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Abstract

Background: This study measured lymphocyte mitochondrial O2 consumption (cellular respiration) in children with
trisomy 21.

Methods: Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children
and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of
time from the phosphorescence decay rates (1/τ) of Pd (II)-meso-tetra-(4-sulfonatophenyl)-tetrabenzoporphyrin. In
sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time,
confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM
O2 min-1), thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that
oxidation occurred in the mitochondrial respiratory chain.

Results: For control children (age = 8.8 ± 5.6 years, n = 26), the mean (± SD) value of kc (in μM O2 per min per 107

cells) was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61). For
children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26), the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60;
range = 0.20 to 2.80), p<0.001. Similar results (p<0.000) were obtained after excluding the five trisomy 21 children
with elevated serum TSH (values >6.1 mU/L). Fourteen of 26 (54%) children with trisomy 21 had kc values of 0.20 to
0.60 (i.e., <−2SD). The values of kc positively correlated with body-mass index (BMI, R >0.302), serum creatinine
(R >0.507), blood urea nitrogen (BUN, R >0.535) and albumin (R >0.446).

Conclusions: Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical
importance of this finding requires further studies.
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Background
Trisomy 21 is the most common chromosomal anomaly
worldwide, affecting about 1 in 700 newborns [1]. These
individuals typically have low resting metabolic rates [2]
and are particularly susceptible to infections [3] and
hypothyroidism [4]. Moreover, defects in the inner mito-
chondrial membrane potential [5] and mitochondrial re-
spiratory chain enzymes are documented in these
patients [6,7]. Mitochondrial disturbances, increased oxi-
dative stress and apoptosis have been described in the
neurons, predisposing to precocious Alzheimer’s disease
[8]. Alterations in metabolic enzymes (e.g., monoamine
oxidase-B, cytochrome oxidase, isocitrate dehydrogenase
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and glutamate dehydrogenase) have been also linked to
impaired energy metabolism in trisomy 21 children [9].
Calcium levels are lower than in control children, which
may alter cellular signaling [10].
Increased congenital heart disease and other major

anomalies are exceptionally frequent in children with tri-
somy 21. It is not known whether these defects are
linked to the biological impairments described above.
The use of the phosphorescence oxygen analyzer to

measure lymphocyte respiration was recently reported.
Lymphocytes were shown to be suitable for screening of
certain mitochondrial disorders [11]. These methodolo-
gies were used to measure lymphocyte respiration rates
in children with trisomy 21 and compare them with
rates in children without this disorder.
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Figure 1 Representative O2 runs for lymphocyte respiration in
a 15-year-old male with trisomy 21 (Panel a, Subject 8 in
Table 1) and control subject (Panel b). The lines are best linear
fits (R2 >0.830). The additions of 10 mM NaCN and 50 μg/mL
glucose oxidase are shown.
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Methods
Reagents and solutions
Pd (II) complex of meso-tetra-(4-sulfonatophenyl)-tetra-
benzoporphyrin was purchased from Porphyrin Products
(Logan, UT). Glucose oxidase (powder from Aspergillus
niger), D (+) glucose anhydrous, Histopaque-1077 and
remaining reagents were purchased from Sigma-Aldrich
(St. Louis, MO).
Pd phosphor solution (2.5 mg/ml = 2 mM) was pre-

pared in distilled water (dH2O) and stored at −20°C.
Glucose oxidase solution was prepared in dH2O (10 mg/
mL) and stored at −20°C. Sodium cyanide (NaCN) solu-
tion (1.0 M) was prepared in dH2O; the pH was adjusted
to ~7.0 with 12N HCl and stored at −20°C. Phosphate-
buffered saline (PBS) containing glucose (137 mM NaCl,
2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4 and
10 mM glucose; pH 7.4) was stored at 4°C.

Subjects
Venous blood samples (5 to 8 mL) were collected in
heparin tubes and processed in <2 hr for peripheral
blood mononuclear cell (PBMC) isolation and O2 meas-
urement. Blood was also collected from age- and
gender-matched healthy controls. All trisomy 21 partici-
pants attended the outpatient facilities at Tawam and Al
Ain Hospitals (Al Ain city, Abu Dhabi) for routine visits.
All control participants were healthy children who had
no medical complaints.
The study was approved by the institutional review

board for protection of human subjects. Informed con-
sent was obtained for each participating subject.

PBMC isolation
Plasma was collected from blood samples by centrifuga-
tion and possessed for Comprehensive Metabolic Panel
and lipid profile. The samples were then diluted with
equal volume of phosphate-buffered saline (PBS) con-
taining 10 mM glucose and gently layered on the top of
10 mL Histopaque-1077. The mixtures were centrifuged
at 15°C, 400 xg for 30 min. Collected PBMC were
diluted with the same solution and re-centrifuged as
above. The pellets were suspended in PBS, 10 mM glu-
cose, 3 μM Pd phosphor and 0.5% fat-free bovine serum
albumin for O2 measurements at 37°C. Cell count and
viability were determined by light microscopy, using a
hemocytometer under standard trypan blue staining
conditions. Only trypan blue-negative cells (>95%) were
counted.

Oxygen instrument
A phosphorescence oxygen analyzer that measures dis-
solved O2 in solutions as function of time was used to
determine the rate of PBMC respiration [12,13]. This
method is based on the principle that O2 quenches the
phosphorescence of a palladium phosphor [14].
The Pd (II) derivative of meso-tetra-(4-sulfonatophe-

nyl)-tetrabenzoporphyrin had an absorption maximum
at 625 nm and a phosphorescence emission maximum
at 800 nm. Samples were exposed to light flashes (10 per
sec) from a pulsed light-emitting diode array with a peak
output at 625 nm. Emitted phosphorescent light was
detected by a Hamamatsu photomultiplier tube after
first passing it through a wide-band interference filter
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centered at 800 nm. Amplified phosphorescence was
digitized at 1–2 MHz using an analog/digital converter
(PCI-DAS 4020/12 I/O Board) with 1 to 20 MHz
outputs.
The phosphorescence decay rate (1/τ) was character-

ized by a single exponential; I = Ae-t/τ, where I = Pd
phosphor phosphorescence intensity. The values of 1/τ
were linear with dissolved O2: 1/τ = 1/τo + kq[O2],
where 1/τ = the phosphorescence decay rate in the pres-
ence of O2, 1/τ

o = the phosphorescence decay rate in
the absence of O2, and kq = the second-order O2

quenching rate constant in sec-1 μM-1 (14). For calibra-
tion, the reaction contained PBS, 3 μM Pd phosphor,
Table 1 Rates of lymphocyte respiration, thyroid function and

Children No. Age (yr) Gender BMI
(kg/m2)

kc (μM O2 m
per 107 cells

1 1.5 F 12.8 1.6

2 5 M 16.1 2.0

3 17 M 28.6 1.2

4 12 M 16.3 0.6

5 12 F 30.8 1.2

6 9 M 17.1 0.6

7* 15 M 30.2 0.6

8 15 M 44.3 2.8

9 3 F 13.8 0.4

10 2 F 15.2 0.6

11 3 M 14.5 0.5

12 5 M 17.5 0.9

13* 4 M 15.7 0.2

14 10 F NA 0.8

15 6 M 18.7 0.4

16 4 M 14.8 1.2

17 9 F 16 0.7

18 1.5 M 16.3 1.5

19 5 M NA 1.0

20 6 M 20.7 0.3

21 8 M 31.4 0.4

22 2 F 14.3 0.3

23 7 F 17.8 0.3

24 8 F 23.2 0.2

25 6 M 35.1 0.2

26 4 M 13.6 0.7

mean ± SD (CV) 6.9 ± 4.4 20.6 ± 8.3 (40%) 0.82 ± 0.62 (7

AVSD, atrioventricular septal defect; VSD, ventricular septal defect; ASD, atrial septa
available.
In normal 2 to7 year-old children, the TSH values are 0.10 to 5.9 mU/L (mean = 2.2
(mean = 2.3 mU/L).
Reference ranges for free T4 are 11.0 to 22.6 pmol/L in children 1 to 5 years of age
in children 11 to 19 years of age (https://www.labcorp.com/wps/portal/provider).
* On thyroxin prior to O2 consumption testing.
0.5% fat-free albumin, 50 μg/mL glucose oxidase and
various concentrations of β-glucose [11].
Cellular respiration was measured at 37°C in 1.0-mL

sealed vials. Mixing was carried out with the aid of
parylene-coated stirring bars. The respiratory substrates
were endogenous metabolic fuels supplemented with
glucose.
Statistical analysis
The data are summarized by arithmetic mean and stand-
ard deviation. Mann–Whitney U test was used for non-
parametric values. P<0.05 was considered significant.
clinical findings in trisomy 21 children

in-1

)
TSH
(mIU/L)

Free T4
(pmol/L)

Clinical status

3.5 20.7 AVSD

1.6 14.7 celiac disease

4.9 9.5 normal

2.6 10 AVSD

3.8 13.2 VSD

2.6 NA bronchial asthma

2.8 10.0 aortic stenosis, hypothyroidism

13.2 11.0 Moya Moya disease, hypothyroidism

3.7 14.2 bronchial asthma

5.3 13.0 obstructive sleep apnea, low vitamin D

2.9 15.8 ASD, PDA

2.6 9.9 VSD

12.6 11.6 hypothyroidism

5.1 10.4 normal

5.1 10.5 normal

3.6 11.9 normal

3.9 10.7 normal

11.6 11.9 hypothyroidism

2.9 11.1 normal

3.9 10.4 normal

5.1 10.5 asthma, myelomeningocele

7.7 11.2 normal

1.3 9.3 normal

3.7 11.3 AVSD

3.6 14.1 AVSD

6.4 14.1 normal

6%) 4.8 ± 3.1 12.0 ± 2.5

l defect; PDA, patent ductus arteriosus; CV, coefficient of variation. NA, not

mU/L); in normal 9 to 16 year-old children, the TSH values are 0.20 to 6.1 mU/L

, 11.6 to 21.5 pmol/L in children 6 to 10 years of age, and 12.0 to 20.6 pmol/L

https://www.labcorp.com/wps/portal/provider
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Results
In cell suspensions sealed from air, [O2] decreased linearly
with time, indicating the kinetics of mitochondrial O2

consumption was zero-order. The rate of respiration
(k, in μM O2/min) was thus the negative of the slope
d[O2]/dt. Cyanide markedly inhibited respiration
(≥96%), confirming O2 was consumed mainly by the
mitochondrial respiratory chain.
Lymphocyte respiration was measured in 26 children

with trisomy 21 and 26 control children. Representative
O2 runs are shown in Figure 1a-b. For trisomy 21 chil-
dren, the rate of respiration (kc, in μM O2 per min per
107 cells, mean ± SD, n = 26) was 0.82 ± 0.62 (median =
0.60; range = 0.20 to 2.80), Table 1. The values of kc for
control children (n = 26) were 1.36 ± 0.79 (median =
1.17; range = 0.60 to 3.12; -2SD = 0.61). The p value for
kc between trisomy 21 and control children was <0.001,
Figure 2. Similar results with higher significance
(p<0.000) were obtained after excluding the five chil-
dren with trisomy 21 and elevated serum TSH (values
>6.1 mU/L). Fourteen of 26 (54%) children with trisomy
21 had kc values of 0.20 to 0.60 (<−2SD).
In children with trisomy 21 and normal TSH (n = 21),

the kc value did not correlate with the TSH level
(R2 >0.072, Figure 3a). By contrast, in children with
trisomy 21 and abnormal lymphocyte respiration (kc <
0.61, n = 14), the kc value correlated with the TSH level
(R2 >0.225, R >0.474, Figure 3b).
Five children with trisomy 21 had elevated TSH levels

(>6.1 mIU/L). Their median TSH was 12.6 mIU/L
(range, 6.4 to 13.2) and median kc was 0.7 μM O2 per
Figure 2 Lymphocyte respiration in 26 children with trisomy 21
and 26 control children. The horizontal lines are mean values.

Figure 3 Lymphocyte respiration in children with trisomy 21 as
a function of serum TSH. Panel a: Circles, children (n = 21) with
trisomy 21 and normal TSH (levels ≤5.3 mU/L; line is the best linear
fit, R2 > 0.0727); diamonds, children (n = 5) with trisomy 21 and
elevated TSH (levels 7.7 to 13.2 mU/L). Panel b: Children (n = 14)
with trisomy 21 and abnormal (low) rate of respiration (kc < 0.60 μM
O2 per min per 107 cells). The horizontal line reflects upper limit of
normal TSH (<6.1 mU/L, please see footnote to Table 1).
min per 107 cells (range, 0.2 to 2.8). Subject 8 (15-year-
old adolescent male) had a TSH level of 13.2 mIU/L and
a kc values of 2.8 μM O2 per min per 107 cells (Table 1
and Figure 1a).
There were 8 children with trisomy 21 and congenital

heart disease. Their median kc value was 0.6 μM O2 per
min per 107 cells (range, 0.2 to 1.6), and did not signifi-
cantly differ from the remaining children (p = 0.238).



Figure 4 BMI (Panel a) and serum albumin (Panel b) as a
function of rates of lymphocyte respiration (kc) in trisomy 21
children.

Table 2 Correlations (R) between serum metabolic parameter
(n = 23) and control (n = 25) children*

Rate of respiration (kc)

Creatinine BUN Total protein Albumin Ca2+

Trisomy 21 0.507 0.535 0.446 0.508 0.137

Control 0.192 0.037 −0.146 −0.091 −0.136

* Serum was not available in 3 patients and 1 control.
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In children with trisomy 21, the kc positively corre-
lated with BMI (R >0.302, Figure 4a), serum creatinine
(R >0.507), BUN (R >0.535) and albumin (R >0.446,
Figure 4b), Table 2.
Discussion
The rates of lymphocyte respiration in the children
with trisomy 21 were slower than in the control group
(Figure 2). These differences could reflect a relatively
lower rate of mitochondrial energy conversion in trisomy
21 children that may be linked to some pathological find-
ings pertinent to this disorder, such as defects in the
inner mitochondrial membrane [5,8].
The mechanism for slower rates of lymphocyte res-

piration in children with trisomy 21 could be multi-
factorial. For example, the thyroid hormone is a well
known regulator of the rate of metabolism; and
hypothyroidism is common in children with trisomy 21.
As shown in Figure 3b, high TSH (low or ineffective
thyroxin) may contribute to the slower lymphocyte
respiration in some children. Thus, thyroxin replace-
ment is expected to improve lymphocyte respiration in
those with hypothyroidism.
Of note, normal TSH values for children 2 to 7 years

of age are 0.10 to 5.9 mU/L (mean = 2.2 mU/L) and for
children 9 to 16 years of age are 0.20 to 6.1 mU/L
(mean = 2.3 mU/L). Using these cutoffs, lymphocyte
respiration was found to be higher in euthyroid tri-
somy 21 children than those with hypothyroidism.
Body-mass index, protein metabolism (BUN, total

protein and albumin), and serum creatinine posi-
tively correlated with rates of lymphocyte respiration,
but only in trisomy 21 children (Table 2 and
Figure 4a-b). As previously reported, protein metabolism
(proteolysis, oxidation and synthesis) is linked to
obesity [15,16], a finding that is common in children
with trisomy 21.
Close correlations were documented between cerebral

O2 consumptions and mental function, including de-
pression and dementia [17,18]. It is unknown if our
finding of slower lymphocyte respiration in trisomy
21 children is applicable to other organs. Nevertheless,
our findings are consistent with the recent reports on
s and rates of lymphocyte respiration in trisomy 21

Glucose Osmolality Cholesterol HDL LDL TG

0.048 0.007 0.091 0.145 0.092 0.170

0.112 −0.009 −0.060 −0.080 −0.024 −0.057
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mitochondrial disturbances in those with trisomy 21
[19-23]. Decreased basal 3'-5'-cyclic adenosine mono-
phosphate, increased reactive oxygen species and impaired
NADH:ubiquinone reductase (complex I of the respira-
tory chain) were noted in fibroblasts from those with
trisomy 21 [20].
Limitations of the study
No study was found in the literature that addressed
lymphocyte respiration in children with trisomy 21.
Additional studies are needed in a larger population.
Conclusions
Children with trisomy 21 in this study have lower
lymphocyte bioenergetics, a finding that is consistent
with the known mitochondrial disturbances in these
children. The clinical significance implication of this
finding requires further studies.
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