in the offspring due to anoxia [15]. An additional 5-8% of
deliveries are complicated by pre-eclampsia or gestational
diabetes, which may lead to placental insufficiency, abnor-
mal growth, and postnatal metabolic imbalance [16]. In
utero inflammation or infection can lead to preterm labor
and premature birth [17-19]. A retrospective study
that investigated rates of autism in children born in
Atlanta, GA through the Metropolitan Atlanta Develop-
mental Disabilities Surveillance Program (1981–93) who
survived to three years of age, reported that birth prior to
Figure 1 Diagrammatic representation of proposed events and intera
Placental dysfunction, as well as autoimmunity, maternal infection and ges
and susceptibility genes make the infant vulnerable to environmental trigg
blood–brain barriers causing brain inflammation. CRH, corticotropin-releasing
MCP-1, macrophage chemo-attractant protein-1; mtDNA, mitochondrial DNA;
species; SP, substance P; TNF, tumor necrosis factor.
33 weeks gestation was associated with a two-fold
higher risk of autism [20]. A prospective study of all
births less than 26 weeks gestation in 1995 in the
United Kingdom and Ireland also concluded that pre-
term children are at increased risk for ASD in middle
childhood, compared with their term-born classmates
[21].
Neurodevelopmental problems due to prematurity
Infants born between 32 and 36 weeks account for a sig-
nificant increase in the rate of prematurity in the recent
years [22] and are also at risk for neurologic injury [23-26].
Studies evaluating neurobehavioral outcomes following
preterm birth reveal a “preterm behavioral phenotype”
characterized by inattention, anxiety and social inter-
action difficulties, and learning difficulties [27,28].
Intra-uterine inflammation [29] can also lead to fetal

brain injury and is associated with long-term adverse
neurodevelopmental outcomes for the exposed offspring
[30], especially in premature infants [31,32]. Cerebellar
hemorrhagic injury, in particular, is associated with a
high prevalence of neurodevelopmental disabilities in
infants surviving premature birth [33]. A recent study
reported that neonatal jaundice was associated with
ASD [34].
ctions during the perinatal period that may contribute to autism.
tational stress lead to prematurity. Defective neuronal development
ers that activate mast cells to release mediators that disrupt the gut-
hormone; IgE, immunoglobulin E; IL, interleukin; LPS, lipopolysaccharide;
NT, neurotensin; PCB, polychlorinated biphenyl; ROS, reactive oxygen
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Changes in the fetal brain lead to changes in gene ex-
pression patterns into the neonatal period. In fact, the
lower the intelligence quotient (IQ), the more likely a
child may display an ASD behavior [35]. One study of
1129 singleton children identified through school and
health record review as having an ASD by age 8 years
showed that mean IQ was significantly (p< 0.05) lower
in preterm compared to term children, and term-born
small-for-gestational age compared to appropriate-for-ges-
tational age infants [36]. Gestational immune activation
was reported to perturb social behaviors in genetically
vulnerable mice [37].

Low birth weight and prematurity
Results from different studies strongly suggest that pre-
maturity and/or low birth weight (LBW) increase the
risk of ASD in the offspring. One prospective study
assessed 91 very LBW (<1500 g) infants, who had been
born preterm, at a mean age of 22 months, and found
26% of them were likely to develop autism as suggested
by a positive modified checklist for autism in toddlers
(M-CHAT) test [38]. Another study showed that the
diagnostic prevalence of ASD in this LBW (<2000 g)
preterm cohort was higher than that reported by the
Centers for Disease Control and Prevention for 8-year-
olds in the general US population in 2006 [39]. A recent
study found a higher risk of infantile autism among chil-
dren with LBW, but suggested that suboptimal birth
conditions are not an independent risk factor for infant-
ile autism that was increased for mothers older than
35 years, with foreign citizenship, and mothers who used
medicine during pregnancy [40].

Perinatal factors contributing to higher risk of ASD
The conditions leading to premature birth may be more
important than prematurity per se. For instance, the
increased risk of ASD related to prematurity appeared to
be mostly attributed to perinatal complications that
occur more commonly among preterm infants, as shown
in a cohort of 164 families with autistic children in New
Jersey [41]. This was confirmed in a Swedish population-
based case–control study [42]. Other population-based
studies suggest that suboptimal birth conditions are not
independent risk factors, but rather act as clusters to in-
crease the risk of infantile autism [40]. A case–control
population- based cohort study among Swedish children
(born in 1974–1993) reported that the risk of autism
was associated with daily maternal smoking in early
pregnancy, maternal birth outside Europe and North
America, cesarean delivery, being small-for-gestational
age, a 5-minute APGAR score below 7, and congenital
malformations; no association was found between aut-
ism and twin birth, head circumference, maternal dia-
betes, or season of birth [43].
Interestingly, a cohort study of infants born in Canada
(between 1990–2002) concluded that perinatal risk fac-
tors (including prenatal, obstetrical and neonatal com-
plications) may constitute independent risk factors
for development of autism, but only for those children
without a genetic susceptibility, while they appear not to
influence autistic outcomes among genetically susceptible
children [44]. Nevertheless, a meta-analysis on risk factors
for autism concluded that there is insufficient evidence to
implicate individual perinatal factors in ASD because sig-
nificant association may have been observed by chance
after multiple testing [45]. To the other extreme end of
the spectrum, one paper had reported that estimated ges-
tation greater than 42 weeks was associated with autism,
but may play less of a role in high-functioning ASD indivi-
duals than suggested in studies of autism associated with
severe retardation [46].

Obesity
Perinatal nutritional status was shown to be related to
the epigenetic status in adulthood [47]. High weight gain
in pregnancy has been considered an independent risk
factor for ASD in the offspring [48]. This is interesting
in view of the fact that obesity has been considered an
inflammatory state [49] involving release of adipocyto-
kines [50]. Leptin is higher in obese subjects [51,52] and
elevated plasma leptin levels during pregnancy are indi-
cative of placental dysfunction [53]. Elevated plasma lep-
tin levels were reported in children with regressive
autism (n = 37), compared with typically-developing con-
trols (n = 50) [54]. Another paper reported significantly
higher leptin values in 35 patients with autistic dis-
order aged 180 14.1 ± 5.4 years old versus controls
both at baseline and after one year of follow-up [55].
Plasma levels of leptin were also significantly increased
in Rett syndrome (n = 16) compared to healthy con-
trols (n = 16), irrespective of obesity [55]. However,
there is no evidence of either a direct relationship or
any role in ASD pathogenesis.
In rats, neonatal leptin administration late in the phase

of developmental plasticity was able to reverse the devel-
opmental programming [56]. Mast cells also express lep-
tin and leptin receptors, a finding implicating paracrine
or autocrine immunomodulatory effects of leptin on
mast cells [57].

Genetics and environmental factors
Increasing evidence suggests that there are different
ASD endophenotypes [58], possibly due to the many
autism “susceptibility” genes identified [59]. In cer-
tain genetic diseases, such as Fragile X syndrome or
tuberous sclerosis, autistic symptoms affect approxi-
mately 40-45% of patients [60]. Similarly, in Rett syn-
drome, almost 50% of patients develop ASD [61].
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There is strong evidence of genetic predisposition
with high rates of ASD in twins [62].
Nevertheless, a recent study of identical and frater-

nal twin pairs with autism showed that genetic sus-
ceptibility to ASD was lower than estimates from
prior twin studies of autism, with environmental fac-
tors common to twins explaining about 55% of their
risk for developing autism [63]. This partial penetra-
tion may be the result of interactions between sus-
ceptibility genes and “environmental” factors [10,64].
Environmental signals can activate intracellular path-
ways during early development and lead to epigenetic
changes in neural function [65].
A number of mutations involving the regulatory mol-

ecule mTOR [66] and its negative control molecule Pten
[67] have been linked to autism. In particular, mutations
affecting mTOR have been associated with Tuberous
Sclerosis I & II, but also with macrocephaly and abnor-
mal social interactions in other diseases, such as Cowden
disease [67]. Activation of mTOR [68] and reduced Pten
activity [69] are also associated with increased mast cell
proliferation and function.
An epidemiologic study, nested within a cohort of 698

autistic children in Denmark, concluded that perinatal
environmental factors and parental psychopathology act
independently to increase the risk of autism [70]. More-
over, it was recently shown that use of psychotropic
medications by the mother, especially in the third tri-
mester of pregnancy, substantially increases the risk of
ASD [71]. Finally, use of general anesthesia in the new-
born period was recently shown to lead to neurodeve-
lopmental problems, such as ADHD [72,73].
Environmental toxins such as mercury [74] and

polychlorinated biphenyl (PCB) [75] have been impli-
cated in developmental neurotoxicity [76] and have
been associated with ASD. Both mercury and PCBs
can also stimulate mast cells [77-79].

Oxidative stress
Several studies have suggested a link between oxidative
stress and the immune response [80]. Maternal infection
and inflammation can lead to oxidative stress, such as
increased lipid peroxidation, but more importantly to
alterations in the expression of many genes associated
with adverse perinatal outcomes [81]. Oxidative stress
initiated by environmental factors in genetically vulner-
able individuals leads to impaired methylation and
neurological deficits secondary to reductions in methyla-
tion capacity [52]. One study showed increased levels of
plasma malondialdehyde, a marker of oxidative stress, in
the blood of mothers who delivered preterm and in the
cord blood of their preterm neonates, compared to the
levels in samples from term deliveries [82]. Preterm birth
was associated with increased generation of reactive oxygen
species (ROS) [83]. In fact, a recent study identified an in-
crease in the oxidative stress marker non-protein bound
iron (NPBI) in the cord blood of 168 preterm newborns of
gestational age 24–32 weeks [84].
A strong association between oxidative stress and

autoimmunity was shown in a group of 44 Egyptian aut-
istic children, almost 89% of whom had elevated plasma
F2- isoprostane (a marker of lipid peroxidation) and/or
reduced glutathione peroxidase (an anti- oxidant en-
zyme), compared to 44 age-matched controls [85]. Sev-
eral groups have hypothesized that oxidative stress is the
mechanism by which perinatal lipopolysaccharide (LPS)
affects neurodevelopment in the offspring [86,87].
Brain region-specific increase in the oxidative stress

markers, 3-nitrotyrosine (3-NT) and neurotrophin-3
(NT-3), especially in the cerebellum, were reported in
ASD [88,89]. Another study evaluating the metabolic sta-
tus of 55 children with ASD compared to 44 typically-
developing children matched for age and sex reported
decreased plasma levels of reduced glutathione and
increased levels of oxidized glutathione, as well as low
levels of S-adenosyl methionine, both major innate anti-
oxidants [90]. Deficiencies in anti-oxidant enzymes
might, in certain cases, be associated with mercury tox-
icity, which was shown to be tightly bound to and in-
activate human thioredoxin [91]. In fact, cytosolic and
mitochondrial redox imbalance was found in lympho-
blastoid cells of ASD children compared to controls, an
event exaggerated by exposure to thimerosal [92].

Psychological stress
A higher incidence of stressors at 21–32 weeks gesta-
tion, the embryological age at which pathological cere-
bellar changes are also seen in autism, was associated
with offspring developing autism [93]. Postnatal stressors
in the first 6 months of life, such as death of relatives,
were associated with increased risk of ASD [94]. Varia-
tions in early maternal care could affect behavioral
responses in the offspring by altering at least the methy-
lation status of the glucocorticoid receptor gene pro-
moter [95]. Maternal stress due to the first child
developing autism may also contribute to children born
within a year from this first child having a much higher
ASD risk [96]. ASD patients have high anxiety levels and
are unable to handle stress appropriately [97]. High
evening cortisol levels positively correlated to daily stres-
sors in children with autism [98]. Moreover, increase in
age of autistic children correlated with increased cortisol
levels during social interaction stress [99].
Stress typically results in secretion of corticotropin-

releasing hormone (CRH) from the hypothalamus and
regulates the hypothalamic-pituitary-adrenal (HPA) axis
[100]. Increased plasma levels of CRH have been linked
to preterm labor [102-103]. CRH not only was increased



Angelidou et al. BMC Pediatrics 2012, 12:89 Page 5 of 12
http://www.biomedcentral.com/1471-2431/12/89
in the serum of mothers who delivered preterm babies
[101,103], but also correlated with the mother’s level of
anxiety during that period of pregnancy [104]. Maternal
serum CRH can cross the placenta, and potentially
high amounts of CRH could be produced by the pla-
centa itself, in response to external or intrauterine
stress [105,106]. CRH may have an immunomodulatory
role as an autocrine/paracrine mediator of inflammation
during reproduction [107]. A number of cytokines, includ-
ing IL-1 and IL-6, can trigger secretion of CRH from
human cultured placental trophoblasts [108]. In turn,
CRH stimulates IL-6 release from human peripheral blood
mononuclear cells that infiltrate the fetal membranes and
the placenta during intrauterine infection [109].
Acute stress also leads to high serum IL-6 that is mast

cell-dependent [110]. Mast cell-derived cytokines, such as
IL-6, can increase BBB permeability [110,111]. These effects
may be related to the apparent compromise of the BBB in
ASD patients, as indicated by the presence of circulating
auto-antibodies against brain peptides [112-116]. Even
though no studies have so far investigated the integrity of
BBB in ASD, BBB disruption appears to precede any patho-
logical or clinical symptoms associated with other brain in-
flammatory diseases, such as multiple sclerosis [117-119].
Mast cells have been implicated in inflammatory con-

ditions that worsen by stress [120] and in regulating
BBB permeability [110]. BBB disruption due to stress is
dependent on both CRH [121] and mast cells [122].
CRH also increases intestinal permeability of human co-
lonic biopsies [123], and has been associated with intes-
tinal inflammation [124]. One of the early effects of
immune CRH is the activation of mast cells and the release
of several pro-inflammatory cytokines [125]. Increased cir-
culating CRH, alone or with other molecules, could disrupt
the gut-blood–brain barriers directly or through immune
cell activation [126] and permit neurotoxic molecules to
enter the brain and result in brain inflammation [127], thus
contributing to ASD pathogenesis (Figure 1).
CRH can also be secreted from immune cells [128],

mast cells [129], skin [130,131] and post-ganglionic
nerve endings [132], leading to pro-inflammatory effects
[133,134]. Moreover, CRH released from hair follicles
can trigger proliferation and maturation of mast cell
progenitors [135]. These findings may help explain why
many children with ASD report “allergic-like” symptoms
often in the absence of sensitivity to typical allergens
[136] that implies mast cell activation [137].
Maternal autoimmune diseases
The relationship between ASD and familial auto-

immunity has long been recognized [138] and has been
supported by at least three large population-based studies
that utilized medical records and physician data. One
case–control study, nested within a cohort of infants born
in California (between 1995–1999), examined the associ-
ation of “immune-related conditions” and reported that
maternal psoriasis, asthma, hay fever and atopic dermatitis
during the second trimester of pregnancy correlated with
over two-fold increased risk of ASD in their children
[139]. A study of a large pediatric population (n= 689,196,
born in Denmark between 1993–2004), in which 3,325
children were diagnosed with ASD including 1,089 cases
of infantile autism, confirmed an association between fam-
ily history of type 1 diabetes, rheumatoid arthritis, as well
as maternal celiac disease and ASD [140]. A significant as-
sociation between parental rheumatic fever and ASD, as
well as several significant correlations between maternal
auto-immune diseases and ASD, were also reported in
case–control studies (n= 1,227 ASD cases) based on 3
Swedish registries [141]. A preliminary report also indi-
cated that mothers with mastocytosis, characterized by an
increased number of activated mast cells in many organs
[142,143], during pregnancy had a higher risk of delivering
one or more children with ASD [144].
Auto-antibodies against brain proteins have also been

reported in a number of mothers with children who
developed ASD [145]. The transfer of such maternal
auto-antibodies to the developing fetus during preg-
nancy could contribute to immune dysregulation and
abnormal neurodevelopment in the offspring, possibly
contributing to ASD [145-148]. One recent paper pro-
vided a different perspective. In this paper, maternal IgG
reactivity to certain fetal brain proteins correlated
strongly with diagnosis of autism (p = 0.0005), while re-
activity to at least one or more proteins correlated
strongly with a “broader” diagnosis of ASD [149].
Human studies investigating the role of perinatal in-

fection in the pathogenesis of autism are limited, and
have mostly addressed viral infections [150-152] espe-
cially rubella [151,153,154]. A nationwide study of chil-
dren in Denmark (n>20,000, born 1980–2005) reported
an increased risk for ASD after maternal viral infection
in the first trimester of pregnancy (adjusted hazard
ratio = 2.98; CI: 1.29-7.15) or maternal bacterial infection
in the second trimester of pregnancy (adjusted hazard
ratio = 1.42; CI: 1.08-1.87) [155]. In spite of some anec-
dotal reports of the presence of xenotropic murine
leukemia virus-related virus (XMRV) antibodies in autis-
tic children, a recent publication detected no such virus
in blood, brain or semen samples of ASD patients or
their fathers [156]. Moreover, even though XMRV was
reported to be present in as many as 60% of patients
with chronic fatigue syndrome [157], recent reports
have suggested that these findings may be due to con-
tamination of laboratory reagents [158]. A number of
rotaviruses have been isolated from many asymptom-
atic neonates [159] and could contribute to ASD.
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Auto-inflammation in ASD children
Some form of autoimmunity has been suspected in ASD
[85,160-162]. An endophenotype with complex immune
dysfunction appears to be present both in autistic chil-
dren and their non-autistic siblings [163]. As mentioned
earlier, brain specific auto-antibodies are present in the
plasma of many ASD individuals [112,164,165]. In a co-
hort of Egyptian autistic children, 54.5% had antineuronal
antibodies [166]. The presence of such auto-antibodies
suggests a loss of self-tolerance to neural antigens during
early neurodevelopment, but their precise role in autism
remains unknown [85,160-162]. In particular, a recent
paper reported that about 40% of children (3.2 years old)
from both the Autism Phenome Project and normotypic
controls contained auto-antibodies against Macaque
cerebellum Golgi neurons; there was no difference ex-
cept that the children with auto-antibodies had higher
scores for behavioral and emotional problems [167].
An inflammatory response in ASD is supported by a

number of facts. TNF was increased almost 50 times
in the cerebrospinal fluid (CSF) [168], and IL-6 gene
expression was increased in the brain [169] of ASD
children. CSF and microglia of ASD patients also had
high levels of macrophage chemoattractant-protein-1
(MCP-1) [170], which is a potent chemo-attractant for
mast cells [171]. In contrast, ASD plasma contained
low levels of transforming growth factor-beta1 (TGF-
β1) [172]. The clinical significance of such results is
not clear given some findings from animal experi-
ments. However, brain over-expression of TGF-β1 post-
natally decreased social interaction in mice [173] but
chronic brain TGF-β1 over-expression during adulthood
led to opposite behavior in adult mice, a finding in agree-
ment with reduced plasma TGF-β1 found in ASD
patients. In line with the postnatal TGF-β1 expression
worsening ASD-like symptoms in mice, TGF-β1 and IL-9
exacerbated excitotoxic brain lesions through mast cells
in mice [174]. It is intriguing that mast cell-derived IL-9
exacerbates newborn brain toxic lesions [175], induces
intestinal permeability and predisposes to oral antigen
hypersensitivity in children [176]. One recent paper
reported that IL-9 induces mast cell release of vascular
endothelial growth factor (VEGF) [177] which also inhi-
bits gut mast cell function [178].
Other studies have reported elevations of plasma cyto-

kines [179,180]. However, these results have been vari-
able and do not reflect similar changes in animal models
of autism. We recently reported that neurotensin (NT)
is increased in serum of young children with autism
[181] and can stimulate mast cell secretion [182]. We
also reported that NT can stimulate secretion of extra-
cellular mitochondrial DNA, which was also increased
in the serum of these ASD patients [183]. NT is a brain
and gut peptide that contributes to gut inflammation
due to acute stress [123] and also acts synergistically
with CRH to increase vascular permeability [184], mostly
due to the action of CRH to stimulate selective release
of VEGF from mast cells [185].
This finding may add to the mitochondrial dysfunction

reported in many patients with ASD [186,187]. This
could relate to reduced energy production [188],
decreased ability to buffer ROS [189], susceptibility to
mercury neurotoxicity, and to increased TNF release
[190,191] that may also be associated with extracellular
mitochondrial DNA that was found to be increased in
serum of young children with autism [183] and act as
“autopathogen”.
Mast cells are well-known for their leading role in al-

lergic reactions, during which they are stimulated by IgE
binding to high-affinity receptors (FcERI), aggregation of
which leads to degranulation and secretion of numerous
pre-stored and newly-synthesized mediators, including
IL-6 and TNF [192-197]. In addition to IgE, many sub-
stances originating in the environment, the intestine or
the brain can trigger mast cell activation [137]. These
include non-allergic environmental, infectious, neuro-
hormonal and oxidative stress-related triggers, often
involving release of mediators selectively, without de-
granulation [137,198].
Laboratory studies
Introduction of human systemic lupus erythematosus
auto-antibodies to pregnant mice led to cortical impair-
ment in their offspring [199]. Animal studies have shown
that maternal immune activation (MIA) can cause both
acute and lasting changes in behavior, CNS structure
and function in the offspring [200]. Early life stress due
to maternal separation in rats resulted in an altered
brain-gut axis and was sufficient to increase blood con-
centrations of pro-inflammatory cytokines after a chal-
lenge with LPS [201]. A short period of restraint [202]
or maternal deprivation stress [203] also increased the
severity of experimental autoimmune encephalomyelitis
in rodents. Maternal separation stress and CRH contrib-
uted to a dysfunctional mucosal barrier in rodents [204].
In a poly(I:C) mouse model for MIA, co-administration

of anti-IL-6 antibody or use of IL-6−/− mice prevented
the social deficits and associated gene expression changes
in the brain of the offspring [205]. In addition to its direct
detrimental effect on the placenta and fetal brain tissue,
IL-1 also induces selective release of IL-6 from mast cells
[206]. IL-1 receptor antagonism after systemic end-of-
gestation exposure to LPS prevented neurodevelopmental
anomalies in pregnant rats [207]. Bacterial LPS activates
Toll-like receptor-4 (TLR-4) on immune cells leading to
synthesis and release of TNF [197], IL-1 and IL-6 [18].
Moreover, viral double-stranded RNA like poly(I:C)
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induces release of TNF and IL-6 without degranulation
from mast cells through viral TLR-3 [208].

Conclusions
Prematurity, low birth weight and perinatal problems
may contribute to increase risk of ASD. This status and
susceptible genes, especially of the mTOR and Pten
pathways, may make the infant more vulnerable to mast
cell activation. Mast cells are now considered important
in both innate and acquired immunity [209,210], as well
as in inflammation [211,212], and obesity [213]. Such
processes may define at least one ASD endophenotype
that may be more amenable to therapy.
We propose that perinatal mast cell activation by en-

vironmental, infectious, neurohormonal and immune
triggers could adversely affect neurodevelopment, dis-
rupt the gut-blood–brain barriers, and contribute to
focal brain inflammation and ASD (Figure 1). This
premise could be further tested by investigating levels of
CRH, NT and mtDNA in archived mother and infant
blood and comparing the levels between those cases that
eventually have children that develop ASD and neuroty-
pic children. Moreover, well-designed studies could be
conducted measuring potential biomarkers and providing
evidence of allergic and non-allergic mast cell activation
postnatally, and particularly at times of developmental re-
gression. Reduction of stress during gestation and infancy,
decrease in brain inflammation and/or mast cell activation
(especially with some natural flavonoids [214,215] such as
luteolin [216,217], which was recently shown to have some
benefit in ASD [218]) may prove useful in at least a sub-
group of infants at high risk for developing autism.
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