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Abstract

Background: Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after
perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the
incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns.
Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for
72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic
encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects
of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic
encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied
in human newborns. The objective of this research project is to evaluate, through a multicenter randomized
controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate
treatment.

Methods/Design: Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious
metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be
randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate
hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first
3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be
recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will
be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To
evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial
neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural
standardized tests.

Discussion: This pilot study will explore the possible therapeutic role of topiramate in combination with moderate
hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral
damage in asphyxiated newborns.
(Continued on next page)
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Background
Neonatal hypoxic-ischemic encephalopathy: disease
incidence and pathogenesis
In countries with a high level of perinatal care, the incidence
of asphyxia responsible for moderate or severe encephalop-
athy is 2–3 per 1000 term infants [1,2]. The ensuing enceph-
alopathy may present with need for resuscitation at birth,
neurological depression, seizures or electroencephalographic
(EEG) abnormalities. Hypoxic ischemic encephalopathy
(HIE) is still the leading cause of perinatal mortality and se-
vere neurological impairment. Mortality rate is 10% for
moderate and 60% for severe HIE. About 30% of survivors
with moderate and 100% with severe HIE exhibit permanent
neurological disability [3,4].
Encephalopathy results from the combination of reduced

cerebral oxygenation (hypoxemia) and/or reduced perfusion
(ischemia). Cerebral damage develops in two distinct
phases. During the acute phase neuronal death occurs by
necrosis of neuronal cells, a result of a rapid depletion of
brain energy. However, after a few hours, cerebral energy
metabolism recovers, but a cascading series of biochemical
events triggers neuronal apoptosis and leads to severe brain
damage. These events include an increased release of exci-
tatory neurotransmitters, especially glutamate [5]. Glutam-
ate acts on three classes of receptors that control the
passage of ion channels through the neural cell membrane:
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
(AMPA), kainate and N-methyl-D-aspartate (NMDA)
receptors. Neurons (and glia) contain high concentrations
of glutamate, which is usually released in small amounts
and for short periods of time (milliseconds) [6]. Exceedingly
high glutamate concentrations can over-excite nervous cells
and lead to their death (excito-toxicity) [7]. This excito-
toxicity contributes to neuronal damage in various neuro-
degenerative disorders.
Glutamate activates AMPA receptors, depolarizes the cell

and promotes the removal of the voltage-dependent block
operated by Mg++ [8,9] on NMDA receptors: this promotes
the entry of Ca++ through this channel [10]. Calcium entry
stimulates in turn a series of processes that lead to necrosis
and apoptosis. These processes include the Ca++ overload
in the mitochondria, responsible for the production of free
radicals [6,11-13]; the activation of caspases and the release
of factors inducing apoptosis [14-17]; the activation of a
neuronal nitric oxide synthase (nNOS) that triggers the
synthesis of nitric oxide (NO) and the formation of toxic
peroxynitrite and nitrosylated-GAPDH; the stimulation of
p38 mitogen-activated protein kinase (p38 MAPK), which
activates the transcription of factors that enter the nucleus
and promote neuronal damage and apoptosis [18-22].
Between the acute initial damage and the ensuing

damage mediated by the release of toxic substances,
there is therefore a time window that could offer the
possibility of a combined neuroprotective treatment.

Hypothermia as a neuroprotective treatment in animals
Currently the most effective neuroprotective interven-
tion for asphyxiated infants is treatment with moderate
hypothermia, a reduction in body temperature of 3-4°C.
Experimental studies performed in adult and newborn
animals have shown that reducing brain temperature by
2-4°C after ischemia protects the brain from neuronal
damage and cell death and improves neurological
[23-26] and behavioral outcome, as well as histological
changes [27-29]. Several mechanisms may explain these
benefits: hypothermia reduces the accumulation of
extracellular glutamate, enhancing post-ischemic glu-
tamate re-uptake [30], the synthesis of free radicals and
nitric oxide [15], preserves the content of high-caloric
cerebral phosphates, reduces cerebral alkalosis and lac-
tate levels [16,31]. Hypothermia may also suppress the
activation of microglia [32-34]. These actions can pre-
serve brain energy metabolism, reduce cytotoxic cerebral
edema and inhibit neuronal death. Thanks to animal
experiments, the optimal temperature for brain neuro-
protection, leading to reduce biochemical and histo-
logical markers of neuronal damage, has been observed
to be between 32 and 34°C [13,35-37]. Most of these
studies indicate that hypothermic treatment should be
immediate or precocious (within 6 hours from the in-
sult), while neuroprotection diminishes or disappears if
the cooling is delayed beyond 6 hours [27,38-42]. For
this reason, hypothermic treatment following asphyxia
should be initiated as soon as possible. The duration of
treatment with hypothermia varied in such experimental
studies. Significant benefits were obtained when moder-
ate hypothermia was maintained for at least 12–24 hours,
but it has been suggested that more prolonged treat-
ment, up to 72 hours [42], may be necessary if the inter-
val before induction of hypothermia is prolonged [43].
In sheep fetuses a rebound of epileptic activity has been
reported after rapid heating [43]. Finally, hypothermia
appears to be more neuroprotective in animal exposed
to moderate, rather than severe asphyxia [40,44].
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In conclusion, there is a strong experimental evidence
that moderate hypothermia in asphyxiated animals pro-
duces behavioral and histological benefits both in the
short-term [40,45], and in the long-term [27,46-49].
Hypothermia as a neuroprotective treatment in human
neonates
In human neonates hypothermia has been described for
the first time as a treatment for resuscitation in the '60s,
before modern techniques of resuscitation were introduced
[50]. In such occasions, hypothermia was used only for
short periods of time after failed resuscitation, but details
regarding side-effects or clinical long-term outcome of
these infants were not provided [51-55]. Since the late '90s,
on the basis of the above mentioned animal studies, pilot
studies with selective brain hypothermia associated with
generalized mild hypothermia or generalized moderate
hypothermia between 35.5 and 33.0°C for 48–72 hours,
have been performed in infants with HIE demonstrating
the feasibility of this treatment in term infants [56-62]. In
the early 2000, the first cases reports showed better neuro-
developmental outcomes in cooled asphyxiated infants:
whole-body hypothermia was observed to reduce the dam-
age of thalami, basal ganglia, and white matter, while se-
lective brain hypothermia appeared to be more effective in
protecting the cortex [63-65].
So far, seven randomized controlled trials regarding the

efficacy of therapeutic hypothermia for the treatment of
neonatal encephalopathy have been published [66-72].
Two such trials adopted the selective cerebral hypothermia
[66,72] and five the total-body hypothermia [67-71]. All of
these trials, powered to detect a difference in the primary
composite outcome of death and/or disability, demon-
strated the benefits of hypothermia. A meta-analysis of the
first trials showed that moderate hypothermia reduced
death or disability at 18 months with a risk ratio of 0.81
(95% CI, 0.71-0.93) and a number needed to treat (NNT)
of 9 [73]. The first data from follow-up of newborns en-
rolled in the CoolCap Trial and NICHD Trial showed that
neurodevelopmental outcomes calculated at 18–22 months
of life predicted the functional outcomes into childhood
[74,75].

Overall, if the small study of Eicher is excluded [76],
major trials suggest that cooling is a safe procedure in
newborns. Recent reviews concluded that bradycardia
and thrombocytopenia were the only clinical, though be-
nign, adverse effects that were more common with
hypothermia [77-79]. Therapeutic hypothermia has re-
cently been included in the Guidelines of International
Consensus on Cardiopulmonary Resuscitation and
Emergency Cardiovascular Care Science and in the
recommendations of the American Heart Association
[80,81].
Neuroprotective drugs may enhance the efficacy of
hypothermia for the treatment of neonatal HIE [82].
However, there are no studies that have explored the
combined treatment with hypothermia and topiramate
in asphyxiated newborns.

Topiramate
Topiramate (TPM) is an anticonvulsant agent widely
used in adults and children, characterized by good ab-
sorption, high bioavailability, and good tolerability [83].
TPM has multiple mechanisms of action, including
glutamate-receptors inhibition [83,84], which implies a
potential as neuroprotective agent. TPM did indeed
demonstrate neuroprotective properties against hypoxic
ischemic brain damage, both in vitro and in animal
models, and was recently proposed as an innovative neu-
roprotective therapy for ischemic stroke [85-92] and
neonatal hypoxic-ischemic cerebral injury [93]. In neur-
onal cultures, cell damage induced by oxygen-glucose
deprivation [91] or excitotoxic glutamate or kainate con-
centrations [94], was consistently attenuated by TPM. In
animal models of transient global cerebral ischemia
intravenous, intraperitoneal, or oral TPM reduced the
severity of cerebral damage either alone [86-89] or with
hypothermia [90] in a dose-dependent manner, with
neuroprotective doses ranging from 5–200 mg/kg, usu-
ally in single administration [87-91]. TPM was also
demonstrated to exert neuroprotective effects against
periventricular leukomalacia [92].
The neuroprotective mechanisms of TPM appear to

be related not only to AMPA and kainate receptors in-
hibition [92,94-97], but also to blockade of Na+ channels
[98], high voltage-activated calcium currents [85], car-
bonic anhydrase isoenzymes [99], and mitochondrial
permeability transition pore (MPTP) [100].
To date, no clinical study has been published to prove

an additive or synergistic action of TPM combined with
hypothermia in newborns with HIE.
We previously reported that TPM pharmacokinetic

properties at the dose of 5 mg/kg appear to be modified
by concomitant hypothermia [101]. Likewise observed
with other poorly metabolized drugs [102], hypothermia
reduces TPM clearance and slows absorption and elim-
ination processes [103].
Although long-term effects on cognitive functions of

TPM administration in early life remain to be assessed,
short-term safety is reassuring enough to support its
evaluation in clinical trials that explore its possible addi-
tive neuroprotective action [104]. The gap between ef-
fective and neurotoxic doses is greater for TPM than for
other antiepileptic drugs [103], and short-course therapy
appears to have few neurotoxic effects. Regarding TPM
long-term effects, in asphyxiated animal models treated
with TPM, no cognitive deficit was demonstrated [91],
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and in epileptic neonate rodents, TPM was safer than
phenobarbital or benzodiazepines [103,105]. Neuronal
death occurred at doses of 50 mg/kg, which are consid-
erably higher than doses used in common therapeutic
schedules.

Hypothesis
In conclusion, several in vitro and in vivo experimental
studies have demonstrated that both, hypothermia and
TPM, are able to reduce post-ischemic neuronal damage.
So far no study has investigated whether the combined
action of these procedures may be additive to their indi-
vidual neuroprotective potential. We hypothesize that
the combination treatment with moderate whole-body
hypothermia associated with TPM administration is safe
and enhances the neuroprotective properties of
hypothermia for the treatment of neonatal HIE.

Objectives
Major objectives: safety and efficacy of TPM associated with
moderate whole-body hypothermia
The first purpose of this study is to confirm the safety of
TPM administration in asphyxiated newborns. For this
purpose, cardiac and respiratory parameters (heart fre-
quency, blood pressure, oxygen saturation, respiratory
support), will be continuously monitored. Blood sam-
plings will be performed to check renal, liver and meta-
bolic balance.
TPM is considered to be safe and generally well toler-

ated in children. The safety profile of TPM might be dif-
ferent in neonates with HIE treated with hypothermia
than in adults receiving chronic therapy for epilepsy.
TPM can cause metabolic acidosis, especially in pediatric
patients, because of carbonic anhydrase inhibition at
proximal renal tubule with consequent renal loss of bi-
carbonate [106,107]. In as many as 48% of adults and
67% of children with epilepsy treated with TPM, a vari-
able degree of metabolic acidosis develops. However, in
most reported cases, bicarbonate levels did not decrease
to be clinically significant. Only 11% of patients had
serum bicarbonate levels <17 mEq/L [106,108] and
symptomatic cases were successfully treated with sodium
bicarbonate supplementation [106]. Although this obser-
vation is reassuring, metabolic acidosis is usually severe
in neonates with HIE, who have metabolic acidosis be-
cause of both asphyxia and renal impairment. In infants,
metabolic acidosis usually occurs after 8 to 26 days of TPM
treatment, with dosages as high as 8.2 to 26 mg/kg/day
[109]. Similar to other carbonic acid anhydrase inhibitors,
long-course TPM therapy is associated with increased risk
of nephrolithiasis in adults [106,107]. Angle closure glau-
coma and acute myopia are additional, though potentially
reversible, adverse events related to TPM treatment in the
pediatric age [106,107,110]. In a safety study, we found no
signs of metabolic acidosis in newborns co-treated with
moderate hypothermia and TPM; abdomen ultrasound
scanning did not show kidney stones and ophthalmological
evaluation was normal in all treated newborns [104].
The second objective of this study is to evaluate the ef-

ficacy of TPM add-on therapy, evaluating the clinical
outcome of enrolled newborns. The neurological and
neuroradiologic outcome of newborns treated with
hypothermia plus TPM will be compared to the outcome
of control group that received hypothermia alone.

Methods/Design
Study population-setting
Term newborns delivered at gestational age higher than
36 weeks and with birth weight higher than 1800 g ad-
mitted for HIE to the Neonatal Intensive Care Units
(NICUs) of A. Meyer University Children’s Hospital,
Florence, of the Santa Chiara University Hospital of Pisa
and of the La Sapienza University of Rome.

Study design
Multicenter interventional pilot randomized controlled
trial to compare the safety and efficacy of TPM add-on
therapy associated to the conventional approach (treat-
ment with whole-body moderate hypothermia).

Hypothermia
All newborns who will satisfy admission criteria will be
treated with moderate (33.5°C) hypothermia for 72 hours.
Outborn patients will be initially cooled to 35°C at the
birth hospital, avoiding heating and using ice packs during
the transfer to NICU. In all the centers a cooling blanket
with an esophageal probe will be used to induce
hypothermia; the esophageal temperature will be lowered
by the blanket’s servomechanism. Rectal temperature will
be monitored by a rectal probe connected to cardiomoni-
tor. After 72 hours of hypothermia, all newborns will be
gradually re-warmed up to 36.5-37°C over the following
6–12 hours (0.5°C/h). Vital parameters will be continu-
ously monitored under hypothermia.
Half of these newborns will be subjected to additional

treatment with oral topiramate.

Topiramate
TPM (Topamax, Janssen-Cilag, Cologno Monzese,
Milan, Italy) will be administered by orogastric tube as
enteric-coated granules mixed with water at the begin-
ning of hypothermia for the first three days of life, for a
total amount of 3 doses per patient. Newborns will re-
ceive 10 mg/kg once a day, a dosage usually used in
infants [111-113] and neonates [114-117]. TPM plasma
concentrations will be measured as previously reported
[118].
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Monitoring
The following respiratory and hemodynamic parameters
will be registered before starting hypothermia and then
at hours 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72 of
hypothermia, and after the re-warming process: respira-
tory rate, oxygen saturation (SaO2), fractional inspired
oxygen (FiO2), systolic, diastolic and mean arterial pres-
sures, heart rate. The following blood tests will be per-
formed in all newborns at hypothermia hours 0, 24, 48,
72 and after re-warming process: blood gas analysis (cor-
rected for body temperature), serum electrolytes, liver
and renal function tests, creatine-kinase, creatine-kinase
MB isoenzyme, lactate dehydrogenase, troponin IC,
complete cell blood count, C-reactive protein, procalci-
tonin and coagulation tests.

Clinical course and concomitant treatments
A central venous line will be placed in all patients. Fluid
intake will be started at 60–70 mL/kg and increased of
10–20 mL/kg each day, basing on changes in body
weight and serum electrolytes levels. Minimal enteral
feeding will be allowed with human milk from the first
day of life. In case of respiratory failure newborns will be
put on patient triggered ventilation. Neonates who will
develop seizures will be treated with phenobarbital,
(loading dose 20 mg/kg, followed by 1.5-2.5 mg/kg every
12 hours). In case of resistance to phenobarbital, mida-
zolam will be used with a dose-initial bolus of 0.15 mg/
kg, followed by a continuous infusion (1 μg/kg/min)
increased by 0.5-1 μg/kg/min every 2 minutes until a
favourable response and up to a maximum dose of
18 μg/kg/min [117]. In case of hypotension, defined as a
mean arterial blood pressure <40 mmHg, single or mul-
tiple normal saline boluses will be administered (10–
20 mL/kg), and in case of refractoriness, dopamine,
dobutamine, norepinephrine or terlipressin [119] will be
progressively added. Newborns will receive analgesia
with Fentanyl at a dose of 1 μg/kg/h, since hypothermia
causes agitation and reducing the threshold of pain.

Neurological follow-up
The duration of follow-up necessary for possible neuro-
motor disabilities and cognitive loss will be 24 months.
Every newborn will be evaluated beyond the neonatal

period, at 1, 3, 6, 12, 18 and 24 months of life. Standard
EEG will be evaluated within one week and will be
repeated if abnormal. Within the first week and three
months of age, newborns will be studied with Neonatal
Hammersmith neurological examination and General
Movement (GMs) assessment [120]. The Hammersmith
Infant Neurological Examination [121,122] will be per-
formed between 3 and 6 months of life. The mental and
motor development will be evaluated with the Bayley
Scales of Infant and Toddler Development 3rd edition
[123] measure at 12, 18 and 24 months. Bayley scales
will be used to measure the major areas of development:
cognitive, language, motor, social-emotional and adap-
tive functioning.
Visual function will be assessed in the first ten days of

life by means of a recently published battery of behav-
ioural tests designed to assess various aspects of visual
function [124,125], which includes items that assess ocu-
lar movements (spontaneous behaviour and in response
to a target), the ability to fix and follow a black/white
target (horizontally, vertically, and in an arc), the reac-
tion to a colored target, the ability to discriminate be-
tween black and white stripes of increasing spatial
frequency, and the ability to keep attention on a target
that is moved slowly away from the infant. Visual func-
tion will be evaluated again at 4 ½, 6 and 12 months
with particular regards to binocular visual acuity, mea-
sured by means of standardized instruments based on
preferential force choice (Teller acuity cards), stereopsis
and ocular motricity.
Acoustic function will be monitored until 24 months.
Neurologists responsible of clinical follow-up will be

blindfolded about which newborns have been treated
with TPM in addition to hypothermia.

Neuroradiologic follow-up
Standard cerebral magnetic resonance imaging (MRI),
diffusion tensor imaging (DTI) and spectroscopy will be
performed at the end of the hypothermic treatment
within the first week, at three months and at 18 months.
Neuroradiologists responsible of follow-up will be

blindfolded about which newborns have been treated
with TPM in addition to hypothermia.

Inclusion criteria
The treatment with therapeutic hypothermia will be
reserved to newborns with gestational age ≥ 36 weeks
and birth weight ≥ 1,800 g who will fulfill the following
criteria:

1. Metabolic criteria: Apgar score ≤5 at 10 min, or
persisting need for resuscitation, including
endotracheal intubation or mask ventilation for more
than 10 min after birth, or acidosis (pH ≤7.0 and/or
base deficit ≥ −16 mmol/L in umbilical cord blood or
arterial, venous, or capillary blood) within 60 min
from birth;

2. Neurological criteria (modified from Sarnat and
Sarnat [126]): moderate to severe encephalopathy
consisting of altered state of consciousness
(irritability, lethargy, stupor, or coma) and ≥ 1 of the
following signs: hypotonia, or abnormal reflexes
including oculomotor or pupil abnormalities, or
absent or weak suctioning, or clinical seizures;
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3. aEEG criteria: “moderately abnormal” indicates a
background tracing with upper margin >10 μV and
lower margin ≤5 μV; “severely abnormal” pattern
refers to a tracing with upper margin <10 μV and
lower margin <5 μV; often this is accompanied by
bursts of high voltage activity (“burst suppression”).
Seizures are identified as periods of sudden increase
in voltage, accompanied by narrowing of the band of
aEEG activity followed by a brief period of
suppression or by a build up of rhythmic activity of
increasing amplitude and decreasing frequency [127].
Selection criteria for study subjects
At least one of the parents of the newborns meeting the
inclusion criteria will be approached by the study inves-
tigator/nurse and informed of the study. A signed paren-
tal informed consent must be obtained.
Exclusion criteria

1. Newborns with gestational age less than 36 weeks,
with birth weights less than 1800 g, or admitted at
the NICU after 6 hours of life.

2. Newborns with major congenital abnormalities or
other syndromes that include brain malformations,
congenital viral infections or evidence
encephalopathy other than HIE.

3. Informed Consent refused.
Allocation of participants to the trial groups
(Randomization)
EEG is useful in identifying suitable newborns for
hypothermia due to its capability to distinguish new-
borns with Sarnat grade 2 from those with Sarnat 1. Sev-
eral studies have demonstrated that aEEG is easier to be
interpreted than standard EEG, but equally accurate and
reproducible. It correlates well with neurodevelopmental
outcome of full-term infants with HIE, and it is consid-
ered the best single predictor of neurologic outcome. In
some studies aEEG was more specific and exhibited a
higher positive predictive value when compared with the
neurologic examination performed in the first hours
after delivery [128-131].
In all three recruiting hospitals, randomization will be

done stratifying eligible newborns according to aEEG
into moderate or severe HIE. Newborns will be assigned
to the group of moderate or severe aEEG to ensure max-
imal clinical homogeneity between the groups.
Newborns will be randomized in blocks of eight for

each group, alternating newborns between TPM added
to standard hypothermic treatment and standard treat-
ment alone.
Experimental plan and data analysis
Based on the medical literature, the mean incidence of
the combined frequency of mortality and severe neuro-
developmental disability in survivors at 18 months of
age is approximately 50%. In fact this percentage is 55%
in the cool Cap study [66], 44% in the NICHD study
[68], 45% in the TOBY trial [69], 51.4% in the ICE trial
[70], and 50.9% in the neo.nEURO.network study [71].
We hypothesize that treatment with TPM may reduce
the incidence of the combined frequency of mortality
and severe neurodevelopmental disability in survivors at
18 months at 15%. In order to compare the incidence of
this primary outcome between newborns receiving TPM
plus hypothermia (treated) and those only receiving
hypothermia (control group), the estimated sample size
was calculated, considering normal distribution, an alpha
error of 0.05 and a power of 80 percent. The sample size
for each group is 32 participants.
The three units have an overall admission rate of ap-

proximately 10 term newborns with HIE per year. Due
to the high hypothetical advantages of this treatment, we
estimate 90-100% rate of consent and we predict we
would recruit the 64 newborns over around 24 months
period with a realistic safety margin.
Mortality, the incidence of severe neuromotor disabil-

ity, cortical vision, sensorineural hearing loss, develop-
mental delay, epilepsy will be evaluated at 18 months of
life.
To evaluate TPM safety, cardiac and respiratory para-

meters (heart frequency, blood pressure, oxygen satur-
ation, respiratory support), will be continuously
monitored. Blood samplings will be performed to check
renal, liver and metabolic balance. Kruskal-Wallis test
will be used to assess possible differences between new-
borns treated or not with TPM. The safety will be also
evaluated by means of relative risk (RR) [132]. RR will be
calculated as the ratio between the probabilities of side
effects in the TPM group with respect to the control
group. Values of RR lower than 1, will be associated to
the efficacy of the treatment.
Finally, we will evaluate the different distribution of

any brain lesions on MRI brain highlighted.The RR is
calculated for each item studied. An RR <1 indicates an
improvement of neurological, neurodevelopmental and
neuroradiologic hypothermia due to the association-
topiramate.

Primary outcome
The neurological and neuroimaging outcome of these
two groups of infants will be compared to determine
whether adjunctive treatment with TPM improves the
neuroprotective effect of hypothermic treatment.
The primary outcome will be the combined frequency

of mortality and severe neurodevelopmental disability in
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survivors at 24 months of age. Severe disability is
defined as Bayley III [123] cognitive development index
3 SDs below mean or any one of the components of se-
vere sensorimotor disability (e.g. inability to walk, sit,
feed using hands, communicate (Bayley III language de-
velopment index 3 SDs below mean), hear (80 dB sen-
sory neural hearing loss) or see.
Secondary outcomes
The following secondary outcomes will also be assessed
at 24 months of life:

� Multiorgan dysfunction (adverse events in three or
more organ systems),

� Bilateral sensorineural hearing loss more than 40 dB
� Epilepsy (recurrent seizures beyond the neonatal,

period requiring anticonvulsant treatment)
� Developmental delay
� Multiple Disabilities (epilepsy, cortical visual

impairment, sensorineural hearing loss,
developmental delay)

Finally, the neuroradiologic outcome will be assessed
by comparing the imaging obtained by standard cerebral
MRI, DTI and spectroscopy performed within the first
7 days, at 3 months and 18 months of age. Brain injuries
will be classified as isolated lesions of the white matter
(WM), of basal ganglia and thalami (BGT), with or with-
out involvement of the posterior limb of the internal
capsule (PLIC), of cortex (COR), or various combina-
tions of such lesions [65].
Ethical approval
A three-centre phase II pilot study entitled “Safety and
Efficacy of Topiramate in Neonates With Hypoxic Ische-
mic Encephalopathy Treated With Hypothermia (Neo-
NATI)” has been approved by the Ethics Committees of
A. Meyer University Children’s Hospital, Florence, of
University of Pisa and of La Sapienza University, Rome
(prot. 276/2010).
Informed consent will be obtained from at least one

parent prior to study entry. Parents will be given full ver-
bal and written information regarding the objective and
procedures of the study and the possible risks involved.
TPM is considered safe for use in children. Neverthe-

less, a careful watch will be kept on all study participants
with regard to side effects of drug administration. Par-
ents of participants will be made aware of possible side
effects. Infants will be monitored in the Neonatal Inten-
sive Care Unit throughout the study period and their
clinical condition will be evaluated daily as part of med-
ical rounds. A letter informing the participant and the
family doctor as to which study arm the participant had
been randomized to will be sent following completion of
the study.
In the presence of adverse events, a reduction of dos-

age will be taken into account.
For ethical and scientific reasons, an interim analysis

after the enrolment of half of the newborns, is planned.

Exit criteria
Patients will be withdrawn from the study if parents
make specific request for the treatment to be discontin-
ued before 72 hours, in case of severe bleeding, throm-
bosis, or pulmonary hypertension difficult to treat,
arrhythmia, clinical electroencephalographic or neuroi-
maging evidence of irreversible severe brain damage.

Measurement of outcomes
Primary endpoint
To evaluate if the TPM administration reduces the cere-
bral damage of newborns with HIE and treated with
therapeutic hypothermia, neurological and neuroradiolo-
gic follow-up are planned at different stages.

Secondary endpoint

a. To evaluate the safety of TPM treatment, cardiac
and respiratory parameters (heart frequency, blood
pressure, oxygen saturation, respiratory support) will
be continuously monitored; blood samplings will be
performed to check renal, liver and metabolic
balance

b. To evaluate if TPM improves the functional and
structural outcome, visual function is planned at
40 weeks gestational age, 4 ½, 12, 18 and 24 months
corrected age.

Confidentiality
The participants’ data collected during this trial will be
kept confidential. Study staff will have access to the data
as well as the participants’ medical records as they per-
tain to this study. Published results will not contain any
information that would identify individual participants.

Discussion
The objective of this research is highly ambitious: to find
a treatment procedure that is simple, inexpensive, well
tolerated and with few adverse effects, able to reduce
post-ischemic neuronal damage. Neuroprotection is a
major health care priority, given the enormous burden of
human suffering and financial cost caused by perinatal
brain damage. Hypothermic treatment is recognized as a
neuroprotective treatment after a profound neonatal in-
sult. However, it is clear from previously published clin-
ical trials and animal studies that hypothermia alone
does not provide complete protection. Neuroprotective
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drugs added during or after hypothermia might improve
neurologic protection, by extending the therapeutic win-
dow or providing long-lasting additive or synergistic ac-
tion [133]. This combination treatment could open new
perspectives for the management of asphyxiated infants.
To date, no clinical study has evaluated the efficacy of
the combined treatment hypothermia and TPM, an anti-
glutaminergic drug mainly used for the treatment of epi-
lepsy. On the other hand, it is important to consider that
drugs administered during the neonatal period may be
dangerous to the immature brain, and hypothermia can
modify their pharmacokinetics. In fact, excretion of many
drugs and their metabolites can be modified by
hypothermia; failure of liver and kidney clearance due to
hypoxic-ischemic injury could exacerbate any toxicity. In
newborns with HIE, TPM pharmacokinetic properties
appear to be modified by concomitant hypothermia, but
the dosage of 5 mg/kg appears safe. In this study the dos-
age will be increased to 10 mg/kg, likewise in other stud-
ies. For this reason one of the main objectives of this
study is to confirm the safety of TPM added to
hypothermia.
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