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Abstract 

Objective As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates 
accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study 
evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating 
glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates.

Materials and methods The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum 
samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosac-
charides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). 
Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential 
of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrat-
ing clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC).

Results Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild 
(48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors 
for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, 
Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides 
(Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentra-
tions of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild 
BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age 
and Fuc-D, with an AUC of 0.96.

Conclusion A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy 
in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely inter-
vention and improved neonatal outcomes.
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Introduction
Bronchopulmonary Dysplasia (BPD) is a chronic 
pulmonary disorder prevalent in very low birth weight 
infants (VLBWIs; 1000 g ≤ birth weight<1500 g) and 
extremely low birth weight infants (ELBWIs; birth 
weight<1000 g). This condition, instigated by impaired 
lung development and injurious pulmonary responses 
in preterm infants, imposes severe consequences such as 
long-term ventilatory reliance, a high mortality rate, and 
increased susceptibility to lower respiratory infections, 
airway hyper-reactivity, and growth retardation, 
thereby drastically undermining their quality of life. 
With advancements in perinatal medicine improving 
the survival rates of VLBWIs and ELBWIs, there is a 
consequent increase in BPD incidence correlating with 
decreasing birth age and birth weight [1, 2].

The multifaceted etiology and pathogenesis of BPD 
encompass various pathogenic contributors that instigate 
lung injury and abnormal reparative responses. The 
diagnosis, as per existing criteria, can only be established 
at the corrected age of 36 weeks, and the lack of specific 
treatment modalities underscores the imperative need 
for sensitive early biomarkers for BPD [3]. Metabolomics 
assays have evidenced altered glucose, lipid, and amino 
acid metabolism in preterm infants who develop BPD, 
suggesting that dysregulated glucose metabolism may 
serve as a predictive marker for BPD onset in preterm 
neonates [4, 5].

Saccharides, primarily in the form of glycans, execute 
biological functions as polysaccharide complexes. Lung 
epithelial cells boast complex carbohydrate coatings, or 
glycans, which bear direct or indirect relations to cell 
differentiation. Polysaccharide complexes, consisting 
chiefly of glycoproteins, proteoglycans, and glycolipids, 
are pervasive in cells and the extracellular matrix. A 
glycan represents a polysaccharide chain constituted 
by multiple monosaccharides linked by glycosidic 
bonds, with known monosaccharides including fucose 
(Fuc), galactose (Gal), galactosamine (GalN), glucose 
(Glc), glucosamine (GlcN), mannose (Man), xylose 
(Xyl), glucuronic acid (GlcA), iduronic acid (IdoA), 
N-acetylglucosamine (GlcNAc), and sialic acid (SA).

Existing reports underscore the pivotal role of glycans 
in lung development. Animal studies demonstrate 
that glycan deficiency culminates in pulmonary tissue 
degradation and impaired lung development [6]. 
Moreover, the absence of fucose inhibits the generation 
of secretory cells indispensable for airway development 

[7, 8]. The intimate relationship between glycans and lung 
disease pathogenesis has been well-documented [9, 10]. 
Glycan degradation is implicated in pulmonary injury and 
influences its prognosis. In acute lung injury, the cellular 
glycan structures can be shed into the bloodstream, 
hence, any aberration in blood glycan composition can 
serve as a marker of pathology. Therefore, variations in 
monosaccharide content in premature infants may offer 
an efficient approach for early BPD diagnosis in this 
vulnerable population.

In this study, we analyzed the concentrations of serum-
free monosaccharides and degraded monosaccharides 
in premature infants through High-performance 
Liquid Chromatography (HPLC), looking for the novel 
diagnostic biomarker for BPD. Moreover, we integrating 
clinical data for enhanced diagnostic precision. This study 
aspired to construct an early diagnostic model to assess 
the risk and improve the prognosis of Bronchopulmonary 
Dysplasia (BPD).

Materials and methods
Subjects
The criteria for participant inclusion were as follows: 
(1) Gestational age ≤ 32 weeks; (2) Hospital admission 
within 1 hour post-birth, with a subsequent hospital 
stay exceeding 28 days; (3) Complete clinical data. 
Exclusionary factors included patients with chromosomal 
abnormalities, inherited metabolic diseases, or congenital 
developmental malformations. Our study included a 
cohort of 234 preterm infants. The research spanned from 
June 2020 to October 2023. 4 ml fasting venous blood 
samples from premature infants were collected when 
they were 1 week after birth, and centrifuged for 5 min 
at 13000 r/min. We took 200 μl serum and preserved it 
bellow at − 80 °C for the following analysis. At the same 
time, we collected detailed clinical information of all 
subjects occurred during hospitalization. In accordance 
with the Bronchopulmonary Dysplasia definition and 
grading criteria revised by the National Institute of Child 
Health and Human Development (NICHD) in 2018, 
these patients were classified into a non-BPD group 
(n = 166) and a BPD group (n = 68), with 48 designated as 
mild BPD (Grade I), and 20 as moderate to severe BPD 
(Grades II, III or IIIA) [3].

The study received approval from the Medical Ethics 
Committee of Qingdao University’s Affiliated Hospital 
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(QYFY WZLL 28446), with informed consent obtained 
from all participating guardians.

Serum free monosaccharide assessment
For each serum sample, add 5 μL of Rhamnose (Rha) 
(1 mg/mL), followed by 10 μL of ultrapure water, 20 μL 
of Sodium Hydroxide (NaOH) solution (1/88.2), and 
20 μL of 0.5 mol/L 1-phenyl-3-methyl-5-pyrazolone 
(PMP) solution. Ensure thorough mixing. Execute PCR 
derivation at 70 °C for 40 minutes. Subsequently, add 
20 μL of either glacial acetic acid (1/20) or 0.2 mol/L 
ammonium acetate solution. Carry out purification 
through dual rounds of chloroform extraction and 
centrifugation at 13,300 rpm for 15 minutes. Extract 
50 μL of the supernatant solution for direct use in HPLC 
analysis.

Serum monosaccharide degradation determination
For each serum sample, 5 μL was combined with Rha 
(1 mg/mL), 10 μL of HCl (6 mol/L), and following mixing, 
it underwent PCR degradation (100 °C for 10 min). 
Subsequent addition of (1/6.3) NaOH solution and 
0.5 mol/L PMP solution occurred before carrying out 
PCR derivatization and purification as described in 2.2. 
A 50 μL aliquot of the supernatant was used for HPLC 
analysis. This method, known as sugar fingerprinting 
technology, is a patented technique of our laboratory 
[11].

Monosaccharide standards and HPLC chromatograms 
for serum free monosaccharide and degraded 
monosaccharide
A standard mixed stock solution was prepared using 
1 mg/mL of Mannose (Man), Glucosamine (GlcN), Rha, 
GlcNAc, Glucose (Glc), Galactose (Gal), and 0.125 mg/
mL of Galactosamine (GalN), GlcA, Xyl, Fucose (Fuc). 
Following 2-fold gradient dilution, the standards, ranging 
from 0.5 to 0.0156 mg/mL (Man, GlcN, Rha, GlcNAc, 
Glc, Gal), and 0.0625 to 0.0020 mg/mL (GalN, GlcA, Xyl, 
Fuc), were obtained.

Rha was utilized as the internal standard to maintain 
the consistency of experimental operations. The mono-
saccharide standard mixture underwent HPLC analysis, 
producing the HPLC chromatogram depicted in Fig. 1A. 
Using the peak areas of various monosaccharide standard 
concentration gradients, the standard curve and regres-
sion equation were established. HPLC was used for the 
analysis of serum-free monosaccharides and degraded 
monosaccharides, obtaining the corresponding HPLC 
chromatograms (Fig. 1B and C). These data allowed for a 
precise calculation of each monosaccharide or degraded 
monosaccharide concentration for further analysis.

Statistical methods
Data was processed using SPSS 25.0, and figures were 
generated with GraphPad Prism 8. Continuous variables 
adhering to the normal distribution were analyzed 
using the t-test and expressed as mean ± standard 
deviation (x ± s). Non-normal variables were subjected 

Fig. 1 A HPLC chromatogram of monosaccharide standard; 
B HPLC chromatogram of serum free monosaccharides. C HPLC 
chromatogram of serum degraded monosaccharides
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to the Mann-Whitney U test and presented as median 
and interquartile range [M (Q1, Q3)]. Qualitative data, 
reported as the case number and percentage, were 
assessed using the chi-square or Fisher’s exact test. The 
diagnostic potential of distinct monosaccharides for 
BPD was examined via ROC curves, with diagnostic 
efficacy evaluated using the AUC. A p-value less than 
0.05 denotes statistical significance.

Results
Clinical data comparison between BPD and non‑BPD 
groups
The study comprised 234 subjects, 166 in the non-
BPD group and 68 in the BPD group, yielding a BPD 
incidence of 29.06%. Mild BPD accounted for 70.59% 
(48/68) within the BPD group, while moderate or 
severe BPD made up 29.41% (20/68).

Clinical data comparisons revealed lower gestational 
age (P = 0.000) and birth weight (P = 0.000) in the 
BPD group than in the non-BPD group. Both invasive 
and non-invasive ventilation durations were longer 
in the BPD group (P = 0.000). The BPD group exhib-
ited a higher prevalence of Ductus Arteriosus (PDA) 
and gestational hypertension (P = 0.01). No statisti-
cally significant differences in sex, caesarean section, 
prelabor rupture, gestational diabetes mellitus, Small 

for Gestation (SGA), septicemia, Extrauterine Growth 
Restriction (EUGR), Pulmonary Surfactant (PS), and 
Respiratory Distress Syndrome (RDS) were found 
(P > 0.05) (Table 1).

Analysis of the diagnostic efficacy of free monosaccharides 
and degraded monosaccharides in serum
We examined the concentration disparity of free and 
degraded monosaccharides in serum between the 
BPD and non-BPD groups. The BPD group exhibited 
significantly higher concentrations of Glc-F (P = 0.000), 
Man-F(P = 0.000), Man-D(P = 0.000), GalN-D(P = 0.001), 
Glc-D(P = 0.000), Gal-D(P = 0.015), and Fuc-D 
(P = 0.000). No statistically significant differences were 
observed in G/M and GlcN-D concentrations (P > 0.05) 
(Table 2).

Monosaccharides displaying significant differences 
were subjected to ROC curve analysis, with diagnostic 
efficacy evaluated by AUC. The AUCs for Glc-F, Man-F, 
Man-D, GalN-D, Glc-D, Gal-D, and Fuc-D were 0.8119, 
0.8187, 0.6858, 0.7110, 0.7636, 0.7114 and 0.8472 respec-
tively. Notably, Glc-F (sensitivity: 88.33%, specificity: 
79.22%), Man-F (sensitivity: 91.63%, specificity: 71.43%), 
and Fuc-D (sensitivity: 88.33%, specificity: 70.13%) dem-
onstrated superior diagnostic performance (Fig. 2).

Table 1 Clinical data comparison between BPD and Non-BPD Groups

SGA small for gestational age, PDA ductus arteriosus, EUGR  extrauterine growth restriction, PS pulmonary surfactant, RDS respiratory distress syndrome, M ± SD 
mean ± standard deviation, IQR interquartile range

factor M ± SD or median (IQR) or n (%)

non‑BPD (n = 166) BPD (n = 68) P Value

Gestational age (weeks) 31.0 (30.1, 31.55) 27.5(26.3, 28.7) 0.000

Birth weight (g) 1568.11 ± 217.37 1052.392 ± 185.61 0.000

gender 0.284

man 105 (63.3) 48 (70.6)

women 61 (36.7) 20 (29.4)

Cesarean 117 (70.5) 42 (62.8) 0.242

Premature rupture of membranes 62 (37.3) 30 (44.1) 0.336

Placental abnormalities 28 (16.9) 15 (22.1) 0.352

Hypertension in pregnancy 29 (17.5) 28 (41.2) 0.000

Gestational diabetes 44 (26.5) 18 (26.5) 0.996

SGA 6 (3.6) 1 (1.5) 0.382

Invasive mechanical ventilation time (days) 1.35 ± 0.55 5.70 ± 2.65 0.000

Non-invasive ventilation time (days) 9.31 (6.59, 12.38) 46.85(35.23, 60.28) 0.000

PDA 60 (36.1) 50 (73.5) 0.001

septicemia 28 (16.9) 17 (25.0) 0.152

EUGR 50 (30.1) 38 (55.9) 0.157

PS 37 (69.8) 46 (76.7) 0.439

RDS 162(97.6) 68 (100.0) 1.000
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Development of a BPD prediction model in premature 
infants
Considering the disparities in clinical data and monosac-
charide concentrations between the BPD and non-BPD 
groups, a predictive model Z = 123.975–4.325*gesta-
tional age + 0.024*Fuc-D was devised via logistic 
regression analysis. In comparison to individual factor 
predictive models, the amalgamation of gestational age 
and Fuc-D significantly bolstered the diagnostic effi-
ciency, yielding an AUC of 0.96, sensitivity of 95.0%, 
and a specificity of 94.81%. Consequently, the predictive 
model, contingent on gestational age and Fuc-D offered 

substantial diagnostic value for BPD in premature infants 
(Fig. 3).

Comparative analysis of serum free and degraded 
monosaccharides in mild BPD vs. moderate to severe BPD
Statistical examination revealed no significant differ-
ences in Glc-F, Man-F, G/M, Man-D, GlcN-D, GalN-D 
and Gal-D levels between the mild BPD group and the 
moderate-to-severe BPD group (P > 0.05). Neverthe-
less, the concentrations of Glc-D (P = 0.000) and Fuc-D 
(P = 0.005) were lower in the moderate-to-severe BPD 

Table 2 Comparison of monosaccharide content in the BPD and non-BPD groups

Glc-F free glucose, Man-F free mannose, G/M free glucose/ free mannose, Man-D degraded mannose, GlcN-D degraded glucosamine, GalN-D degraded galactosamine, 
Glc-D degraded glucose, Gal-D degraded galactose, Fuc-D degraded fucose, M ± SD mean ± standard deviation, IQR interquartile range

monosaccharide (μmol/L) M ± SD or median (IQR)

non‑BPD group (n = 166) BPD group (n = 68) P Value

Glc-F 5972.41 (3756.13, 9249.05) 9223.37 (8091.32, 10,355.42) 0.000

Man-F 80.38 (38.15, 115.02) 115.66 (102.97, 142.04) 0.000

G/M 85.78 (74.14, 90.14) 76.02 (66.11, 88.66) 0.216

Man-D 1168.22 (955.78, 1377. 26) 1443.96 (1015.67, 1572.73) 0.000

GlcN-D 1098.22 ± 318.32 1201.42 ± 339.22 0.172

GalN-D 606.04 (572.75, 688.42) 721.44 (611.08, 826.53) 0.001

Glc-D 5003.27 (2662.12, 5535.49) 5608 51 (3202.10, 6289.47) 0.000

Gal-D 1261.01 ± 138.04 1303.93 ± 312.34 0.015

Fuc-D 1158.27 (976.12, 1363.21) 1509.55 (1204.46, 1860.00) 0.000

Fig. 2 ROC curve of serum free and degraded monosaccharides
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group compared to the mild BPD group, a difference that 
proved statistically significant. (Table 3).

Discussion
Bronchopulmonary Dysplasia (BPD) arises due 
to an amalgamation of adverse influences during 
lung development, such as infection, volume injury, 
barotrauma, hyperoxia injury, and Patent Ductus 
Arteriosus (PDA), alongside genetic predispositions 
[12]. With intrinsically immature lung development, 
premature infants inherently bear a higher susceptibility 
to BPD. Our study identified a BPD frequency of 29.06%. 
However, the global incidence of BPD among extremely 
premature infants from 2006 to 2017 oscillated between 
10 and 89%, a variability likely attributed to discrepancies 
in gestational age, birth weight, clinical diagnostic 
parameters, and preterm infant management strategies 
[13].

The comparative analysis of clinical data between BPD 
and non-BPD groups uncovered statistically significant 

differences in gestational age, birth weight, duration of 
invasive and non-invasive mechanical ventilation, PDA, 
and gestational hypertension. Predominantly, BPD occurs 
in very low birth weight infants (VLBWI) and extremely 
low birth weight infants (ELBWI) with gestational ages 
less than 32 weeks. The incidence rate exhibited a nega-
tive correlation with gestational age and birth weight 
(Table 1) [14]. Premature infants’ lungs, typically at tubu-
lar or vesicle stages of development at birth, exhibit defi-
cient synthesis and secretion of pulmonary surfactant, 
diminished lung compliance, and weak antioxidant 
capabilities, rendering them prone to endogenous and 
exogenous damage [15]. BPD ensues when alveolar and 
microvascular development processes are impeded [16]. 
Mechanical ventilation, especially in relation to volume 
pressure injury, has been recognized as a primary con-
tributor to lung injury, thereby an independent risk fac-
tor for BPD [17, 18]. The connection between BPD and 
preeclampsia, however, remains somewhat enigmatic. 
Previous reports have suggested that preeclampsia can 

Fig. 3 Efficacy evaluation of the BPD prediction model

Table 3 Comparative analysis of serum free and degraded monosaccharides in mild BPD vs. moderate to severe BPD group

Glc-F free glucose, Man-F free mannose, G/M free glucose/ free mannose, Man-D degraded mannose, GlcN-D degraded glucosamine, GalN-D degraded galactosamine, 
Glc-D degraded glucose, Gal-D degraded galactose, Fuc-D degraded fucose, M ± SD mean ± standard deviation, IQR interquartile range

monosaccharide
(μmol/L)

M ± SD or median (IQR)

Mild BPD group
(n = 48)

Moderate to severe BPD group
(n = 20)

P Value

Glc-F 12,517.82 (10,531.16, 12,858.16) 12,539.86 (11,375.43, 13,038.09) 0.489

Man-F 142.21 (137.95, 165.95) 125.68 (102.97, 181.78) 0.597

G/M 86.97 ± 12.32 89.29 ± 12.33 0.571

Man-D 1610.46 ± 514.94 1637.80 ± 195.99 0.767

GlcN-D 1204.70 ± 395.95 1193.78 ± 145.52 0.877

GalN-D 826.73 (721.41, 842.98) 822.48 (721.44, 845.81) 0.221

Glc-D 7198.84 (6217.53, 7593.44) 4747.59 (3152.51, 5989.24) 0.000

Gal-D 1265.76 (1139.13, 1503.94) 1296.37 (1015.24, 1426.44) 0.079

Fuc-D 1593.74 (1310.75, 1866.99) 1090.31 (1019.32, 1240.93) 0.005



Page 7 of 9Li et al. BMC Pediatrics          (2024) 24:107  

result in placental dysfunction and an imbalance between 
pro- and anti-angiogenic factors [19], potentially impact-
ing fetal alveolar and lung capillary development and 
subsequently increasing BPD risk [20, 21]. Our findings 
support this hypothesis, as the incidence of maternal 
hypertension during pregnancy was higher in the BPD 
group. Moreover, the incidence of PDA was greater in 
the BPD group. Given the hypoplastic state of the smooth 
muscle and the lack of intimal cushion, an immature duc-
tus arteriosus might not close timely after birth, causing 
enhanced blood flow to the lungs, pulmonary edema, 
lung congestion, and subsequent exacerbation of pulmo-
nary inflammation, declining lung function, and reduced 
gas exchange. Although the precise role of PDA in BPD 
onset and progression remains elusive, the risk of BPD in 
premature infants with PDA was found to be 6.266 times 
that of non-PDA counterparts, with the BPD risk escalat-
ing alongside PDA shunt volume and duration [22, 23].

Alveolar epithelial cells and capillary endothelial cells 
exhibit a dense glycan structure. Under physiological 
conditions, this glycan structure dynamically balances 
synthesis and degradation, offering functions such as 
anti-inflammation, vascular permeability maintenance, 
and endothelial function protection [24]. The levels of 
free and degraded monosaccharides in serum mirror 
alterations in the structure and quantity of these glycans. 
It has been reported that the degradation of alveolar 
epithelial glycans predominantly occurs in patients 
with acute lung injury, causing pulmonary surfactant 
(PS) dysfunction and correlating with the duration of 
mechanical ventilation [25]. Disturbances in glycan 
structure and the inflammatory response form two 
pivotal facets of acute lung injury [26, 27]. Several 
studies have emphasized that concentrations of glycan 
degradation products rise in the peripheral blood of 
acute lung injury patients [28]. In the event of acute lung 
injury, glycan degradation can promote and augment 
the deformation and adhesion abilities of circulating 
inflammatory cells, facilitating their migration to the 
pulmonary interstitium and alveoli [29]. Furthermore, 
glycan degradation prompts the production of numerous 
inflammatory mediators, such as oxygen free radicals, 
lipids, and peptides. These mediators inflict direct 
damage upon alveolar epithelial cells, stromal cells, and 
capillary basement membranes, enhancing vascular 
permeability [30], impeding pulmonary blood vessel 
development, inciting PS inactivation, and obstructing 
alveolarization [31]. These inflammatory mediators also 
display extensive biological activity, possibly inciting 
their re-release [32]. The continued presence of pro-
inflammatory factors and chemokines triggers an 
unregulated ‘waterfall’ secondary inflammatory cascade 
[33], leading to accelerated lung glycan degradation [34], 

hindered repair and reconstruction function, subsequent 
pulmonary vascularization disorders, and abnormal 
repair, ultimately culminating in BPD. In this study, the 
BPD group demonstrated higher concentrations of Man-
D, GalN-D, Glc-D, Gal-D, Fuc-D, Man-F, and Glc-F than 
the non-BPD group, suggesting that monosaccharide 
levels in premature infants could reflect lung injury and 
abnormal repair processes. Our research confirmed 
that monosaccharide content might serve as a potent 
early diagnostic indicator for BPD in premature infants, 
with the identified monosaccharides (Man-D, GalN-D, 
Glc-D, Gal-D, Fuc-D, Man-F, and Glc-F) demonstrating 
substantial predictive value for BPD.

This study has formulated a prediction model for BPD 
in premature infants, utilizing logistic regression analysis 
based on gestational age and Fuc-D content. As a glycan 
structure modification, Fuc contributes unique functional 
properties to sugar chains and plays a role in lung 
development and cell differentiation regulation. Deficiency 
of Fuc in lungs has been associated with pulmonary 
dysplasia [35], and it has also been implicated in the 
scavenging of oxygen free radicals, exhibiting antioxidant 
and anti-inflammatory effects. Previous studies have shown 
lower levels of Fuc-D in the urine metabolites of BPD 
group preterm infants compared to non-BPD counterparts 
[36]. Our investigation noted that the concentrations 
of Glc-D (P = 0.000) and Fuc-D (P = 0.005) were lower 
in the moderate-to-severe BPD group than in the mild 
BPD group. It was postulated that severe BPD premature 
infants, with heightened oxidative stress, consume more 
Glc and Fuc due to the presence of a large quantity of 
reactive oxygen radicals, leading to severe oxidative stress 
responses and further damage to immature lungs [37]. 
Nevertheless, the precise association between serum free 
and degraded monosaccharide levels and varying degrees 
of BPD warrants additional study.

In the domain of BPD prediction models, frequent 
predictors include birth weight, gestational age, sex, 
5-minute Apgar score, respiratory distress syndrome, 
mechanical ventilation, antenatal steroids, maternal 
hypertensive disorders, surfactant, and patent ductus 
arteriosus [38]. Emerging markers for BPD have been 
reported to encompass lung ultrasound and urinary 
markers [39, 40]. Approximately 30% of related studies 
construct prediction models via univariable analysis, 
potentially overlooking crucial predictors. Consequently, 
multi-factorial prediction models are gaining wider 
exploration. Cai et  al. identified 10 independent risk 
factors to construct their model, achieving an AUC value 
of 0.965 (sensitivity: 93.7%; specifity: 91.3%) [23]. Jassem-
Bobowicz et al. established a model based on four factors, 
obtaining an AUC of 0.932 [3], while Shim et al. achieved 
high predictability (90.8%) using clinical parameters 
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collected within 1 hour of birth [40]. In our study, the 
developed prediction model, based on the combination 
of gestational age and Fucose, delivered an AUC of 0.96, a 
high sensitivity of 95.0%, and a specificity of 94.81%.

In conclusion, the link between monosaccharides and 
BPD was investigated for the first time, suggesting Fucose 
as a novel marker for BPD in premature infants. Despite 
promising results, the main limitation of this study lies in 
the small sample size. Therefore, external validation through 
multi-center prospective studies is indispensable to further 
assess the generalizability of this prediction model.
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