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Abstract
Background Measuring arterial partial pressure of carbon dioxide (PaCO2) is crucial for proper mechanical 
ventilation, but the current sampling method is invasive. End-tidal carbon dioxide (EtCO2) has been used as a 
surrogate, which can be measured non-invasively, but its limited accuracy is due to ventilation-perfusion mismatch. 
This study aimed to develop a non-invasive PaCO2 estimation model using machine learning.

Methods This retrospective observational study included pediatric patients (< 18 years) admitted to the pediatric 
intensive care unit of a tertiary children’s hospital and received mechanical ventilation between January 2021 and 
June 2022. Clinical information, including mechanical ventilation parameters and laboratory test results, was used for 
machine learning. Linear regression, multilayer perceptron, and extreme gradient boosting were implemented. The 
dataset was divided into 7:3 ratios for training and testing. Model performance was assessed using the R2 value.

Results We analyzed total 2,427 measurements from 32 patients. The median (interquartile range) age was 16 
(12−19.5) months, and 74.1% were female. The PaCO2 and EtCO2 were 63 (50−83) mmHg and 43 (35−54) mmHg, 
respectively. A significant discrepancy of 19 (12–31) mmHg existed between EtCO2 and the measured PaCO2. The 
R2 coefficient of determination for the developed models was 0.799 for the linear regression model, 0.851 for the 
multilayer perceptron model, and 0.877 for the extreme gradient boosting model. The correlations with PaCO2 were 
higher in all three models compared to EtCO2.

Conclusions We developed machine learning models to non-invasively estimate PaCO2 in pediatric patients 
receiving mechanical ventilation, demonstrating acceptable performance. Further research is needed to improve 
reliability and external validation.
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Background
Evaluating adequate oxygen and carbon dioxide (CO2) 
exchange is crucial for managing patients receiving 
mechanical ventilation. The arterial partial pressure 
of CO2 (PaCO2) is commonly used for evaluation, but 
its invasive measurement via arterial blood sampling 
can be painful and cause iatrogenic complications such 
as mechanical damage of arteries, anemia, embolism, 
thrombosis, or nerve injury. In general, as the difficulty 
of the procedure increases in smaller infant, the degree 
of complications may become more severe [1]. Therefore, 
this highlights the need for a non-invasive method to 
estimate PaCO2 in children.

End-tidal CO2 (EtCO2) and transcutaneous CO2 
(TCO2) monitoring are feasible alternatives. EtCO2 
reflects exhaled CO2, but ventilation-perfusion mismatch 
limits its accuracy as a surrogate for PaCO2. Factors like 
dead-space ventilation, severe atelectasis, and intrapul-
monary shunts can influence its reliability in various clin-
ical settings. Therefore, bedside practice often utilizes the 
EtCO2 trend to estimate PaCO2 trends rather than rely-
ing on a single value [2–4]. TCO2, measuring the partial 
pressure of CO2 in arteriolarized capillaries through skin 
warming, also has limitations that make it difficult to use 
it widely in clinical practice, especially in acute medical 
settings [5, 6].

Few studies have attempted to estimate the dead space 
fraction using the difference between EtCO2 and PaCO2, 
which was even described as an independent risk factor 
associated with mortality [7, 8]. However, developing a 
robust formula for this purpose remains challenging due 
to the influence of various physiological factors [7–12]. 
Recent research has demonstrated the successful applica-
tion of artificial intelligence for individualized estimation 
and prediction of complex factors, overcoming limita-
tions of conventional methods [13–15].

This study aimed to develop machine learning mod-
els based on non-invasively collected data and compare 
their performance to estimate PaCO2 more accurately in 
mechanically ventilated children.

Methods
Study setting and data collection
This retrospective cross-sectional observational study 
was conducted in the pediatric intensive care unit (PICU) 
of a university-affiliated children’s hospital. Patients aged 
less than 18 years who were admitted to the PICU and 
received mechanical ventilation between January 2021 
and June 2022 were eligible for inclusion. Patients who 
underwent extracorporeal membrane oxygenation, which 
allows oxygenation and CO2 elimination using methods 
other than mechanical ventilation, were excluded. Addi-
tionally, patients who did not have PaCO2 measured dur-
ing mechanical ventilation were excluded.

Data used in this study were retrieved from our institu-
tion’s data warehouse. Demographic information, clinical 
characteristics (systolic blood pressure [BP], diastolic BP, 
heart rate [HR], respiratory rate [RR], peripheral oxygen 
saturation [SpO2], height, weight, and EtCO2), and ven-
tilator parameters (minute ventilation, peak inspiratory 
pressure, fraction of inspired oxygen [FiO2], positive end-
expiratory pressure [PEEP], and mean airway pressure 
[MAP]) were collected. Blood gas analysis results, repre-
senting the only invasive data in this study, were collected 
for training the machine learning model.

This study was conducted in accordance with the prin-
ciples of the Declaration of Helsinki. The protocol of this 
study was reviewed by the Institutional Review Board of 
Seoul National University Hospital. This study was rec-
ognized as a minimal risk study by the above committee 
because it used only pseudonymous information and did 
not collect personally identifiable information. There-
fore, for the above reasons, the above committee waived 
the need for written informed consent and approved the 
conduct of this study (approval no. H-2307-160-1452).

Data preprocessing
Among the collected data, cases containing duplicates 
or missing values were excluded. A limitation of ret-
rospectively collected blood gas analysis results is the 
inability to definitively differentiate between arterial 
and venous blood samples. Therefore, we assumed arte-
rial blood when the arterial partial pressure of oxygen 
(PaO2) was equal to or greater than 40 mmHg, thereby 
including cases with hypoxemia. Additionally, measure-
ments outside the physiological range, suggesting errors 
in recording or measurement, were excluded. These 
criteria included: HR < 30 beats/minute or > 300 beats/
minute, RR < 5 breaths/minute or > 120 breaths/minute, 
EtCO2 < 20 mmHg, and FiO2 < 21%. For clinical infor-
mation and ventilator parameters, time values were 
converted to hours by discarding minutes and seconds. 
Laboratory findings were integrated into a one-hour 
window. To improve model performance, FiO2, which 
exhibits a known non-linear relationship with PaCO2, 
was log-transformed. Patients’ BPs were converted to 
percentiles based on age, sex, and height [16]. Pulse pres-
sure and oxygenation saturation index (OSI) were calcu-
lated using the collected variables following the method 
outlined [17]. Data preprocessing was performed using R 
statistical packages R 4.3.1.

Strategy of analysis
The primary outcome of this study was the estimation 
performance of the developed models. Performance was 
compared with the R2 values and visualized through the 
Bland-Altman analysis with 95% limits of agreement 
and scatter plots. The measured PaCO2 was referred to 
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as the gold standard, and the machine learning-derived 
estimated CO2 was served as the comparator. The cor-
relation coefficients between EtCO2 and the measured 
PaCO2 were presented with P-values as a secondary 
outcome.

Demographics and characteristics were presented as 
median (interquartile range) and compared using the 
Wilcoxon signed-rank test for non-normally distrib-
uted categorical variables and the chi-square test for 
other categorical variables. To account for the discrep-
ancy between PaCO2 and EtCO2, the absolute values of 
PaCO2-EtCO2 were calculated. Correlations among the 
values were evaluated using Spearman’s correlation coef-
ficient. Linear regression analysis of PaCO2 and EtCO2 
was performed to determine R2 values. The normality 
of residuals was assessed using the Shapiro-Wilk test 
before conducting the Bland-Altman analysis. Statistical 
analyses were performed using R software version 4.3.1., 
P -values less than 0.05 were considered statistically sig-
nificant, and a confidence level of 95% was chosen for 
analysis.

Model development and validation
Using collinearity analysis of the classical linear regres-
sion and feature importance analysis in the models, the 
following variables that can be non-invasively retrievable 
in clinical settings were selected for machine learning: 
weight, percentile of systolic and diastolic BP, RR, HR, 
EtCO2, minute ventilation, log-transformed FiO2, SpO2, 
MAP and PEEP. To minimize the outliers’ impact, the 
variables were scaled according to the quantile range.

To mitigate potential overfitting and selection bias 
from the varying numbers of individual measurements 
per patient, each patient’s data was split into a 7:3 ratio 
for training and validation. Machine-learning models 
were developed using three algorithms: linear regres-
sion, multi-layer perceptron (MLP), and extreme gra-
dient boosting (XGB). The final model of multivariate 
linear regression was built based on the Akaike informa-
tion criterion, and multicolinearity was assessed using 
the variance inflation factor. Optimal hyperparameters 
for MLP and XGB models were extracted through a grid 
search with five-fold cross-validation [18, 19]. The MLP 
model was designed with two hidden layers: 50 nodes in 
the first and 10 in the second. ReLU activation and Adam 
solver were used. The XGB model had a maximum deci-
sion tree depth of seven, a learning rate of 0.01, and 500 
estimators. Feature importance in the XGB model was 
determined using Shapley additive explanations (SHAP) 
values, reflecting the impact of various features on the 
model [20]. Machine learning was implemented using 
Python version 3.10.4 (Python Software Foundation, 
Beaverton, OR, USA; https://www.python.org) and open 
libraries such as Pandas, Keras, Pytorch, Numpy and 
Scikit-learn.

Results
Baseline characteristics
From 32 pediatric patients, we collected a total of 2,427 
measurements. After applying the exclusion criteria, 
1,546 measurements from 30 patients remained for 

Fig. 1 Flowchart of the study cohort used for model development and validation. PaO2: arterial partial pressure of oxygen; ECMO: extracorporeal mem-
brane oxygenation
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analysis (Fig. 1). Patient demographics and baseline char-
acteristics were presented in Table 1.

Continuous variables are expressed as medians (inter-
quartile ranges), and categorical variables are expressed 
as numbers (percentages). BP, blood pressure; EtCO2, 
end-tidal carbon dioxide; SpO2, peripheral oxygen satu-
ration; FiO2, fraction of inspired oxygen; MAP, mean 
airway pressure; PIP, peak inspiratory pressure; PEEP, 
positive end-expiratory pressure; PaCO2, arterial partial 
pressure of carbon dioxide; PaO2, arterial partial pressure 
of oxygen; (PaCO2 - EtCO2), discrepancy between PaCO2 
and EtCO2.

The age at admission was 16 (12−19.5) months and 
female predominance was observed. The OSI indicated 
mild to moderate acute respiratory distress syndrome 
(ARDS), and the proportion of patients with OSI ≥ 12, 
corresponding to severe ARDS, was 31.46% [17]. The 
percentiles of systolic and diastolic BP suggested that 
most patients were not hypotensive and had BP above 
the fifth percentile. The majority of patients were hyper-
capnic and the discrepancy between PaCO2 and EtCO2 
was 19 (12−31) mmHg. The PaO2/FiO2 ratio was 119.4 
(82.6−202.2) mmHg.

Main outcomes
The R2 values and correlation coefficients for the linear, 
MLP, and XGB models were summarized in Table  2. 
Bland-Altman analyses were performed for the models 
using scaled data. The linear regression model exhibited 
a mean difference of -0.574 with a 95% limit of agree-
ment (LOA) ranging from − 18.449 to 17.301. The MLP 
model improved upon this, showing a mean difference of 
-0.108 with a tighter 95% LOA of -14.107 to 13.892. The 
XGB model achieved the best performance, with a mean 
difference of -0.340 and a narrow 95% LOA of -15.716 
to 15.036. This is further confirmed by the scatter plot, 
which demonstrates minimal bias (Fig. 2).

Correlations were estimated using the Spearman corre-
lation coefficient, and R2 values were calculated to com-
pare the developed models. MLP, multi-layer perceptron; 
XGB, extreme gradient boosting.

The Shapiro-Wilk test performed on residuals yielded 
P-values of 0.042, < 0.001, and < 0.001 for the linear 
regression, MLP, and XGB models, respectively. The 
developed models presented high correlations with 
PaCO2. In comparison, EtCO2 and PaCO2 displayed 
a correlation coefficient of 0.78 (P < 0.001) and an R2 
value of 0.58, highlighting the superior performance 
of machine learning models. Notably, the discrepancy 
between EtCO2 and PaCO2 increased with higher PaCO2 
values, and the group with OSI ≥ 12 was more preva-
lent at a greater discrepancy between EtCO2 and PaCO2 
(Fig. 3). The feature importance of the XGB model, which 
exhibited the highest performance, is visualized in Fig. 4.

Table 1 Demographics and characteristics of patients
Variables Entire dataset Training set Test set P-value

(n = 1,546) (n = 1,079) (n = 466)
Age, months 16 (12−19.5) 16 (12−18) 16 (12−20) 0.880
Female 1,145 (74.1) 799 (74.1) 345 (74.0) 0.995
Percentile of systolic BP 0.5 (0.1−0.9) 0.5 (0.1−0.9) 0.5 (0.2−0.9) 0.650
Percentile of diastolic BP 0.8 (0.5−1.0) 0.8 (0.6−1.0) 0.8 (0.5−1.0) 0.490
Pulse pressure, mmHg 33 (26−42) 33 (26−41) 34 (26−43) 0.144
Respiratory rate, breaths/minute 25 (17−32) 25 (17−32) 25 (17−32) 0.635
Heart rate, beats/minute 110 (97−129) 110 (96−129) 110 (97−129) 0.725
EtCO2, mmHg 43 (35−54) 42 (34−54) 43 (35−54) 0.645
SpO2, % 96 (90−100) 96 (90−100) 96 (90−100) 0.989
Minute ventilation, L/minute 1.4 (1.0−2.2) 1.4 (1.0−2.2) 1.4 (1.0−2.2) 0.899
FiO2, % 50 (36.3−69.2) 50.1 (38.3−69.3) 49.4 (34.8−69.1) 0.409
MAP, cmH2O 14.1 (11.5−16.9) 14.0 (11.6−16.9) 14.2 (11.5−16.7) 0.752
PIP, cmH2O 26.8 (21.8−32.6) 26.7 (21.8−32.7) 27.0 (21.8−32.5) 0.992
PEEP, cmH2O 10 (8−12) 10 (8−12) 10 (8−12) 0.808
PaCO2, mmHg 63 (50−83) 63 (50−83) 63 (50−83) 0.889
PaO2/FiO2, mmHg 119.4 (82.6−202.2) 118.6 (82.4−198.8) 120.2 (83.1−217.4) 0.586
(PaCO2 - EtCO2), mmHg 19 (12−31) 19 (12−31) 20 (12−30) 0.678
Oxygenation saturation index 7.2 (4.4−11.8) 7.2 (4.5−11.8) 7.1 (4.2−11.5) 0.488

Table 2 The correlation between the estimated CO2 and the 
measured PaCO2

Linear 
regression

MLP XGB

Correlation 
coefficient

0.94 (P < 0.001) 0.93 (P < 0.001) 0.94 (P < 0.001)

R2 value 0.799 0.851 0.877
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Discussion
This study aimed to develop a non-invasive machine 
learning model for estimating PaCO2 in critically ill chil-
dren receiving mechanical ventilation. We focused on 
minimizing the difference between PaCO2 and EtCO2 
through machine learning, recognizing the significant 
impact that dead space ventilation or perfusion status 
can have on their correlation [7, 21, 22].

In the study cohort, the correlation coefficient between 
EtCO2 and PaCO2 was 0.78 (P < 0.001), with an R2 value 
of 0.58. This was in with previous reporting R2 values 
ranging from 0.4 to 0.9, depending on disease entities 
and ventilator modes [3, 4, 23].

Cross-sectional studies and clinical trials conducted 
in both adults and pediatric patients have investigated 
factors influencing the difference between EtCO2 and 

Fig. 2 Performance and bias of the machine learning models. The Bland-Altman analysis for the linear regression model, the multi-layer perceptron (MLP) 
model, and the extreme gradient boosting (XGB) model are shown in (A), (B), and (C), respectively. The scatter plots for the linear regression model, the 
MLP model, and the XGB model are exhibited in (D), (E), and (F), respectively. CO2: carbon dioxide
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PaCO2. These studies suggest a negative relationship 
with PaO2/FiO2 [3, 23]. However, these studies primar-
ily included patients with relatively small discrepancies 
between PaCO2 and EtCO2, and limited representation of 
patients with PaO2/FiO2 ≤ 200 mmHg. McDonald et al. 

[23] observed a discrepancy of 6.8 mmHg with a standard 
deviation of 6.4 mmHg, while Wang et al. [3] reported 
an even smaller discrepancy of 1.86 ± 7.42 mmHg in 
patients undergoing synchronized intermittent manda-
tory ventilation.

Fig. 4 The feature importance in the XGB model. The relative importance of each feature was measured by Shapley additive explanations values. etco2: 
end-tidal carbon dioxide; log_fio2: log-transformed fraction of inspired oxygen; wt: weight; peep: positive end-expiratory pressure; ht: height; map: 
mean airway pressure, rr: respiratory rate; spo2: peripheral oxygen saturation; ve: minute ventilation; p_dbp: percentile of diastolic blood pressure; pip: 
peak inspiratory pressure; hr: heart rate; p_sbp: percentile of systolic blood pressure; |SHAP|: the absolute values of Shapley additive explanations; SHAP: 
Shapley additive explanations

 

Fig. 3 Scatter plot showing the correlation of PaCO2 and EtCO2. The Spearman correlation coefficient was 0.78, and the R2 value was 0.58. The plot reveals 
a poor correlation between PaCO2 and EtCO2 as PaCO2 increases. The values of those who belong to severe acute respiratory distress syndrome, defined 
by the oxygenation saturation index ≥ 12, were represented with red dots. OSI: oxygenation saturation index; (PaCO2 - EtCO2): discrepancy between 
PaCO2 and EtCO2
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In contrast to these previous studies, our study 
included patients with a larger discrepancy between 
PaCO2 and EtCO2 of 19 (12−31) mmHg and a lower 
PaO2/FiO2 of 119.4 (82.6−202.2) mmHg. Even though 
the median OSI was in accordance with mild to moder-
ate ARDS, the proportion of the group with OSI ≥ 12 was 
considerable. In our cohort, severely ill children with 
OSI ≥ 12 were observed more frequently at a higher dis-
crepancy between EtCO2 and PaCO2, especially in hyper-
capnic groups.

Additionally, PaCO2 levels in previous studies were 
reported to be lower than those observed in this study. 
Razi et al. [4] reported high accuracy (R2 > 0.8) for 
patients with a mean of PaCO2 of 45.8 ± 17.1 mmHg in 
synchronized intermittent mandatory ventilation mode. 
In our study, the PaCO2 was hypercapnic at 63 (50−83) 
mmHg, with an OSI of 7.2 (4.4−8.6). As respiratory fail-
ure and significant dead space are relatively common in 
critically ill patients, the performance of the models esti-
mating PaCO2 may depend on their reliability in hyper-
capnic and hypoxemic patient groups. Utilizing artificial 
intelligence, we built more customized estimations com-
pared to the traditional risk stratification methods 
[13–15]. The XGB model achieved the highest R2 value 
of 0.877 among the three models, all of which demon-
strated better correlations with PaCO2 than EtCO2, even 
in patients with hypercapnia and hypoxemia.

Nevertheless, several limitations need to be acknowl-
edged. Firstly, utilizing PaO2 as a cutoff to identify arte-
rial blood in blood gas analysis might have led to the 
inclusion of venous blood results and potential exclusion 
of true arterial blood samples. This limitation is inher-
ent to retrospective studies and arises due to the lack of 
explicit and clear labeling. Secondly, this study was con-
ducted within a single-institution PICU. Consequently, 
external validation by other institutions or utilizing dif-
ferent measurement equipment was performed. Thirdly, 
despite separating training and testing data for each 
patient, repeated sampling from the individuals might 
have resulted in overfitting. Further studies with exter-
nal validation and prospective cohorts are required. At 
last, given that our models were developed based on data 
retrieved in a 1-hour window, future analyses based on 
real-time data would prompt the clinical application of 
the developed model.

One of the key elements influencing the difference 
between EtCO2 and PaCO2 is the heterogeneous distri-
bution of ventilation-perfusion mismatch among alveoli 
[21]. Including capnographic waveforms as a variable is 
expected to improve model performance [22]. At last, 
although interpreting relevant parameters is crucial for 
understanding gas exchange and dead space ventila-
tion, the “black box” nature of machine learning makes 
it difficult to access detailed information regarding the 

developed model’s mechanisms. Regarding this limita-
tion, we tried to incorporate an explanation using SHAP 
values; however, it remains still challenging to provide an 
intuitive interpretability.

In conclusion, we successfully developed a machine 
learning-based model capable of non-invasively estimat-
ing PaCO2 in critically ill pediatric patients receiving 
mechanical ventilation. The model demonstrated accept-
able performance; however, external validation has not 
yet been performed, and further improvement in perfor-
mance through follow-up studies is promising.
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