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Abstract
Objective Kawasaki syndrome (KS) is an acute vasculitis that affects children < 5 years of age and leads to coronary 
artery lesions (CAL) in about 20-25% of untreated cases. Machine learning (ML) is a branch of artificial intelligence (AI) 
that integrates complex data sets on a large scale and uses huge data to predict future events. The purpose of the 
present study was to use ML to present the model for early risk assessment of CAL in children with KS by different 
algorithms.

Methods A total of 158 children were enrolled from Women and Children’s Hospital, Qingdao University, and divided 
into 70–30% as the training sets and the test sets for modeling and validation studies. There are several classifiers 
are constructed for models including the random forest (RF), the logistic regression (LR), and the eXtreme Gradient 
Boosting (XGBoost). Data preprocessing is analyzed before applying the classifiers to modeling. To avoid the problem 
of overfitting, the 5-fold cross validation method was used throughout all the data.

Results The area under the curve (AUC) of the RF model was 0.925 according to the validation of the test set. The 
average accuracy was 0.930 (95% CI, 0.905 to 0.956). The AUC of the LG model was 0.888 and the average accuracy 
was 0.893 (95% CI, 0,837 to 0.950). The AUC of the XGBoost model was 0.879 and the average accuracy was 0.935 
(95% CI, 0.891 to 0.980).

Conclusion The RF algorithm was used in the present study to construct a prediction model for CAL effectively, with 
an accuracy of 0.930 and AUC of 0.925. The novel model established by ML may help guide clinicians in the initial 
decision to make a more aggressive initial anti-inflammatory therapy. Due to the limitations of external validation and 
regional population characteristics, additional research is required to initiate a further application in the clinic.
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Introduction
Kawasaki syndrome (KS) is a mucocutaneous lymph 
node syndrome associated with vascular endothelial dys-
function and immune activation that mainly affects chil-
dren under the age of 5 [1]. The disease is described in 
all continents but presents the highest annual incidence 
in Asian countries [2–3]. The incidence of KS in chil-
dren under 5 years was 68.8 to 107.3 per 100,000 children 
from 2013 to 2017 in Shanghai [4]. The incidence of KS 
in children aged 0–4 years was 309 to 330.2 per 100,000 
children from 2015 to 2016 in Japan [5]. Coronary artery 
lesion (CAL) is the most serious complication in the 
acute phase of KS, including coronary artery dilatation 
(CAD), coronary artery aneurysm (CAA), long-term 
coronary artery stenosis (CAS), and even myocardial 
infarction (MI) [6]. The latest national survey conducted 
by the Japan Circulation Society (JCS) shows that 7% of 
children with KS present vascular complications in the 
acute phase, and 2.3% develop cardiovascular sequelae 
after discharge [7]. About 20-25% of untreated cases will 
develop into severe CAL, which makes KS the most com-
mon cause of pediatric acquired heart disease in devel-
oped countries [8]. Therefore, it is necessary to carry out 
CAL risk prediction stratification for early diagnosis and 
intensive care.

Machine learning (ML) is a subset of artificial intel-
ligence (AI), which identifies the features of data sets 
by constructing corresponding algorithms [9]. The pro-
grammer works to find out the characteristics of the fea-
tures related to the outcome of each event and establishes 
the training set. The machine determines what character-
istics each outcome is related to by learning the training 
set. In brief, it identifies which end category it belongs 
to when there is an unfamiliar string of data. With the 
size of the training sets increasing, the accuracy of ML 
improved gradually. ML has been extensively used in the 
field of medicine and health care. Takeuchi al [10]. used 
a random forest (RF) classifier to establish a prediction 
model for intravenous immunoglobulin (IVIG) resistant 
KS with a sensitivity of 79.7% and a specificity of 89.3%, 
which was significantly better than other traditional 
models. Xue et al. [11] established a Cox model to predict 
the risk associated with blood lipid profiles (Lp) in chil-
dren with ST-segment elevation myocardial infarction 
(STEMI). It is pointed out that children with STEMI pre-
sented higher Lp (a) and lower HDL-C, as well as apoA1, 
which are more likely to have a higher risk of adverse car-
diovascular disease. Sun et al. [12] designed a prediction 
model based on RF to estimate the probability of arrhyth-
mia after transcatheter closure of atrial septal defect 
(ASD). Li et al. [13] used manual feature engineering to 
identify the degree of bone marrow invasion of acute 
myeloid leukemia (AML), and the sensitivity and speci-
ficity of the model were 87.6% and 89.5%, respectively.

The purpose of the present study was to predict who 
among patients with KS will develop into severe CAL by 
constructing corresponding algorithms in ML based on 
clinical manifestation and clinical auxiliary examination.

Methods
Study population
Abstracted data from the eligible patients in Women and 
Children’s Hospital, Qingdao University from May 2021 
to June 2022 including patients who received a diagno-
sis of KS or patients with incomplete KS (IKS) or IVIG-
resistant KS under 5 years old at enrollment. The 6th 
edition diagnostic guidelines revision was used as a guide 
in the present study [14]. To eliminate irrelevant clinical 
manifestations and make sure all patients were treated 
with the same therapy, excluded patients with infections 
or immunodeficient disease, or who did not receive IVIG 
within 10 days from the onset. Patients treated with glu-
cocorticoids were also eliminated since the influence of 
glucocorticoids is not clear yet (15–16). Besides, the 
medical records with a missing value ratio > 70% were 
excluded. Echocardiography (Echo) was performed to 
evaluate the coronary artery before admission and dis-
charge. Compared with the defined internal diameter 
measurement previously [17], coronary artery abnor-
mality was defined as a Z-score of the coronary artery 
internal diameter of 2.5 or more according to the 6th 
edition diagnostic guidelines [14]. Patients at enrollment 
all accepted a continuous intravenous infusion of IVIG 
2 g/kg/24 hours combined with oral aspirin 30 mg/kg/d 
from the onset, and 3 mg/kg/d after the normalization of 
C-reactive protein (CRP) and body temperature.

Feature vectors selected
Feature selections combined both clinical manifestations 
of KS and the high-risk factors of CAL confirmed by 
previous studies [18–21], excluding the unconventional 
clinical auxiliary examination. All features were col-
lected before patients were given IVIG treatment. Medi-
cal records with missing counting features such as height 
and weight were analyzed by linear regression analysis 
and filled according to the test regression equation. The 
qualitative features of clinical manifestations were trans-
formed into counting features. The K-nearest neighbor 
(KNN) filling method was used to complete the missing 
qualitative features or correct the outliers through the 
correlation of the data in each dimension.

Dimensionality reduction
The numerical features were standardized in one dimen-
sion and carried on the principal component analysis 
(PCA) of the standardized data, which aims to reduce 
dimensionality and extract features [22]. The high cor-
relation between features had been eliminated. PCA 
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simplified the complexity of analysis but kept the origi-
nal information, and integrated multiple vectors into a 
minority of comprehensive vectors. The total variance of 
P random features was divided into the sum of the vari-
ance of P unrelated random features and kept the first 
principal component maximum. The variance contribu-
tion rate was defined as the ratio of the variance of the 
principal component to the total variance, and the higher 
the value, the more original information was reflected in 
the component. The weight of the vectors was equal to 
the variance contribution rate of the principal compo-
nent, and to make the sum of weights of coefficient of 
the vectors in the linear combination of principal com-
ponents was 1 by keeping uniformization of the weighted 
average.

Artificial data synthesis
The SMOTE was proposed by Chawla [23] in 2002, which 
synthesized better classifier performance by using the 
interpolation method combining the over-sampling of 
the minority class and the under-sampling of the major-
ity class. N was the number of the minority classified in 
the training set, the process was as follows:

1. Sampled  xi  from the minority class. Its eigenvector 
was xi, i ∈ {1, ..., N} . First of all, the K nearest 
neighbors of the sample xi  were found from all 
the N samples of the minority class. Marked it as 
xi(near), near ∈ {1, ..., K} .

2. Then sampled randomly from the K neighbors 
and regenerated into a random number  µ  from 
0 to 1, thus a new sample xi(near)  was synthesized: 
xnew = xi + µ(xi(k) − xi

3. Synthesized T new samples by repeating steps 1 and 
2 for T times.

Model building and verification
The software VScode was employed for programming 
and Python version 3.6 (Python Software Founda-
tion) was performed for statistical analyses. Packages 
as sklearn 1.2.2, pandas 2.1.3, and numpy 1.24.3 were 
used to add 95% confidence intervals (CI) and complete 
cross-validation.

To avoid overfitting, the validation set approach was 
performed. The entire data sets were divided into 70% 
and 30% as the training sets and the test sets. The clas-
sifiers RF, logistic regression (LR), and eXtreme Gra-
dient Boosting (XGBoost) were constructed using 
demographic variables processed by the input features of 
the training sets severally. The data from test sets were 
substituted into the models for validation. According to 
the prediction results of the models, the data was calcu-
lated one by one as positive examples in this order and 

figured out the values of two important quantities each 
time. The receiver operating characteristic (ROC) curve 
was obtained by arranging the two quantities as horizon-
tal and vertical coordinates respectively. The discrimina-
tory capacity of the model was assessed using the area 
under the ROC curve (AUC). The vertical axis of the 
ROC curve was sensitivity or true positive rate (TPR), 
while the horizontal axis was false positive rate (FPR). 
Besides, the five-fold cross validation method was used 
through all the data to avoid overfitting. The entire data 
set was divided into five parts and each set divided con-
tains the full category of labels. The cross_val_score func-
tion is used to assess the accuracy of the model. The 2x 
standard deviation method was used to calculate the 
boundary of the confidence interval. The average value of 
accuracy minus 2x standard deviation to calculate lower 
bounds and with the average value plus 2x the stan-
dard deviation to calculate the upper bound. Results are 
expressed as an odds ratio with a 95% confidence interval 
(CI).

Results
Demographic characteristics
A total of 158 children were enrolled in the present 
study, including 104 males (65.8%). The mean age was 
779.91 ± 654.63 days. 9.49% (n = 15) of children were diag-
nosed as CAL according to the Z-score assessment by 
the Echo. 1.26% (n = 2) of the research population present 
IKS and 1.26% (n = 2) occurred IVIG-resistant KS. The 
detailed baseline characteristics are shown in Table 1.

Predictive model for CAL
The cohort for the model included demographic char-
acteristics, signs, symptoms of KS, laboratory results, 
and diagnosis. The comparison between Non-CAL and 
CAL in the input qualitative variables is shown in Fig. 1. 
After excluding the variables that were not common in 
the clinical routine examination and deleting data that 
did not meet the requirements, 29 feature vectors were 
determined (Table S1). After PCA dimension reduction, 
24 principal components are retained (not shown in the 
Figures). For solving the imbalance between the data, 
the SMOTE was used for equalization and the distribu-
tion of the training set after the data balance was shown 
in Table  2. The SMOTE was used for the construction 
of classifiers from imbalanced data consisting of 143 
labels as non-CAL and 15 labels as CAL. There were 110 
records in the training set, including 100 children with 
non-CAL and 10 with CAL. There were 48 records in the 
test set, including 43 children with non-CAL and 5 with 
CAL. The schematic diagram of the prediction model 
conduction is shown in Fig. 2. The AUC of the RF model 
was 0.925 according to the validation of the tests set and 
the confusion matrix was shown in Fig. 3. The accuracy 
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obtained from 5-fold cross validation was 0.947, 0.868, 
0.972, 0.945, 0.919 and 0.930. The average accuracy was 
0.930 (95% CI, 0.905 to 0.956). The AUC of the LG model 
was 0.888 and the average accuracy was 0.893 (95% CI, 
0,837 to 0.950). The AUC of the XGBoost model was 
0.879 and the average accuracy was 0.935 (95% CI, 0.891 
to 0.980). To show the several results distinctly, we estab-
lished data collection in Table 3.

Discussion
Prevention of CAL is a significant step in the treatment 
of KS. The standard therapy for KS is effective in reduc-
ing the incidence of CAL significantly [24]. However, 
even with timely initiation of IVIG treatment, coronary 
artery dilatation might occur in 30% of children, and 
5–10% of children might eventually develop permanent 
coronary artery disease [25]. Early identification and pos-
sible intervention might reduce the risk of late coronary 
artery dilatation. It has been confirmed that corticoste-
roid therapy combined with IVIG as the initial treat-
ment may intervene in CAL effectively in children with 
severe KS or IVIG-resistant [26–28]. However, it remains 

controversial whether corticosteroids should be used as 
initial therapy [25]. One of the implications of our pre-
dictive algorithm is to recognize patients with a high risk 
of CAL in the early stage of the disease, which can help 
guide clinicians in the initial decision to make a more 
aggressive initial anti-inflammatory therapy. For patients 
with a high risk for CAL sought to consider a careful fol-
low-up such as more frequent echocardiography.

There were several predictive models with discrimina-
tive results established by researchers in different coun-
tries or regions for CAL children and IVIG-resistant 
KS. Chang et al. [29] established a scoring system based 
on the CRP, neutrophil/lymphocyte ratio, male gender, 
and IVIG resistance with a sensitivity and a specific-
ity of 60.8% and 70.6%. Hua et al. [30] developed a CAL 
risk prediction model in children under 6 months of 
age. The AUC of the model was 0.731, with a sensitivity 
and specificity of 64.7% and 80.9%. Lee et al. [31] used 
N-terminal-pro-brain natriuretic protein (NT-proBNP) 
and polymorphonuclear Neutrophil (PMN) to create 
the prediction model for CAL, which presents a sensi-
tivity of 73.3% and a specificity of 67.9%. In China, Yang 
et al. [32] constructed a predictive tool for the efficacy of 
IVIG therapy in children with KS, and the sensitivity and 
specificity were 56% and 79% in the internal verification, 
respectively. However, these published risk assessment 

Table 2 Distribution before and after SMOTE
Category Non-CAL CAL
Proportion before SMOTE 0.91 0.09
Proportion after SMOTE 0.5 0.5

Fig. 1 Comparison between Non-CAL patients and CAL patients in the input qualitative variables
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systems scoring of IVIG-resistance or CAL were short of 
the external data verification (33–34).

The traditional models are constructed with only a few 
features, while the model calculated by ML can integrate 
all aspects of clinic feature vectors. ML is suitable for 
many tasks and makes it easy for the model to retrain and 
update using the newest data [35]. Supervised learning 
in ML identifies the relationship between input data and 
output data in the training set, then summarizes the new 
data into a known label according to its features, which 
one we choose to employ (36–37). The input data used 
in the present study covered common clinical manifes-
tations and auxiliary examinations based on the latest 
6th edition diagnostic guidelines, which makes the clini-
cal application of the model easier. In the present study, 
three classifiers were employed to establish the model. 
According to the result of validation studies, the accu-
racy of the RF model was more than 0.90 and the AUC 
was 0.925. The accuracy of the XGBoost model was 0.930 
with a 0.879 AUC. The result of validation showed that 
our model has feasibility and application prospects in the 
clinical risk prediction of CAL. In addition, the validation 
set approach and five-fold cross validation method were 
performed throughout the process of model establish-
ment and validation. These efforts allow us to avoid the 
problem of overfitting to the greatest extent and increase 
the credibility of the model.

This study has several limitations. A more stringent 
external validation from other institutions should be 

involved in further assessing the generalizability of the 
proposed scoring model before applying it. Besides, we 
have not subsumed hypoalbuminemia and hyperbilirubi-
nemia which are newly added in the sixth edition of the 
guidelines in the features. The population studied in the 
present study appears strongly regional characteristics, 
which might represent the patient population in the east 
of China.

Conclusion
Three different algorithms were used in the present study 
to construct a prediction model for CAL effectively. The 
accuracy of the RF model was more than 0.90 and the 
AUC was 0.925, which shows that our model has feasi-
bility and application prospects in the clinical risk pre-
diction of CAL. The novel model established by ML may 
help guide clinicians in the initial decision to make a 
more aggressive initial anti-inflammatory therapy. Com-
pared with models established by traditional methods 
in other regions of China, the verification results of this 
model showed higher accuracy. Due to the limitations of 
external validation and regional population characteris-
tics, additional research is required to initiate a further 
application in the clinic.

Fig. 2 Schematic diagram for model building
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AI  artificial intelligence
ASD  atrial septal defect
AML  acute myeloid leukemia
AUC  area under the curve
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CRP  C-reactive protein
DT  Decision Tree
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FPR  false positive rate
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LR  logistic regression
NPV  negative predictive value
NT-proBNP  N-terminal-pro-brain natriuretic protein
PCA  principal component analysis
PPV  positive predictive value
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STEMI  ST-segment elevation myocardial infarction
TPR  true positive rate
XGBoost  eXtreme Gradient Boosting
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Table 3 Demonstration of the prediction effect of the 3 models
Model AUC Average 

Accuracy
95% 
CI

Accuracy

RF 0.925 0.930 0.905–
0.956

0.947/0.868/0.972/0.945/0.919

LG 0.888 0.893 0.837–
0.950

0.921/0.842/0.891/0.919/0.919

XGBoost 0.879 0.935 0.891–
0.980

0.921/0.973/0.946/0.918/0.919

Fig. 3 Demonstration of the prediction effect of the 3 models. (a) Demonstration of the prediction effect of RF model. (b) Demonstration of the predic-
tion effect of LG model. (c) Demonstration of the prediction effect of XGBoost model
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Supplementary Material 1: Numerical range of input features
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